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Engineering microbial chemical factories
using metabolic models
Debolina Sarkar and Costas D. Maranas*

Abstract

Living organisms in analogy with chemical factories use simple molecules such as sugars to produce a variety of

compounds which are necessary for sustaining life and some of which are also commercially valuable. The

metabolisms of simple (such as bacteria) and higher organisms (such as plants) alike can be exploited to convert

low value inputs into high value outputs. Unlike conventional chemical factories, microbial production chassis are

not necessarily tuned for a single product overproduction. Despite the same end goal, metabolic and industrial

engineers rely on different techniques for achieving productivity goals. Metabolic engineers cannot affect reaction

rates by manipulating pressure and temperature, instead they have at their disposal a range of enzymes and

transcriptional and translational processes to optimize accordingly. In this review, we first highlight how various

analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed in

systems and control engineering. Specifically, how algorithmic concepts derived in operations research can help

explain the structure and organization of metabolic networks. Finally, we consider the future directions and

challenges faced by the field of metabolic network modeling and the possible contributions of concepts drawn

from the classical fields of chemical and control engineering. The aim of the review is to offer a current perspective

of metabolic engineering and all that it entails without requiring specialized knowledge of bioinformatics or

systems biology.
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Introduction
Chemical engineering draws from a wide range of disci-

plines such as physics, chemistry, computer science, math-

ematics, operations research, and the life sciences. Almost

seven decades ago during World War II the rising de-

mands for penicillin was met by co-opting chemical en-

gineering principles to carry out large-scale fermentation.

A quadruple rise in production was achieved by refining

the original mold species, developing an effective growth

medium, and changing the fermentation process from ru-

dimentary surface culture to submersion in tanks [1].

These early efforts were the vanguards of current

mechanistic descriptions of biological processes. Cellular

metabolism is a temporally-varying process that gives

rise to a wide variety of dynamical phenomena such as

multiple steady states and temporal oscillations. The elu-

cidation, and subsequent prediction of the behavior of

metabolic systems is one of the major challenges of the

postgenomic era [2–4]. To this end, significant strides

have been made in recent years to construct and investi-

gate detailed models of cellular processes [5–8]. Such a

model can be treated as a “virtual laboratory” that allows

one to build a characteristic description of the system

and elucidate an understanding of the design principles

of cellular functions, robustness, adaptability, and

optimality. The insights gleaned can then be translated

into the rational engineering of microbes to serve as

miniature chemical factories to produce products of

interest. Microbial fermentation is a popular production

mode for many biofuels and biochemicals as it generally

(1) relies on a sustainable feedstock (i.e., usually sugars),

(2) involves a reduced environmental footprint, (3) is

easily scalable, and (4) bypasses the need for complex

separations.

The goal of this article is to review how chemical en-

gineering is playing a germane role in the study of meta-

bolic networks. We first describe the use of principles

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: costas@psu.edu

Department of Chemical Engineering, Pennsylvania State University,

University Park, PA, USA

BMC Chemical EngineeringSarkar and Maranas BMC Chemical Engineering            (2019) 1:22 

https://doi.org/10.1186/s42480-019-0021-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s42480-019-0021-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:costas@psu.edu


such as reaction kinetics and linear programming in

modeling metabolic networks. This is followed by a

description of the tools used to identify the processes

that control and limit flux in biological systems. Finally,

we discuss the challenges and opportunities associated

with the successful establishment of microbial chemical

factories.

Steady-state analysis of metabolic networks
A cell’s metabolism is described by the gamut of bio-

chemical conversions occurring within it that work

together to support life. Cells intake carbohydrates, pro-

teins, lipids, and many small molecules and ions. These

species, called metabolites, act as building materials and

fuel for the cell as it grows, exports and imports mate-

rials from its environment, and replicates its genome in

order to divide and multiply. A metabolic network can

be used to model these reactions using principles de-

rived from chemical kinetics. A basic premise is conser-

vation of mass – if Xi(t) is the mass of a chemical

species i at time t, then accordingly

X i t þ ∆tð Þ−X i tð Þ ¼ vi;in−vi;out
� �

∆t

where vi, in and vi, out are the flux rates at which species i

is created and consumed per unit time ∆t, respectively.

Thus, as ∆t→ 0, the above equation can be written as

dX i

dt
¼ vi;in−vi;out

The entire set of metabolic reactions can be repre-

sented as a stoichiometric matrix S whose entries are

the stoichiometric coefficients of every metabolite i in

every reaction j. A metabolic quasi-steady state is as-

sumed, based on the fact that metabolic reactions are

typically much faster compared to the time-scale of cel-

lular growth and environmental changes. Thus, all meta-

bolic fluxes that lead to the production and degradation

of metabolites must balance, leading to the flux balance

eq. [9, 10]:

S∙v ¼ b

where v is the vector of metabolic fluxes, S the stoichio-

metric matrix, and b is a vector containing the net me-

tabolite uptake/secretion rates. The resulting system is

typically under-determined (due to metabolites partici-

pating in multiple reactions) and an objective function is

introduced as a teleological driver of cellular metabol-

ism. If c(v) is the objective function (usually maximizing

organism growth), the resultant linear programming

model is

max c vð Þ : Sv ¼ 0;LB≤v≤UBf g

where LB and UB are vectors representing the lower

and upper bounds on the reaction fluxes. The above is

the most common example of flux balance analysis

(FBA) [11]. To construct such a mathematical formula-

tion, two major inputs are required – 1) information of

all the metabolic enzymes existing in an organism, as

this will inform the possible metabolic conversions, and

2) demands placed on the system (see Fig. 1 for an over-

view of the reconstruction process). This includes pro-

cesses such as growth (modelled as flux through a

biomass synthesis reaction), maintenance requirements,

or secretion of a product of interest.

A genome-scale metabolic model (GSM) includes in-

ternal metabolic conversions as well as the reactions

transporting metabolites in and out of cells. Thus, reac-

tions can be limited by the resources available in the en-

vironment, resulting in a flexible network structure that

can adapt to different ecological niches and perturba-

tions. For instance, an E. coli cell can survive with or

without oxygen, investigations of which using FBA cap-

tured the varied routes of energy production and protein

biosynthesis employed under the two regimes [12]. The

same metabolic model can be used in both cases by sim-

ply adjusting the bound of the reaction that transports

oxygen into the cell.

FBA has been used to make significant contributions

to understanding biochemical networks and metabolic

engineering. Its primary goal is to design engineered or-

ganisms that can achieve higher efficiencies in metabol-

ite overproduction through alterations in the flux

distribution. This has been realized in numerous cases

such as lycopene [13] and butanol [14] production in E.

coli, and lysine production in Corynebacterium glutami-

cum [15]. FBA can also be used to improve productivity

such as by optimizing process parameters and rationally

designing the cell culture medium. Optimal uptake rates

were first computed using FBA and then used to alter

the nutrient feed composition in a hybridoma culture

which reduced waste accumulation by several folds [16].

A metabolic model of E. coli was used to determine cul-

ture conditions that increased strain stability by optimiz-

ing the glucose to oxygen supply ratio [17].

FBA predictions have been found to achieve biological

fidelity -- its ability to identify essential genes (i.e., genes

whose deletion negates biomass synthesis) exceeds 90%

in many metabolic models [18]. Thus, such analyses can

be used to glean insights into an organism’s physiology

by examining its metabolism quantitatively. For instance,

input vs output trade-offs can be computed that de-

scribe the impact of nutrient supply rates on by-

product secretion and/or growth. Such a study in E.

coli predicted growth rates to increase with the nutri-

ent supply, as is expected, but at higher growth rates

the secretion of metabolites such as acetate was also

predicted [19]. This is because the oxygen utilization
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capacity is reached at higher growth rates and the cell

thus possesses surplus reductive potential. This leads to a

redistribution of metabolic fluxes and by-products (such

as acetate) are secreted so as to eliminate the surplus

redox potential [20–22].

Dynamic models of metabolism
FBA considers metabolism using only reaction stoichiom-

etry and reversibility subject to a steady-state condition.

Thus, such a framework performs well when predicting

the long-term response of the system to environment or

genetic perturbations [23] but is unable to explain transi-

ent behavior or even how a specific metabolite state is

achieved [24, 25]. In the absence of any regulatory or

mechanistic information, the in silico solution space avail-

able to constraint-based models is much larger than the

biologically feasible sample space [14, 15]. Thus, attempts

to engineer microbial systems as in cell factories to over-

produce metabolites must consider the kinetics associated

with their production pathways along with the interaction

of the designated pathways with the entire metabolic

network.

Efforts to construct genome-scale dynamic models have

been made by extending constraint-based models -- start-

ing from stationary fluxes and introducing pseudo-kinetic

behavior, such as in dynamic FBA (DFBA) [26, 27] and

structural kinetic modeling [28, 29]. DFBA works by first

discretizing the time period into intervals and then solving

the following optimization problem at the beginning of

each interval to obtain fluxes at that instant:

max
v tð Þ

X

w jv j tð Þ

s.t.

X t þ ∆Tð Þ≥0

v tð Þ≥0

c v tð Þ;X tð Þð Þ≤0; ∀t∈ t0; t f
� �

v tð Þ−v t−∆Tð Þj j≤˙vmax∆T ; ∀t∈ t0; t f
� �

X t þ ∆Tð Þ ¼ X tð Þ þ Sv∆T

Xbiomass t þ ∆Tð Þ ¼ Xbiomass tð Þ þ μXbiomass tð Þ∆T

Where X is the vector of metabolite concentrations

(Xbiomass represents the concentration of the biomass

metabolite), μ is the growth rate, and wj is the vector of

weights associated with the objective function in the

current time interval ∆T. t0 and tf represent the initial

and final time points. The non-linearity in this formula-

tion arises from the kinetic expressions for flux rates

contained in the vector c(v(t),X(t)), usually used to con-

strain input fluxes. The flux values so obtained are

considered to be constant over the current time interval

and are then used to solve a dynamic model describing

metabolite time profiles. Mahadevan et al. [26] used

DFBA to describe the biphasic growth of E.coli on glu-

cose and acetate. They could successfully predict the

onset of acetate production and sequential substrate

utilization where E. coli preferred glucose followed by

acetate instead of simultaneous utilization. Furthermore,

they could also qualitatively match the predicted rates of

metabolite consumption to those measured experimen-

tally. Since then DFBA has been used to predict the

accumulation of high-value storage compounds in

microalgae under varying light and nutrient conditions

[30], determine optimal aerobic and anaerobic culture

times and thus scale-up a batch culture of ethanol pro-

duction in S. cerevisiae by 5-folds [31], and optimize glu-

cose and ethanol production in E. coli by calculating the

optimal flux profile for reactions controlled by genes

under genetic perturbation [32].

Thus, DFBA as an extension of classical FBA can in-

deed be used to analyze the dynamic reprogramming of

a network [33], especially in response to external pertur-

bations. However, it still hinges on the inherent assump-

tion that the time constants related to intracellular

dynamics are much smaller than those describing

changes in external concentrations. This is not always

true for biological systems as they exhibit control on

various levels and thus a direct kinetic description of

metabolism that incorporates regulatory mechanisms

would likely lead to a higher biological fidelity. For in-

stance, analysis of a hybrid kinetic-FBA model of S. cere-

visiae demonstrated that the inclusion of a relatively

small number of enzyme kinetic expressions substan-

tially improves the predictive accuracy of FBA, especially

if these are used to describe initial reactions in the me-

tabolism of exogenous substrates and reactions at crucial

metabolic branch points [34].

Kinetic models of metabolism take the next step in

this direction by using mechanistic enzyme kinetics to

model network fluxes which is subject to thermo-

dynamic and regulatory constraints and the underlying

network stoichiometry. Kinetic models can thus account

for changes in metabolite concentrations while capturing

the non-linearities inherently present in the system [35,

36]. A set of ordinary differential equations are used to

model the temporal concentration of each metabolite -

dX

dt
¼ Sv E;X; kð Þ;X 0ð Þ ¼ X0

Where the reaction flux v is a function of metabolite

concentrations X, kinetic parameters k, and enzyme

concentrations E, and X0 represents the initial metabol-

ite concentrations. Because many of the enzyme kinetic
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parameters are unknown, approximating kinetic mecha-

nisms is a way to improve the tractability of these

models when applied to large networks [37]. These in-

clude substitutes such as power-law, lin-log and log-lin

kinetics, and modular rate laws (reviews of the various

rate laws and their differences can be found in [38, 39]).

Due to a lack of experimentally-measured kinetic param-

eters, many times in vitro kinetic data is used to fit and

approximate in vivo enzyme kinetics [40, 41]. The

thermodynamic feasibility of kinetic models can be

enforced using the generalized Wegsheider condition:

BT log Keq = 0, where B is the right null space of the stoi-

chiometric matrix S [42, 43]. This enforces thermo-

dynamic feasibility by constraining the values of Keq for

every reaction such that a reaction flux can be non-zero

only if the corresponding change in the reaction’s Gibbs

free energy is negative.

To counter the paucity of data, a top-down modeling

approach is used, wherein model parameters are ad-

justed iteratively using an optimization routine until the

model predicted flux distribution matches the one ob-

served. This method uses Monte Carlo modeling to re-

duce parameter uncertainty by replacing the use of a

single set of parameters by multiple parameter sets ob-

tained through random sampling [44–46]. The feasibility

of these methods is improved by defining the parameter

space on the basis of known in vivo information before

sampling commences. Model validation in this approach

involves comparing against data from a different physio-

logical state, usually nutrient stress or a mutant strain

[47]. There are three primary frameworks in existence

for Monte Carlo modeling in genome-scale reconstruc-

tions – ORACLE [48–50], Jacobian-based structural

kinetic models (SKMs) [51] and Ensemble Modeling

[52–55]. The ensemble modeling approach was recently

used to construct a genome-scale kinetic model of E. coli

called k-ecoli457, consisting of 457 reactions, 337 me-

tabolites, and 295 substrate-level regulatory interactions

[52]. Model parameterization was done via a genetic al-

gorithm where all available fluxomic data was simultan-

eously imposed. The k-ecoli457 model [52] was able to

capture a wide array of perturbations, with a Pearson

correlation coefficient of 0.84 between the experimental

data and predicted product yields for 320 engineered

strains spanning 24 product metabolites. More recently,

the K-FIT decomposition based parameterization ap-

proach was introduced [56] which offers orders of mag-

nitude improvement in parameterization times allowing

for detailed a posteriori local sensitivity analyses. Despite

their obvious virtues, constructing detailed kinetic

models remains challenging. For instance, the latest E.

coli constraint-based model contains 2719 reactions in-

volving 1192 metabolites and spans 1515 genes (ac-

counting for ~ 34% of the genome) [57].

The overarching goal is to be able to capture the hier-

archical organization seen in biological systems, where

the overall phenotype is a function of the inherent coop-

erativity between layers such as the transcriptome, me-

tabolome, and proteome. Whole-cell computational

models are a step in that direction and are able to pre-

dict a wide range of cellular behavior by incorporating

the function of each gene, gene product, and metabolite

[58, 59]. Cellular functions are split into independent

modules describing processes such as DNA replication,

segregation, and repair, RNA transcription, protein fold-

ing, ribosome assembly, and biochemical conversions

modelled via metabolic networks. These modules are

then integrated and the overall model performance vali-

dated against known properties such as organism doub-

ling time, cellular chemical composition, and gene

expression. Thus, whole cell models herald a new age of

biological discovery driven by in silico modeling, but the

data- and computationally-intensive inputs are a major

deterrent to their construction and accessibility [60, 61].

Metabolic control analysis
Reaction properties such as rate and efficiency can be

tweaked by altering metabolite concentrations and the

catalytic and binding properties of enzymes. Enzymes

enable high metabolic flux rates by acting as primary ‘le-

vers’ governing a cell’s metabolism constrained by the

thermodynamics and stoichiometry of the system. Drug

design was one of the first paradigms under which modi-

fication of metabolism was attempted: by identifying and

therapeutically targeting ‘essential metabolic pathways’

in a pathogen. This rational drug design was based on

Hans Krebs’ proposition that once the exact description

of a metabolic pathway has been given, the ‘pacemaker

enzyme’ (i.e., the rate-limiting step) can be identified and

this controls flux through the entire pathway.

However, the flux through most biological pathways

has been seen to be controlled by more than one en-

zyme. Glycolysis, which is responsible for breaking down

glucose to release energy for cellular processes and pro-

vide precursors for downstream metabolic pathways, has

been found to be controlled by three enzymes – hexoki-

nase (HK), phosphofructokinase (PFK), and pyruvate

kinase (PK) [62]. These enzymes are the slowest in the

pathway (Vmax values lower than the rest by at least an

order of magnitude) and catalyze reactions that operate

far away from equilibrium (ratio of mass-action ratio to

equilibrium constant ~ 10− 3 to 10− 4). Hence, it becomes

necessary to quantitatively determine the degree of con-

trol that a given enzyme exerts on the flux through the

entire pathway and/or the final rate of product forma-

tion so as to be able to rationally reengineer metabolism.

Metabolic control analysis (MCA) quantifies the de-

gree of control that a given enzyme in a pathway exerts
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on the flux and on the concentration of metabolites.

This is done by determining the dependence of system

variables (such as the rate of a reaction or the concentra-

tion of a metabolite) on enzymatic parameters such as

the activity or concentration of an enzyme. Control coef-

ficients C
v j

Ek
and CX i

Ek
can be calculated which indicate

the steady-state change in the concentration of metabol-

ite Xi or flux vj, respectively, in response to a perturb-

ation in the enzyme concentration or activity (Ek). Thus,

the flux control coefficient (C
v j

Ek
) and concentration con-

trol coefficient (CX i

Ek
) are defined as:

C
v j

Ek
¼

∂v j

∂ Ek

� �

Ek;o

v j;o

� �

CX i

Ek
¼

∂X i

∂ Ek

� �

Ek;o

X i;o

� �

Here, ð
Ek;o

v j;o
Þ and ð

Ek;o

X i;o
Þ are scaling factors used to obtain

dimensionless and normalized values of the flux coeffi-

cients. They represent the ratio between the initial

values from which the slopes ð
dv j

∂ Ek
Þ and ðdX i

∂ Ek
Þ are calcu-

lated. Two summation theorems have been shown to

hold for control coefficients [63]:

XK

k¼1
C

v j

Ek
¼ 1

XK

k¼1
CX i

Ek
¼ 0

If a small change in Ek causes a significant variation in

flux vj, then the enzyme exerts high flux control. Simi-

larly, if a minor change in vj is observed when Ek is var-

ied a lot, then the enzyme does not exert significant flux

control.

MCA has indeed been used to analyze control in a

metabolic pathway and rationally identify potential en-

zymatic intervention targets, such as in the parasite Ent-

amoeba histolytica which causes amebiasis in humans.

E. histolytica does not have a functional mitochondrion,

TCA cycle enzymes, or the oxidative phosphorylation

pathway. Thus, glycolysis is the only route of generating

ATP, the primary energy ‘currency’ of the cell, and thus

inhibiting this pathway will potentially cripple this para-

site. Saavedra et al. [64] constructed a kinetic model of

this organism’s glycolytic pathway in order to determine

its distribution of control. They found that the majority

of control is distributed between HK and phosphoglycer-

ate mutase (PGAM). The amoeba model was also used

for evaluating the effect of inhibiting individual enzymes

and its effect on flux through the entire pathway. Model

predictions indicate that in order to reduce glycolytic

flux and ATP levels by 50%, HK and PGAM should be

inhibited by 24 and 55%, respectively, or both enzymes

by 18%. In contrast, if other enzymes such as phospho-

fructokinase and pyruvate phosphate dikinase are

targeted, their activities have to be inhibited by over 70%

to achieve similar glycolytic flux reductions. These pre-

dictions were later experimentally verified [65] using

reconstitution experiments which expressed glycolytic

enzymes in vitro at near physiological conditions of pH,

temperature, and enzymatic activity. PGAM was found

to be the main flux controlling enzyme for lower gly-

colysis while upper glycolysis was controlled by HK, and

to a much smaller extent, PFK, and ALD.

However, considerations have to be made before ap-

plying MCA to biological systems due to its dependence

on the reaction flux vj being a homogeneous function of

Ek, which is not necessarily always true. The summation

law for flux control coefficients can be written as

E1

∂v j

∂ E1

� �

þ E2

∂v j

∂ E2

� �

þ…þ EK

∂v j

∂ EK

� �

¼ v j

Using Euler’s theorem reveals that the above implies vj
to be homogeneous with degree 1:

v j tE1;…; tEKð Þ ¼ tv j E1;…; EKð Þ

However, this homogeneity is hard to realize as a

change, say, in the concentration of enzyme Ek will also

change components such as the concentration of free

substrate which will, in turn, affect the reaction rate vj.

Only for systems where enzymes are substrate saturated,

i.e., where the concentrations of metabolites exceed

those of the enzymes by two or three orders of magni-

tude does the above serve as a fair approximation (such

as 70% of the enzymes measured in E. coli, yeast, and a

mammalian cell line [66]). This is exemplified in the case

of Rubisco, the most abundant enzyme in the world, as

efforts to engineer it by modifying its catalytic efficiency

or by overexpressing it, have been largely unsuccessful.

Its concentration was measured to be 3–4mM in the

stroma of spinach chloroplasts [67], whereas the concen-

tration of its substrate ribulose 1,5 bisphosphate is often

lower than 0.5 mM. As expected, the kinetic rate law of

the corresponding carbon-fixing reaction was found to

be non-homogeneous w.r.t. Rubisco [67].

Thermodynamic analysis to predict pathway
bottlenecks
MCA uses a given steady state to describe how changes

in enzyme abundance (or activity) affect the pathway

flux. This requires the careful calculation of enzyme

kinetic properties which are experimentally laborious to

measure and also differ between organisms and iso-

zymes, which further confounds the ability to compare

across pathways and/or multiple organisms. Using ther-

modynamics and stoichiometry to calculate a single
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metric called Max-min Driving Force (MDF) [68] allevi-

ates these problems. MDF identifies reactions within a

pathway whose rates are constrained by a low thermo-

dynamic driving force and thus would need the catalyz-

ing enzymes to be present in higher concentrations and/

or be engineered to achieve higher turnovers. Further-

more, MDF can also predict if a pathway is likely to sup-

port high flux under cellular conditions, thus allowing

one to select among alternative pathways as intervention

targets [69, 70].

The rate of a reaction is constrained by its thermo-

dynamic driving force, with near-equilibrium reactions

requiring exponentially more enzyme to sustain the

same rate as reactions operating far from equilibrium.

Due to this interdependence between thermodynamic

potential and flux, pathways operating near equilibrium

will incur a kinetic penalty due to backward flux. Thus,

MDF computes reactant concentrations that maximize

the minimum driving force B associated with all reac-

tions in a pathway:

max
x;B

B

s.t.

− G° þ RTSTx
� �

≥B

ln Cminð Þ≤x≤ ln Cmaxð Þ

where S represents the stoichiometric matrix (rows cor-

responding to compounds and columns to reactions), G°

is a column vector containing the standard change in

Gibbs energy for a reaction j, x is a column vector of the

log-concentrations of metabolites, Cmax and Cmin the

maximum and minimum allowed metabolite concentra-

tions, respectively.

MDF has been used to glean biological insights into

pathways such as the TCA cycle and EMP glycolysis. An

examination of the TCA pathway revealed that flux

through it is constrained by malate dehydrogenase,

which has a large positive standard Gibbs energy of > 30

kJ/mol at pH ≤ 7 (Fig. 2a and b). However, the TCA

cycle is known to sustain high fluxes which can also vary

according to the organism’s need [71]. This apparent

contradiction is explained by the low physiological con-

centrations of oxaloacetate, the product of malate de-

hydrogenase, as it is channeled between it and the

following enzyme in the pathway -- citrate synthase.

Thus, malate dehydrogenase and citrate synthase can be

treated as a single enzyme which makes the Gibbs en-

ergy drop down to below − 20 kJ/mol and removes the

thermodynamic bottleneck.

Dash et al. [72] used MDF to examine the thermo-

dynamic bottlenecks associated with ethanol production

in C. thermocellum. They found five reactions belonging

to central carbon metabolism as being limiting under

high external ethanol concentrations. They further eval-

uated the effects of imposing a minimal set of genetic

perturbations on pathway thermodynamics and energy

production. In doing so they found that modifications

involving ATP-linked phosphofructokinase (PFK-ATP)

and NADPH linked alcohol dehydrogenase (ADH-

NADPH) with NADPH linked aldehyde dehydrogenase

(ALDH-NADPH) had the highest performances. The in-

clusion of ATP-PFK yields a higher MDF at the expense

Fig. 1 Overview of the workflow involved in reconstructing genome-scale metabolic networks. The reconstruction begins with the organism’s

annotated genome, from which the list of metabolic genes is extracted -- this helps quantify the gamut of biochemical conversions the organism

is capable of. These set of metabolic conversions or reactions, alongside their associated enzymes and encoding genes, constitutes a draft

metabolic network. This draft network is then curated, to make sure that it adheres to criteria such that every reaction is mass and charge

balanced, and proceeds in the direction in which it is thermodynamically favored. Then, for constructing a constraint-based model a pseudo-

steady state constraint is imposed on every metabolite and a cellular objective imposed so as to arrive at biologically relevant solutions. For

constructing a kinetic model, flux through a reaction is modeled using kinetic rate laws and regulatory, thermodynamic, and stoichiometric

constraints imposed

Sarkar and Maranas BMC Chemical Engineering            (2019) 1:22 Page 6 of 11



of ATP, while the ADH-NADPH reaction decouples

ethanol production flux from those reactions involving

NADH (Fig. 2c). ALDH-NADPH is required for ensur-

ing NADPH production and also ensure redox balance.

Interestingly, studies involving high ethanol-yielding C.

thermocellum strains have shown that the cofactor speci-

ficity of ADH changes to NADPH from NADH [73].

Minimal protein utilization drives cellular
metabolism
MDF exploits the fact that the thermodynamic driving

force behind a reaction dictates its rate, where higher

forces correspond to high forward and low backward

fluxes. This translates into efficient enzyme usage by de-

creasing the amount of enzyme needed per unit of meta-

bolic flux. However, computing enzyme demand from

metabolic fluxes is not trivial as enzymes tend to not

function at maximal capacity. This is mainly due to me-

tabolites causing incomplete substrate saturation and

acting as allosteric regulators (affecting enzyme turnover

by binding to sites other than the active site). This be-

comes a cyclic inference problem as steady-state metab-

olite levels depend on enzyme profiles. Thus, in order to

arrive at a single solution, one can look for the enzyme

profile with the least cost which is needed to realize a

certain flux distribution. This is well justified in bio-

logical systems, where metabolic enzymes are a limited

resource and thus cells economize by synthesizing the

right enzymes in the right amounts, and adapting their

levels when conditions change.

A reaction rate v = Er(c) depends on enzyme level E and

metabolite concentrations c through the enzymatic rate

law r(c). As metabolite levels are often unknown and also

vary between experimental conditions, the enzyme de-

mand cannot simply be computed as E = v/r(c). This leads

to the definition of an enzyme cost function and choosing

the enzyme profile with the lowest cost, while imposing

thermodynamic constraints and constraining the metabol-

ite levels to physiological ranges. Using Michaelis-Menten

kinetics, a reversible rate law can be written as

Fig. 2 MDF analysis of the TCA cycle (a and b) and ethanol production (c) in C. thermocellum. a Overview of the TCA cycle. The reaction

between malate and oxaloacetate is catalyzed by malate dehydrogenase, which was found to be the limiting step in the pathway. b MDF as a

function of pH, as calculated for the TCA cycle (‘Standard TCA’), for an oxaloacetate concentration of 10 nM (‘[OAA] = 10 nM’), and with

oxaloacetate channeling included (‘OAA channeling’). c Ethanol production pathway for the best-performing strain with three interventions.

Suggested interventions are shown in green while the native reaction is shown in red. For all the panels, metabolites are shown in blue. G1p,

glucose-1-phosphate; g6p, glucose-6-phosphate; f6p, fructose-6-phosphate; fdp, fructose 1,6-bisphosphate; g3p, glycerol-3-phosphate; 13dpg, 3-

phosphoglyceroyl phosphate; 3 pg, 3-phosphoglycerate; 2 pg, glycerate-2-phosphate; pep, phosphoenolpyruvate; pyr, pyruvate; accoa, acetyl-CoA;

acald, acetaldehyde; etoh, ethanol
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v ¼ Ekþcat

s=K s 1−
k−catp=Kp

kþcats=K s

� �

1þ s=K s þ p=Kp

v ¼ Ekþcat 1−
k−catp=Kp

kþcats=K s

� �

s=K s

1þ s=K s þ p=Kp

� �

v ¼ Ekþcatƞ
rev cð Þƞkin cð Þ

Where E is the enzyme level, kþcat is the forward cata-

lytic constant, ƞrev is the driving force (defined as the ra-

tio between forward and backward reaction fluxes), and

ƞ
kin is the reduction in flux due to kinetic effects (such

as substrate saturation or allosteric regulation). Thus,

the enzyme demand of a single reaction j can be written

as:

E j c; v j
� �

¼
v j

kþcatƞ
rev cð Þƞkin cð Þ

A burden hE j
can be defined for each enzyme repre-

senting its molecular mass, post-translation modifica-

tions, or effects of misfolding and non-specific catalysis.

To determine the demand for an entire pathway, all the

reactions are summed over and the final cost function to

be minimized is –

q x; vð Þ ¼
X

j

hE j
E j c; v j
� �

¼
X

j

hE j

v j

kþcatƞ
rev cð Þƞkin cð Þ

This function q(x, v) represents the trade-off between

the fluxes which can be realized and the enzyme levels

required to sustain that. Noor et al. [74] used enzyme-

cost minimization (ECM) to predict enzyme levels and

metabolite concentrations in E. coli using fluxes found

by 13-C MFA [75]. They found that the prediction fidel-

ity increases monotonically as more complex cost func-

tions are used. The root-mean square error varied from

1.35 (when enzyme levels are considered to be propor-

tional to reaction fluxes) to 0.42 (when the modular rate

laws [76] are used and the form of ƞkin(c) is determined

using the reaction mechanism and order of enzyme-

substrate binding). However, the caveat of ECM is the a

priori knowledge of reaction fluxes, which is difficult to

realize on a genome-scale. Although it is true that meta-

bolic states with a maximal specific rate constitute an

elementary flux mode [77], but their enumeration is

computationally intensive [78]. Furthermore, ECM relies

on the assumption that the metabolic states of a cell are

optimized for enzyme levels, which isn’t always true.

Cells often function at sub-optimal levels for robustness

or maintaining the metabolic flexibility needed for tidy-

ing over future perturbations [79].

Summary and perspectives
Metabolic engineering has been used for the analysis,

design, and optimization of metabolic pathways with sig-

nificant successes [13, 14, 80–82]. In this review we dis-

cussed metabolic engineering tools (using flux balance

analysis) that enable the formulation of a cell’s metabol-

ism as a resource allocation problem driven by biological

objectives such as maximizing growth rate or energy

production. The construction of genome-scale models of

metabolism require, as input, the set of all known meta-

bolic conversions (or reactions) occurring inside the or-

ganism, and the thermodynamic favorability of each.

Although such constraint-based models of metabolism

have found wide use and adaptation, their primary draw-

back is an inability to capture the dynamic behavior

evinced by biological systems. To this end, conventional

FBA has been augmented such as by incorporating

pseudo-kinetic reaction descriptions for a subset of reac-

tion fluxes (dynamic FBA). Kinetic models take the next

step in this direction by modeling reaction fluxes as a

function of metabolic concentrations, enzyme kinetic pa-

rameters, and enzyme levels themselves. Such models

are able to predict the dynamic behavior of metabolic

networks but at the expense of intensive data-driven or

computationally expensive parameterization. Neverthe-

less, a kinetic description of reaction mechanisms can be

used to identify major flux-controlling steps [83] and

identify pathway bottlenecks (MCA and MDF). Model-

ing regulations at different levels of metabolism, such as

enzymatic or gene expression regulation, draws heavily

from control theoretic approaches and can be further

extended using classical concepts such as proportional

and integral control. This will enable the study of cellu-

lar processes such as robust adaptation to environmental

perturbations within the well-established fields of con-

trol systems for both steady and transient states.

In nature, organisms rarely exist in isolation but

interact with others in a variety of biological and

ecological niches. Microbial modeling allows us to

explore the co-product potential of such communi-

ties by modeling the dynamics of inter-species inter-

actions. Microbes can interact with each other and

their hosts via processes such as metabolite cross-

feeding, which can link disparate pathways from

individual species to give rise to novel emergent

metabolic functions [84]. By intelligent design of the

growth media [85], standalone growth can be ne-

gated and thus co-culture growth and product secre-

tion can be made to be an obligatory outcome of

microbial biomass synthesis. The composition of a

synthetic consortia can be further tuned by using

genome-scale metabolic models to scan potential

members and subsequently determine the ability of

the culture to synthesize desired compounds.
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Conclusions
Thus, a thorough and mechanistic understanding of an

organism’s cellular processes would revolutionize our

abilities to repair or even guide metabolism. Synthetic

biology offers the promise of replacing traditional, high

carbon footprint processes fed by unsustainable feed-

stocks with tunable microbial reactors. Using rational

approaches derived from metabolic engineering, design-

ing clean processes that use renewable feedstocks as the

raw material can also help provide feasible solutions to

current problems of global warming and fossil fuel ex-

haustion. Indeed, a number of instances where metabolic

engineering has helped sustainably improve the economy

and efficiency of production processes are already avail-

able. Engineered bacteria being used to produce energy

from sunlight, water, and organic wastes; synthetic mole-

cules produced by biocatalysts being used as novel drugs

and vaccines; and increasing the productivity of existing

crop systems by implementing an optimal set of genetic

interventions – these are but a few of the possible appli-

cations of metabolic engineering [30, 86, 87].
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