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Abstract 

Commercial activated carbon has been functionalized by chemical or thermal treatments 

to introduce surface oxygen functional groups able to anchor small cobalt nanoparticles 

with superior catalytic activity for peroxymonosulfate activation. The resulting activated 

carbon supports where characterized by combustion elemental analysis, Fourier-

transformed infrared spectroscopy, Raman spectroscopy, isothermal N2 adsorption, 

temperature programmed desorption/mass spectrometry, X-ray diffraction and scanning 

electron microscopy. Activated carbon functionalization by nitric acid resulted the most 

appropriated method to provide a higher population of oxygenated functional groups able 
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to anchor small cobalt nanoparticles. The catalytic activity of supported oxidized metal 

nanoparticles (4.7 ± 0.05 nm) was higher than analogous non-oxidized cobalt 

nanoparticles (2.9 ± 0.14 nm). The use of analogous supported oxidized iron or copper 

nanoparticles resulted in lower catalytic activity. Importantly, the supported oxidized 

cobalt nanoparticles at 0.2 wt% loading exhibit higher activity than benchmark catalysts 

such as unsupported Co3O4 solid or even homogeneous Co2+ ions. This high activity being 

a reflection of the relatively low estimated activation energies for peroxymonosulfate 

decomposition and phenol degradation with the values of about 30 and 32 kJ mol-1, 

respectively. The stability of the most active catalyst was assessed by performing eight 

consecutive uses without observing decrease of catalytic activity, neither metal leaching 

or metal nanoparticle aggregation. Turnover numbers/turnover frequencies values as high 

as 4·105/8·105 h-1 for peroxymonosulfate activation and 39·103/68·103 h-1 for phenol 

degradation at pH 7 and 20 ºC have been estimated, respectively. Electron paramagnetic 

resonance measurements and selective quenching experiments revealed that the generated 

sulfate radicals from peroxymonosulfate rapidly are transformed in highly reactive 

hydroxyl radicals. In excellent agreement with previous reports, this work demonstrates 

the importance of an adequate activated carbon functionalization to obtain superior and 

stable catalysts for peroxymonosulfate activation. 

Keywords: heterogeneous catalysis; advanced oxidation process; peroxymonosulfate 

reagent; cobalt oxide nanoparticles; functionalized activated carbon. 

 

 

1. Introduction 
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Advanced oxidation processes (AOPs) are a class of chemical treatments for 

pollutant remediation in soil,[1, 2] water[3-5] and air.[6] The aim of AOPs is the 

generation of highly aggressive radicals such as HO· , HOO· or  SO4·- that able to attack 

virtually any organic contaminant in aqueous media triggering their aerobic degradation 

and, eventually, their mineralization.[5, 7] In the field of waste water treatments AOPs 

are frequently employed to degrade recalcitrant, toxic and/or non-biodegradable 

compounds that cannot be treated using conventional biological water treatments.[8] One 

of the AOPs with easiest implementation is the (photo)Fenton reaction that employs 

Fe(II) salts and H2O2 at acidic pH (~3) to generate hydroxyl radicals from H2O2.[3, 5] 

One of the main drawbacks, however, of the (photo)Fenton reaction is the need of acidic 

pH values in order to avoid iron precipitation. The use of acidic pH values is also 

beneficial for H2O2 stability since at basic pH values it decomposes spuriously to O2 

without generating HO· radicals. An alternative, AOP treatment that is less pH dependent 

based on the Co(II) ions as homogeneous catalyst to activate peroxymonosulfate (PMS) 

to generate sulfate radicals (SO4·-).[9-11] It is worth to mention that in comparison to 

Fe(II), Co(II) ions remain soluble in aqueous solutions at pH values below 9.4.[9, 10] 

Importantly, PMS can operate efficiently at higher pH values including neutral aqueous 

solutions.[9] Sulfate radicals have a similar oxidation potential (about 2.5-3.1 V vs NHE) 

as hydroxyl radicals, but with higher half-life period about (30-40 µs vs 1 µs).[10] 

Regardless the good pollutant degradation efficiencies achieved using the 

commented homogeneous AOPs under optimal reaction conditions, practical applications 

are limited due to the need of removal from the treated waters of dissolved transition 

metals employed in the process to avoid negative environmental impacts and risks for the 

human health.[4, 5, 10, 11] Cobalt concentration is typically limited in drinking water to 

values lower than 50 µg L-1.[11] The removal of the transition metal ions is generally 
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carried out by precipitation with the disadvantage of needing further addition of chemicals 

and the subsequent sludge formation. Furthermore, in order to accomplish the water 

quality regulations, the removal of these transition metal ions should be done at levels 

below micrograms per liter.[12] These reasons, strongly limit the practical applications 

of homogenous AOPs using transition metals other than Fe. 

In order to solve these problems, heterogeneous catalytic AOPs have been 

developed.[10, 11, 13-15] Frequently, metal or metal oxide NPs are supported on a high 

surface area insoluble material, allowing the easy recovery and immobilization of the 

transition metal.[10, 11, 13, 14] In this context, insoluble cobalt oxides[9, 16] or cobalt 

and cobalt oxides deposited on supports including metal oxides (i.e. Al2O3, SiO2, 

TiO2),[17-19] carbonaceous materials such as activated carbon[20] or carbon 

aerogels[21], cobalt exchanged zeolites[22] or even MOFs[23] have been reported as 

heterogeneous catalysts for PMS activation.[10, 11]  

However, in spite of the advances done in the field of heterogeneous cobalt-based 

catalysts for PMS activation, there still remain some challenges to increase further the 

activity and stability of the catalysts. Among these challenges, those dealing with the 

preparation of small metal NPs and their stabilization through a strong interaction with 

the support are crucial to obtain highly efficient and stable materials.[10, 11, 24] 

The present work shows the importance of an adequate surface functionalization 

of active carbon to support small, active and stable cobalt oxide NPs able to activate PMS. 

In this way, efficient heterogeneous catalyst promoting phenol degradation as aqueous 

model pollutant has been obtained. The highest activity has been determined for the 

catalyst having the smallest cobalt oxide NPs. Thus, it will be shown that commercial 

active carbon functionalized by HNO3 acid treatment under optimal conditions is a 
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suitable support to deposit small cobalt oxide NPs with enhanced catalytic activity. In 

contrast, active carbon functionalization with a controlled thermal oxidation results in a 

catalyst with lower activity due to the bigger cobalt oxide NPs are formed. The influence 

of the cobalt oxidation state on the resulting catalytic activity has been also evaluated, 

observing that cobalt oxide NPs are more active than reduced cobalt. Importantly, the 

active carbon supported cobalt oxide catalyst can be reused at least eight times at neutral 

pH and room temperature without observing neither loss of catalytic activity nor metal 

leaching. Selective quenching experiments and EPR spectroscopic study prove that PMS 

activation using the supported cobalt oxide catalyst generates hydroxyl radicals. 

2. Experimental section 

2.1. Materials 

Oxone® (potassium peroxymonosulfate, PMS) (KHSO5·1/2KHSO4·1/2K2SO4, MW 

307.38), commercial active carbon (AC, Norit SX Ultra, ref. 53663), Co(NO3)2·6H2O 

(>99.999%), Co3O4 nanopowder (<50 nm) and phenol (>99.5%) were supplied by Sigma-

Aldrich. Other reactants or solvents employed were analytical or HPLC grade and they 

were also supplied by Sigma-Aldrich. 

2.2. Methods 

Commercial activated carbon functionalization by nitric acid. Briefly, commercial 

AC (1 g) was dispersed in concentrated nitric acid (65 %) in a round-bottom flask and the 

system heated at 83 ºC for 24 h.  Then, the solid sample was submitted to several 

consecutive centrifugation-redispersion washings with Milli-Q water until the pH of the 

supernatant was neutral. Finally, the solid was dried in an oven at 100 ºC for 24 h and the 

sample labelled as ACN. 
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AC functionalization by thermal treatment. Briefly, commercial AC (200 mg) was 

heated (7 ºC min-1) in an oven under static air up to 420 ºC and, this temperature was 

maintained for 2 h. Then, the sample was cooled down to room temperature and labelled 

as ACT. 

Deposition of cobalt NPs on the AC supports (Co/ACs). Cobalt NPs were supported 

on commercial AC, ACN and ACT solids by using the polyol method.[25] Briefly, the 

corresponding active carbon support (200 mg) was suspended in ethylene glycol (80 mL), 

sonicated for 20 min. Then, the appropriate amount of cobalt salt dissolved in water (1 

mL) was added to the suspension to achieve the required metal loading (0.2 or 1 wt%) 

and the system was heated at 85 ºC for 4 h. After cooling the system at room temperature, 

the solid was recovered by centrifugation and washed by four consecutive centrifugation-

redispersion cycles using consecutively ethanol and water as solvents. The catalysts were 

freeze-dried and labelled as Co/AC, Co/ACN or Co/ACT. These solid samples were 

further oxidized in an oven under static air at 180 ºC for 2 h and the samples labelled as 

Coox/AC, Coox/ACN or Coox/ACT. Analogous Feox or Cuox supported on ACN catalysts 

were also prepared using this methodology employing Fe(NO3)·7H2O or Cu(NO3)2 salts 

as metal precursors. 

Unsupported cobalt oxide NPs were prepared by reduction of an aqueous solution (25 

mL) containing cobalt nitrate hexahydrate (10 mg mL-1) using 10-fold excess of NaBH4 

as reducing agent. The obtained solid was recovered by filtration and washed with 

distillated water (500 mL). Finally, the solid was placed in an oven and heated at 180 ºC 

for 2 h. 

2.3. Catalyst and activated carbon characterization 
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Powder X-ray diffractograms were collected by using a Philips X-Pert 

diffractometer equipped with a graphite monochromator operating at 40 kV and 45 mA 

that employed Ni-filtered CuKa radiation. FTIR spectra were measured by using a Bruker 

Tensor 27 FT-ATR instrument. A Perkin Elmer CHNOS analyzer was employed for 

combustion elemental analysis. Temperature-programmed desorption (TPD) coupled to 

a mass-spectrometer (TPD-MS) analyses of the active carbons (100 mg) were carried out 

in a Micrometer II 2920 connected to a quadrupolar mass-spectrometer measurements 

were carried out by heating the sample from room temperature to 900 ºC at 10 ºC min-1. 

X-ray photoelectron spectroscopy (XPS) measurements were performed on a SPECS 

spectrometer with an MCD-9 detector using a monochromatic Al (Kα= 1486.6 eV) X-

ray source. CASA software has been employed for spectra deconvolution setting at 284.4 

eV[26] the C1s peak as reference. Isothermal N2 adsorption measurements were carried 

out using a ASAP 2010 Micrometrics apparatus. The metal loading (Co, Fe or Cu) on the 

ACs was determined by inductively coupled plasma combined with optical atomic 

emission spectroscopy detection (ICP-OES). Cobalt leaching was assessed by ICP-OES 

in the liquid reaction phase after removal the solid catalyst at the end of the reaction. A 

JEOL JEM-2100F instrument operating at 200 kW under dark-field scanning 

transmission electron microscopy (DF-STEM) was employed for metal particle size 

estimation measuring the dimensions of more than 200 particles. Microanalysis of the 

particles was performed by using an EDX detector (Oxford instrument) coupled to the 

DF-STEM measurements.  

2.4. Catalytic activity and reaction analysis 

Catalytic experiments were carried out at least in duplicate. Briefly, the required 

amount of catalyst was added to a round-bottomed flask (500 mL) containing an aqueous 

phenol solution (100 mL; 100 mg L-1; 1.06 mM), and the system sonicated for 20 min. 
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The initial pH of the suspension was adjusted to the required value using aqueous 

solutions of HNO3 (0.1 M) or NaOH (0.1 M). If necessary the flask was placed in a heat-

on block and heated at the required temperature. The corresponding amount of PMS 

dissolved in water (1 mL) at the corresponding pH value was added. During the course 

of the reaction the pH frequently was adjusted at the required value by addition of HNO3 

(0.1 M) or NaOH (0.1 M). 

In order to study the reusability of the catalyst, the solid was recovered at the end 

of the reaction by filtration using a nylon membrane (0.2 µm), washed with a NaOH 

aqueous solution (pH 10) and then Milli-Q water to remove possible adsorbed organic or 

inorganic substances. Then, the catalyst was employed in a new catalytic cycle. 

Productivity tests were carried out using large amount of phenol (10 g L-1; 106.4 

mM) and PMS (280 g L-1; 911 mM) with respect to the catalyst (200 mg L-1; 0.0067 mM 

of supported cobalt) at pH 7 and 20 ºC. The catalyst was reused under these concentrations 

several times as previously described. 

Analysis of phenol, catechol, hydroquinone and p-benzoquinone. Previously filtered 

reaction aliquots (Nylon filter 0.2 µm) were analyzed by reverse-phase liquid 

chromatography. A Kromasil-C18 column was employed as stationary phase. Elution was 

carried out under isocratic conditions (69:30:1 vol% H2O/CH3CN/CH3COOH). The 

system used a photodiode array as detector. The samples from the productivity test were 

diluted 100-fold in Milli-Q water before analysis. 

TOC analysis. A High-TOC Elementar II analyzer was employed for TOC measurements 

of previously filtered aqueous reaction aliquots. The method is based on the complete 

combustion of the organic matter present in the aqueous sample at 950 ºC catalyzed by 

Pt and quantification of evolved CO2 gas by quantitative IR spectroscopy. 
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PMS measurements. PMS concentration was measured using a spectrophotometric 

method.[27] Briefly, a previously filtered reaction aliquot (0.5 mL) was diluted with 

Milli-Q water (4.5 mL), an excess solution of KI (0.5 mL, 2 mg/mL) added and, then, the 

solution absorbance recorded at 360 nm.  

EPR measurements. EPR spectra were recorded using phenyl tert-butil nitrone (PBN) as 

spin trapping agent under the following reaction conditions: catalyst (200 mg L-1, 0.0067 

mM of supported cobalt), PBN (1000 mg L-1), PMS to DMPO molar ratio 1, pH 7, 

reaction time (5 min). Previously filtered (0.2 μm) and nitrogen-purged aliquots were 

measured in a Bruker EMX spectrometer using the following typical settings: frequency 

9.803 GHz, sweep width 3489.9 G, time constant 40.95 ms, modulation frequency 100 

kHz, modulation width 1 G, and microwave power 19.92 mW.  

Radical quenching experiments. Selective hydroxyl radical quenching experiments were 

carried out under the following conditions: Catalyst (200 mg L-1; 0.0067 mM), phenol 

(100 mg L-1), PMS (2800 mg L-1; 9.1 mM), air atmosphere, pH 4, DMSO to PMS molar 

ratio of 10. 

3. Results and discussion 

3.1. Support preparation and characterization 

The use of carbonaceous materials as metal NP supports is one of the main areas 

of research in heterogeneous catalysis.[14] In this sense, some examples have shown that 

the chemical composition, the textural properties and the groups on the surface of the 

carbonaceous materials determine the resulting metal particle size distribution and, 

therefore, the catalytic activity.[24] With these precedents in mind, our work starts with 

the functionalization of commercial activated carbon (Norit), referred as AC, by 

chemical[28, 29] or thermal oxidative treatment.[30] The chemical functionalization of 
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the activated carbon consists in a liquid phase oxidation of AC by nitric acid resulting in 

a sample labeled as ACN. The thermal functionalization method consists in submitting 

AC to an aerobic oxidation in static air at 420 ºC in an oven. This sample is labelled as 

ACT. The three samples (AC, ACT and ACN) were characterized by combustion 

elemental analysis, FT-IR and Raman spectroscopy, isothermal N2 adsorption, XPS, 

TPD-MS, XRD and SEM. 

Elemental analysis data show that the oxidative treatment of AC using HNO3 is 

more effective to increase the oxygen content of the carbon than that based on the thermal 

treatment (Table 1). In particular, the chemical treatment using HNO3 affords a high 

decrease of carbon content together with a concomitant increase in oxygen content 

compared to ACT sample. A small increase of elemental nitrogen in the ACN sample (1.0 

wt%) respect to the commercial AC sample (0.3 wt%) was also observed and attributed 

to the functionalization with nitrogen oxide species.[28, 29]  Isothermal N2 adsorption 

(Figures S1-S3) of the ACs reveals that, regardless the observed variations respect to AC, 

the resulting carbonaceous samples exhibits surface areas and pore volumes higher than 

700 m2 g-1 and 0.26 cm3 g-1, respectively. The lower values observed for the ACN sample 

can be attributed to space required to accommodate a large density of oxygenated 

functional groups within the pores of the solid. 

 

Table 1. Textural properties and elemental analysis of the active carbons 

employed as catalyst support 

 C (%) C/H molar 
ratio (%) 

C/O molar 
ratio (%) 

BET surface 
area (m2 g-1) 

Pore  volumen  
(cm3 g-1) 

AC 76.7 14.3 4.5 880 0.32 
ACN 58.3 5.4 2.0 710 0.26 
ACT 74.3 14.9 4.0 1040 0.35 
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Raman spectroscopy of the three AC samples shows the characteristic vibrations 

modes due to the stretching of sp2 carbons at 1597 cm-1 (G band), occurrence of 

disordered structure at 1317 cm-1 (D band) and the stacking of the sp2 network layers at 

2567 cm-1 (2D band) (Figure 1a).[31] Functionalization of AC sample by thermal or 

chemical methods results in an increase of the defect population as revealed by the 

increase in the intensity of D respect to G band.[31] FT-IR spectroscopy of the 

functionalized activated carbons shows an intensity increase of the peaks appearing at 

1725 cm-1 and 1160 cm-1 attributable C=O and C-O stretching bands, respectively, as well 

as the band appearing at 1560 cm-1 corresponding to the presence of conjugated 

unsaturated C=C bonds (Figure 1b)[29, 32]. All these observations are in agreement with 

the increase of oxygen content observed by elemental analysis.  

 

Figure 1. Raman (a) and FT-IR (b) spectra of AC (a), ACT (b) and ACN (c) materials.  

The three ACs were further analyzed by TPD (Figure 2a) and TPD-MS (Figure 

2b-c) measurements under inert atmosphere. In particular, the TPD-MS allows 

identification by mass spectrometry of H2O (m/z 18), CO (m/z 28) and CO2 (m/z 44).[29] 

AC functionalization by HNO3 resulted in the introduction of a large variety of oxygen 

a)                                                     b)
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functional groups including carboxylic acids, lactones, anhydrides, phenolic, carbonyls, 

ether and quinone among other possible.[29, 32] In the case of AC functionalization by 

an oxidative thermal treatment at 420 ºC the resulting ACT solid results mainly 

functionalized with phenol, carbonyl and quinone moieties, probably because most of 

carboxylic acid moieties are unstable at the temperatures of the thermal treatment (420 

ºC) or they are not formed.[29, 32] 

 

Figure 2. TPD (a) and TPD-MS (b, c) of commercial AC (1, black line), ACN (2, blue 

line) and ACT (3, red line). Legend: H2O (violet dash line), CO2 (orange dash line) and 

CO (brown dash line). 

The surface of the carbonaceous materials was evaluated by XPS analyses (Figure 

3 and S5).[29] As expected, AC oxidation by chemical or thermal treatments resulted in 

a shift of the C1s signals at higher binding energies indicating the oxidation of the carbon 

a)      

b)                                                       c)
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(CO2)

Lactone (CO2)
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(CO + CO2) Phenol

(CO)

Carbonyl/Quinone
(CO)
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surface. In the case of O1s, an increase of the signal intensity for ACN sample or a shift 

to higher binding energies in the case of ACT agree with a different level of oxidation of 

AC sample, depending on the treatment. These observations agree with the generation of 

different oxygen functional groups. The oxidation of the AC by chemical or thermal 

treatment as well as the increase of acidic oxygen functional groups was verified by 

measuring the pH of aqueous suspensions of AC, ACT and ACN (10 mg mL-1) 

corresponding to the values of 6.5, 4.8 and 3.6, respectively. 

 

Figure 3. XPS C1s (a) and O1s (b) of AC (black), ACT (red) and ACN (blue).  

PXRD of the ACs samples reveals that the structure is maintained after the 

functionalization of the commercial AC. The diffractograms show the two main 

characteristic broad bands of activated carbons appearing at around 2θ 23 and 43 º 

associated with the diffraction from the 002 and 100/101 planes in graphite, respectively 

(Figure S4).[33] SEM images show that the morphological structure is somehow 

preserved, but as the functionalization degree increases (ACN>ACT) the roughness of 

the AC surface increases (Figure S6). 

3.2. Metal supported on ACs  

a)                                                            b) C-C   / C-OH or C-O-C  / C=O / COORC-C   / C-OH or C-O-C  / C=O / COOR
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Deposition of cobalt NPs on the three activated carbons (AC, ACT and ACN) was 

carried out using the well-known polyol method.[25, 34] In order to study the influence 

of the cobalt oxidation state on the catalytic activity for PMS activation, the Co NP 

supported on AC samples were further submitted to an aerobic oxidation under static air 

at 180 ºC for 2 h. Several works have shown the influence of the cobalt oxidation state on 

PMS activation. 10,11 Table 2 summarizes the list of catalysts employed in the present 

work, including metal loading, average particle size distribution, standard deviation 

obtained from TEM measurements (Figure 4, S7-S9) and the initial reaction rates for PMS 

activation and phenol degradation. 

Selected DF-STEM images and metal particle size distribution histograms are 

shown in Figure 4. Regardless the oxidation state of cobalt NPs, the smallest average 

cobalt particle size and standard deviation at the same metal loading is obtained using 

ACN as support (Table 2). Thus, it can be speculated that the presence of a high 

Table 2. Summary of the analytical and activity data for the catalysts prepared in the 

present work indicating metal loading, metal average particle size distribution and initial 

reaction rate for PMS decomposition (r0_PMS) and phenol degradation (r0_phenol). 

Entry Catalyst Metal 

loading 

(wt%) 

Average metal particle size 

and standard deviation (nm) 

r0_PMS 

(mM h-1)  

r0_phenol 

(mM h-1) 

1 Co/ACN 0.2 2.9 ± 0.14 16.07 2.44 

2 Co/ACT 0.2 3.3 ± 0.17 10.55 3.38 

3 Co/AC 0.2 4.1 ± 0.23 8.91 3.94 

4 Coox/ACN 0.2 4.7 ± 0.05 23.84 4.52 

5 Coox/ACT 0.2 7.9 ± 0.26 21.22 5.25 

6 Coox/AC 0.2 9.1 ± 0.25 12.51 6.40 

7 Coox/ACN 1.0 5.8 ± 0.24 9.12 1.66 

8 Feox/ACN 1.0 5.6 ± 0.17 3.91 0.55 

9 Cuox/ACN 1.0 6.3 ± 0.25 2.93 0.47 
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population of oxygen functional groups in ACN support is beneficial to support small 

metal NPs. As expected, the aerobic oxidation of cobalt NPs supported on ACs (Figure 

S7) resulted in an increase of the cobalt oxide average particle size of about 2-3 nm (Table 

2 and Figure S8). Using ACN as support it was observed that an increase of the cobalt 

oxide content from 0.2 to 1.0 wt % resulted in an increase of both particle size distribution 

and standard deviation (entries 4 and 7 in Table 2 and Figure S9). Analogous catalysts 

based on iron and copper oxides supported on ACN were also prepared (entries 8 and 9 

in Table 2 and Figure S9) to compare their catalytic activity with that of cobalt based 

materials. Formation of cobalt NPs was confirmed by EDX analyses of different points 

(Figure S10a), areas (Figure S10b) and mapping analyses (Figure 4). In contrast to the 

small cobalt oxide NPs obtained on the different carbonaceous materials, large particles 

(> 200 nm) were obtained when the preparation of cobalt oxide was performed without 

the use of any support (Figure S11). 

 

C

O Co

a) b) STEM
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Figure 4. a) DF-STEM image and cobalt particle distribution of Coox(0.2wt%)/ACN; b) 

STEM image and element mapping microanalyses of Coox(0.2wt%)/ACN. The inset in 

panel a shows the particle size distribution of cobalt oxide in Coox(0.2wt%)/ACN 

 XPS analysis was employed to get some insights about the cobalt oxidation state 

of the prepared catalysts. As it will be shown below Coox/ACN is the most active catalyst 

for PMS activation. As expected the aerobic oxidation of the Co(0.2wt%)/ACN (Figure 

5a1) solid results in the oxidation of Co NPs in the Coox(0.2wt%)/ACN solid to Co(II) 

and Co(III) species (Figure 5a2). These oxidized Co(II / III) species are similar to those 

observed in the case of commercial Co3O4 solid (Figure 5a3) and as-made Coox solid 

(Figure 5a3). For the Coox(0.2wt%)/ACN sample, Figure 5b shows the deconvoluted 

peaks at around 779.7 and 781.4 eV attributable to the Co3+ 2p3/2 and Co2+ 2p3/2, 

respectively. The accompanying 2p1/2 spin-orbit component for Co3+ and Co2+ appear at 

794.8 and 796.8 eV, respectively. The energy difference between Co 2p3/2 and Co 2p1/2 

peaks is approximately 15 eV. Two Co2+ satellite peaks at 786.3 and 804.8 eV are also 

observed. Similar deconvolution in various cobalt species is obtained for the commercial 

Co3O4 or as-made Coox solids (Figure S12). These XPS results agree with the presence of 

cobalt NPs in the form of Co3O4 and/or CoO.[35-38] Similarly, the XPS spectra of 

Feox/ACN and Cuox/ACN samples reveal the presence of oxidized metal species in the 

form of Fe3+/Fe2+ or Cu2+, respectively (Figure S13).[39, 40] 
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Figure 5. XP spectra of Co(0.2wt%)/ACN (a1) and Coox(0.2wt%)/ACN (a2). 

Deconvoluted XP spectrum of Coox(0.2wt%)/ACN. 

 Diffuse reflectance UV-Vis spectra of several of the cobalt oxide catalysts under 

study are presented in Figure S14. Commercial Co3O4 and as-prepared Coox solids exhibit 

visible absorption bands in the regions about 400 and 650 nm that should correspond to 

the O2--Co2+ and O2--Co3+ ligand to metal charge transfer, respectively. In the cobalt oxide 

NPs supported on ACN, these absorption bands seem to be masked by the black ACN 

support.[41] 

a)

b)
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3.3. Catalytic activity  

 The series of prepared catalysts was tested for phenol degradation using PMS as 

oxidant. Phenol was selected as organic pollutant because is a non-biodegradable, 

recalcitrant and toxic organic compound for the aquatic environment. Preliminary tests 

indicate that phenol adsorption on the three different ACs is lower than 5 % (data not 

shown). Blank control experiments reveal that activation of PMS in the absence of 

catalyst is negligible (Figure S15). Interestingly, ACN can somehow activate PMS under 

the present reaction conditions (Figure S15). This fact is not unexpected considering 

recent publications that have reported the use carbon-based materials to activate 

PMS.[10] As expected, deposition of cobalt NPs supported on the carbonaceous materials 

increases the catalytic activity for PMS activation and phenol decomposition (Figures 6 

and Table 2). Figure 6b shows that oxidized cobalt NPs supported on ACs (Coox supported 

on AC, ACT or ACN) are more active than analogous non-oxidized ones, even though 

the cobalt particle size distribution of the former indicates the larger average dimensions 

of Co particles after oxidation. It is a general observation in the field of catalysis by metal 

NPs that the catalytic activity increases as the size of the metal NP decreases.[42] In the 

present case, however, it seems that the oxidation state of cobalt NPs is more important 

than the particle size distribution for the activation of PMS. These results agree with 

previous reports showing the higher activity of cobalt oxides respect to metallic cobalt. 

10,11   
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Figure 6. Phenol degradation (a),  PMS decomposition (b) and corresponding TOF (c, d) 

using Co-NPs supported on AC (■, f), ACT (▲, d) and ACN (♦, b) and Co3O4 – NPs 

supported on AC (□, e), ACT (∆, c) and ACN (◊, a). Reaction conditions: Catalyst (200 

mg L-1; 0.0067 mM of supported cobalt), phenol (100 mg/L; 1.06 mM), PMS (2800 mg 

L-1; 9.1 mM), 20 °C, pH 7. 

Among the different catalysts based on Coox NPs supported on ACs (AC, ACN 

and ACT), the highest catalytic activity has been achieved using the Coox(0.2 wt%)/ACN 

material that corresponds to that with the smallest cobalt oxidized metal NPs (Figure 6). 

Based on the catalytic results and the characterization data of the ACs, it is proposed that 

the higher amount of oxygen functional groups in the ACN support generated by the 

chemical treatment allows a good dispersion of small cobalt NPs with enhanced catalytic 

activity respect to analogous ACT or AC supports.  

a)                                                              b)

c)                                                                d)

Coox

Coox

Coox

Coox

Coox

Coox
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Figure 7 shows that the catalytic activity of Coox supported on ACN increases as 

the cobalt loading decreases from 1.0 to 0.2 wt%. This fact was attributed to the lower 

cobalt particle size distribution observed with the sample at lower cobalt loading. Figure 

7 also presents the influence of the metal nature on the resulting catalytic activity for 

phenol degradation and PMS decomposition. The catalyst based on Coox NPs supported 

on ACN exhibiting higher activity than analogous catalysts based on Feox or Cuox NPs 

supported on ACN at the same metal loading (1 wt%). 

 

Fig 7: Phenol degradation (a) and PMS decomposition (b) using Coox-NPs supported on 

ACN at 0.2 (◊) and 1 wt% cobalt loading (○). Feox-NPs (■) and Cuox-NPs (●) supported 

on ACN at 1 wt% metal loading. Reaction conditions: Catalyst (0.0067 mM of supported 

metal), phenol (100 mg/L; 1.06 mM), PMS (2800 mg L-1; 9.1 mM), 20 °C, pH 7. 

 In order to put into context the catalytic activity of Coox(0.2wt%)ACN its catalytic 

activity was compared to that obtained when using homogeneous Co2+ ions, unsupported 

as-made Coox NPs or commercial Co3O4 solid as catalysts. Frequently, phenol oxidation 

in water by PMS is faster when using Co2+ ions as homogeneous catalyst respect to the 

use of heterogeneous cobalt catalysts, such as cobalt oxide doped carbon aerogel.[21] 

Surprisingly, in the present work the activity of Coox(0.2wt%)ACN is higher (TOFPMS 

3800, TOFphenol 950) than that obtained using Co2+ ions (TOFPMS 1460, TOFphenol 330) or 

a)                                                          b)
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as-prepared unsupported Coox NPs (TOFPMS 740, TOFphenol 190). These observations 

highlight the importance of high surface area, AC surface functionalization with the 

appropriate nature and population of oxygen functional groups for the dispersion of small 

metal NPs with specific metal oxidation state. 

 

Fig 8: Phenol degradation (a) and PMS decomposition (b) using Coox -NPs supported on 

ACN at 0.2 wt% metal loading (◊), using commercial Co3O4 NPs (○), as-prepared 

unsupported Coox NPs (●) and using Co2+ as homogeneous catalyst (■). Reaction 

conditions: Catalyst (0.0067 mM of cobalt), phenol (100 mg/L; 1.06 mM), PMS (2800 

mg L-1; 9.1 mM), 20 °C, pH 7. 

One of the main problems associated with AOPs for water treatment is the strong 

dependence of their efficiency with the pH.[13, 24] The use PMS has been reported as 

one promising alternative to the use of other oxidants such as H2O2 that typically requires 

strongly acidic pH solutions to achieve good efficiencies. 10,11 Herein it has been shown 

that Coox/ACN is an optimal catalyst for PMS activation and phenol degradation even at 

neutral pH values (Figure 9). This constitutes a significant advantage compared to other 

heterogeneous Fenton processes that only operate efficiently at strongly acidic pH 

values.[3, 5, 13] Previous studies using homogenous Co2+ ions or heterogeneous cobalt 

NPs supported on carbonaceous materials[43] have also found that those catalysts exhibit 

a)                                                          b)
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optimal performance at neutral or quasi-neutral pH values.[10, 44] As it can be seen in 

Figure 9 the catalytic activity of Coox(0.2wt%)/ACN for PMS activation and phenol 

degradation increases with the pH. On one hand, an increase of the pH favors the 

formation of the more easily oxidizable phenolate. On the other hand, PMS 

decomposition should be a function of its speciation in the reaction medium.[45] Acidic 

pH values would increase the PMS stability and, therefore, it could make more difficult 

its activation towards radical formation.[43, 46] Considering that PMS has a pK2 in water 

about 9.4, the prevalent species at quasi-neutral pH values should be HSO5- (Figure 9, 

equation 6) and, therefore, it seems that the selective formation of SO4·- and/or HO· 

radicals is favored (Eqs. 1, 3 and 4).[45] In contrast, at pH values above 10, PMS coexists 

in the form of both HSO5- and SO52- according equations 7 and 8.[45] Equation 7 

represents a nucleophilic attack on the peroxide hydrogen of HSO5- by SO52- that would 

form a transition state (HSO5·SO5·H2O)3- that leads to the formation of HSO6- (Equation 

7). Finally, according Equation 8 HSO6- in the presence of hydroxyl ions decomposes to 

form O2 through a non-radical reaction pathway. The influence of pH on the activity of 

the Coox(0.2wt%)/ACN catalyst agrees with the reported prior literature data reflected by 

Equations 1-8. 
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Figure 9. Phenol degradation (a), PMS decomposition (b) and respective TOF values for 

phenol (black bar) and PMS (white bar) using Coox /ACN at pH 2 (□), pH4 (■), pH 6 (▲), 

pH 7 (◊) and pH 10 (○). Reaction conditions: Catalyst (200 mg L-1; 0.0067 mM of 

supported cobalt), phenol (100 mg/L; 1.06 mM), PMS (2800 mg L-1; 9.1 mM), 60 °C, pH 

as indicated. 

Other important parameter that should be considered when developing alternative 

AOPs is the amount of oxidant employed respect to the substrate.[13, 14, 42] Figure 10 

shows the influence of the initial PMS concentration on the catalytic activity for phenol 

degradation. An optimal PMS to phenol molar ratio of 9.3 was found for phenol 

degradation and, more importantly, degradation of its even more toxic reaction 

intermediates namely catechol, hydroquinone and p-benzoquinone (Figure S16). This 

value is lower than that required in other systems for complete degradation of phenol such 

as cobalt oxide supported on AC (oxone to phenol molar ratio 25),[20] cobalt oxide doped 

on carbon aerogel[21] or carbon xerogel[47] with an oxone to phenol molar ratio 12.8 

even though still some toxic intermediates such as hydroquinone and p-benzoquinone 

were detected.[21] Thus, Co3O4 NPs supported in reduced graphene oxide employs a 

a)                                                                     b)
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phenol to PMS molar ratio of about 60 or MnO2/ZnFe2O4 uses a phenol to PMS ratio of 

31.[48]  In the present work, under optimized reaction conditions a notable TOC reduction 

of about 70 % was measured. Furthermore, a good relationship was also observed 

between the TOF for phenol degradation and the amount of PMS (Figure 10d). The TOF 

values increase along the PMS concentration with the maximum values of 3300 and 550 

h-1 achieved for PMS decomposition and phenol degradation, respectively.  

 

Figure 10: Phenol degradation (a), PMS decomposition (b), remaining phenol and 

intermediates (c) and TOF for phenol degradation (○) and PMS decomposition (■) 

measured at 15 min (d) using Coox/ACN with different PMS dosages: 1600 mg L-1 (10.5 

mM, ■), 2400 mg L-1 (7.9 mM, ○), 2800 mg L-1 (9.1 mM, ▲), 3200 mg L-1 (10.5 mM, 

□) and 4000 mg L-1 (13.5 mM, ●). Reaction Conditions: Catalyst (200 mg L-1; 0.0067 

mM of supported cobalt), phenol (100 mg L-1), PMS (as indicated), 20 ºC, initial pH 7. 

a)                                                       b)

c)                                                     d)
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The catalytic activity of the most active catalyst prepared in this work Coox(0.2 

wt%)/ACN using PMS as oxidant was compared with that of H2O2 at pH 4 and 7 (Figure 

S17). The degradation of phenol by H2O2 and Coox(0.2 wt%)/ACN  as catalyst does not 

take place at neither pH value of 4 or 7. This observation agrees with previous reports 

showing the higher activity of the homogeneous Co2+/PMS systems respect to 

Co2+/H2O2.[49, 50] 

The influence of the temperature on the catalytic activity for PMS activation and 

phenol degradation using Coox/ACN as catalyst allowed an estimation of the apparent 

activation energy for these processes at pH 7 (Figure 11). The estimated Ea for PMS 

decomposition and phenol degradation is about 30 and 32 kJ mol-1, respectively. These 

Ea values indicate that the catalytic ROS generated during the PMS decomposition, such 

as SO4·- and HO· (see reaction mechanism below), react in an almost barrierless process 

for phenol degradation. Furthermore, the lower Ea values at pH 7 compared to pH 4 

reinforces the idea that is possible to develop AOP based on cobalt-catalyzed PMS 

activation for aqueous pollutant degradation at neutral pH values. These low Ea values 

obtained with Coox(0.2wt%)/ACN compare favorably with similar systems based on 

cobalt oxide doped carbon aerogel (Ea for phenol 62.9 kJ mol-1, pH not indicated),[21] 

cobalt oxide loaded on carbon xerogel (Ea for phenol degradation 48.3 kJ mol-1, pH not 

indicated), [47] cobalt oxide on activated carbon (Ea for phenol degradation 59.7 kJ mol-

1, pH not indicated),[20] and other cobalt catalysts on other supports on such as ZSM5, 

mesoporous silicas such as SBA-15[51] or SiO237 with values ranging between 61.7 and 

75.5 kJ mol-1. While the previous commented literature Ea values refer to phenol 

degradation analogous Ea data referring to PMS decomposition are not available. It 

should be, however, commented the Ea for PMS decomposition is also an important 
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kinetic parameter when comparing two activities of different catalysts, since it refers to 

the generation of the primary reactive oxygen radicals.  

 

Figure 11. Phenol degradation (a) and PMS decomposition (b) using Coox/ACN at 20 °C 

(■), 30 °C (○), 40 °C (▲) and 50 °C (∇). The inset shows the estimation of the apparent 

Ea of the process. Reaction conditions: Catalyst (200 mg L-1; 0.0067 mM of supported 

cobalt), phenol (100 mg/L; 1.06 mM), PMS (2800 mg L-1; 9.1 mM), temperature as 

indicated, initial pH 7. 

The stability of the Coox/ACN catalyst was assessed by performing eight 

consecutive uses of the same sample at pH 7 without observing decrease of the catalytic 

activity. Cobalt leaching from the solid catalyst to the solution after running the reaction 

at pH 7 was below detection limit (< 1.0 µg/L). The absence of cobalt leaching from 

Coox(0.2wt%)/ACN catalyst compares favorably with the cobalt leaching measured for 

PMS activation when using SiO2, TiO2 or Al2O3 as support with values of cobalt leaching 

of 0.75, 2.83 or 0.94 mg L-1, respectively (pH not indicated).[41] Other systems based on 

cobalt oxide on carbon aerogel resulted in cobalt leaching around 1 mg L-1 (pH of reaction 

not indicated) and concomitant decrease of catalytic activity for phenol degradation upon 

reuse.[21] In other study, Co NPs embedded on carbon nanofibers resulted in a quite 

stable catalyst for PMS activation, although still a cobalt leaching of 20 µg L-1 was 

a)                                                                     b)
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measured. [43] Another study that employed cobalt supported on TiO2 as photocatalyst 

under UV irradiation have resulted in cobalt leaching values of 25 µg L-1. [18] In our 

case, blank control experiments using this trace amount of cobalt to promote phenol 

degradation by PMS at pH 7 or 4 resulted in negligible catalytic activity indicating the 

heterogeneity of the reaction process. Importantly, TEM images of eight-times used 

Coox(0.2wt%)/ACN shows that metal NP aggregation does not occur (Figure 12a,b inset). 

Furthermore,  productivity experiments using a high concentration of phenol (10 

g L-1; 106.4 mM) and PMS (280 g L-1; 912 mM) respect to the catalyst (200 mg L-1; 

0.0067 mM of supported cobalt) allow determining an accumulated TON after three 

cycles for phenol and PMS decomposition as high as ~39,000 and ~400,000, respectively. 

Similarly, TOF values for the first catalytic cycle about 68,000 and 8·105 h-1 for phenol 

degradation and PMS were estimated at 5 min of reaction. These TON and TOF values 

are much higher compared to those reported in the literature using heterogeneous metal 

catalysts for water pollutant degradation using PMS as oxidant that frequently are lower 

than 100.[9, 20, 21, 41, 43, 47, 48, 52-54] As commented, different heterogeneous 

catalysts have been reported for PMS activation but, however, most of these papers do 

not measure PMS decomposition and, therefore, estimation of TOF and TON values for 

PMS decomposition is not possible in those cases. 

In this study, the good stability of the Coox/ACN catalyst may be attributed to the 

presence of oxygen functional groups able to establish strong anchoring interaction with 

the cobalt NPs. The reusability data of Coox/ACN compares favorably with analogous 

catalyst based on oxidized cobalt NPs supported on carbon microspheres,[54] on SiO2[17, 

41] or on TiO2[41] and Al2O3,[41] among others,[55] that suffer deactivation upon reuse. 
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Figure 12. Reusability of Coox/ACN at pH 7 and 20 ºC under regular (a, b) or under 

productivity test (c, d) conditions for phenol degradation (a, c) and PMS decomposition 

(b, c). Legend: first cycle (■), third cycle (●), fifth cycle (∆) and eighth cycle (○). Regular 

reaction conditions: Catalyst (200 mg L-1; 0.0067 mM of supported cobalt), phenol (100 

mg L-1; 1.06 mM), PMS (2800 mg L-1, 9.1 mM), 20 °C, pH 7. Productivity reaction 

conditions: Catalyst (200 mg L-1; 0.0067 mM of supported cobalt), phenol (10 g/L; 106.4 

mM), PMS (280 g L-1, 912 mM), 20 °C, initial pH 7. 

3.4. Reaction mechanism 

In order to determine the reactive oxygen species generated in the catalytic system 

for PMS activation by the action of Coox/ACN as catalyst, a series of selective radical 

quenching experiments and EPR measurements were performed. As preliminary 

a)                                                       b)

c)                                                      d)

20 nm 20 nm
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experiments the influence of ambient oxygen in the catalytic reaction was evaluated. 

Figure 13 shows that the presence of oxygen only slightly accelerates both phenol 

degradation and PMS decomposition, therefore, suggesting that oxygen participates in 

the radical reaction mechanism. The possible formation of radical species was further 

evaluated using DMSO as selective hydroxyl radical scavenger. The inhibition of the 

reaction by presence of DMSO indicates that hydroxyl radicals should be the main species 

responsible of the observed phenol degradation.[56] EPR measurements using PBN as 

spin trap clearly shows the formation of the PBN-OH adduct under conditions relevant to 

phenol degradation. Note that the control in the absence of Coox/ACN only allows to 

detect very weak EPR signals, indicating that ·OH radicals are formed mainly due to the 

activity of the Coox/ACN catalyst (Figure 14c-d). 

 

Figure 13. (a) Phenol degradation and (b) PMS decomposition using Coox/ACN as 

catalyst. Legend: air atmosphere (●), air atmosphere with the presence of DMSO (□), 

a)                                                                 b)

c)                                                                 d)

1)

2)
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nitrogen atmosphere (○). Reaction conditions: Catalyst (200 mg L-1; 0.0067 mM of 

supported cobalt), phenol (100 mg/L; 1.06 mM), PMS (2800 mg L-1, 9.1 mM), 20 °C, 

initial pH 7, DMSO to PMS molar ratio 10. (c) Experimental EPR spectra recorded in 

H2O at pH 7 in the presence of PMS and the absence (1) or in the presence of Coox/ACN 

catalyst (2) after 15 min reaction time. (d) Experimental (black line) and simulated (red 

line) EPR spectra under (c) conditions. Hyperfine coupling constants of PBN-OH (~85 

% area) AGN = 15.4 and AGH = 2.7 and tert-butyl aminoxyl from degraded PBN AGN = 

15.58 and AGH = 13.90. 

Based on these results a one-electron transfer process from PMS that reduces 

Co(III) to Co(II) is proposed. Then, catalytic cycle involves the oxidation of Co(II) to 

Co(III) and formation of SO4·- radicals.[10, 11] SO4·- radicals can instantaneously react 

with H2O leading to the formation of hydroxyl radicals. [10, 11]  

Cat-Co3+-sites + 
HSO5

-            
Cat-Co2+-sites + 

SO5
·- + 

H+

Cat-Co2+-sites + 
SO5

·- + 
H+         

Cat-Co3+-sites + 
SO4

·- + 
HO

-

SO4
·- + 

H2O
         

HSO4
- + 

HO
·

(Eq. 9)

(Eq. 10)

(Eq. 11)  

 

3.5. Conclusions 

The present manuscript has shown the different catalytic behavior of a series of 

cobalt-containing ACs as a function of the surface pretreatment and metal oxidation state. 

It has been found that the catalyst activity for AOP using PMS at pH 7 correlates well 

with the cobalt particle size, the smaller the dimension, the higher the catalyst activity. 

Furthermore, the oxidized supported cobalt NPs are catalytically more active than the 

reduced ones. In this regard, it has been established in the present study that by 

introducing oxygenated functional groups in AC by a chemical treatment using nitric acid 
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(ACN), it is possible to obtain the cobalt oxide NPs with small average particle size 

(4.7±0.05 nm) and, therefore, exhibiting an enhanced catalytic activity towards PMS 

decomposition and phenol degradation. Furthermore, these surface oxygenated groups 

and the strong anchoring of oxidized cobalt NPs are also responsible for the stability of 

these NPs, minimizing their growth and allowing their reusability up to eight cycles 

without decay and the absence of cobalt leaching. It is remarkable that no cobalt leaching 

is detectable. Productivity tests using a large excess of phenol and PMS respect to the 

Coox(0.2 wt%)/ACN catalyst allow to determine TON/TOF values as high as 

39,000/68,000 h-1 for phenol and 400,000/8·105 h-1 for PMS, respectively. In this way the 

Coox(0.2wt%)/ACN catalyst compares favorably with those previously reported in the 

literature is herein described 
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