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Embedded Systems 

Embedded	systems	are	being	increasingly	used	in	changing	environments	where	they	no	

longer	fulfill	their	associated	stakeholder	goals	on	their	own,	but	rather	in	interaction	

with	 other	 embedded	 systems.	 This	 transition	 to	 networked,	 collaborative	 embedded	

systems	is	creating	new	application	opportunities	that	impose	numerous	challenges	for	

developers	 of	 these	 systems.	 In	 this	 introductory	 chapter	 of	 the	 book,	 we	 present	 the	

complexity	 of	 these	 systems	 and	 the	 challenges	 associated	 with	 them	 in	 a	 coherent	

manner.	 We	 illustrate	 the	 challenges	 using	 two	 use	 cases,	 “Vehicle	 Platooning”	 and	

“Adaptable	 and	 Flexible	 Factory.”	 Finally,	 we	 reference	 the	 challenges	 of	 developing	

collaborative	embedded	systems	to	the	individual	chapters	of	this	book,	which	describe	

various	methods	of	mastering	the	complexity	in	more	detail.	
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2.1  Introduction 

With	the	transition	from	classical	embedded	systems	to	networked,	

collaborative	 embedded	 systems	 (CESs),	 new	 applications	 for	

industry	are	emerging.	The	ability	of	a	company	to	efficiently	develop	

CESs	 of	 the	 highest	 quality	 will	 therefore	 become	 a	 decisive	

competitive	factor.	At	the	same	time,	this	transition	will	lead	to	a	leap	

in	the	complexity	of	the	systems	under	consideration.	Not	only	single	

embedded	systems,	but	also	dynamically	changing	networks	of	CESs	

at	runtime	have	to	be	considered.	Since	the	success	of	products	in	the	

area	of	embedded	systems	is	strongly	determined	by	their	quality,	it	

must	 be	 possible	 to	 guarantee	 a	 high	 system	 quality	 despite	 the	

increasing	complexity.	Therefore,	it	is	essential	to	be	able	to	control	

the	complexity	of	CESs	with	efficient	methods.	This	includes	suitable	

methods	 for	 specification,	 implementation,	 and	 validation	 of	 these	

systems.	The	development	of	CESs	goes	hand	in	hand	with	important	

safety	 and	 security	 issues,	 which	 have	 to	 be	 addressed	

comprehensively	 for	 a	 broad	 industrial	 application	 by	 relevant	

development	approaches.	

This	 chapter	gives	an	 informal	 introduction	 to	 the	 challenges	of	

developing	CESs.	We	start	with	the	definition	of	important	terms	and	

then	 describe	 the	 challenges	 that	 have	 to	 be	 overcome	 in	 the	

development	of	such	systems.	These	challenges	are	explained	in	more	

detail	by	means	of	two	use	cases.	Finally,	at	a	high	level	of	abstraction,	

we	 provide	 an	 overview	 of	 selected	 results	 achieved	 in	 the	 CrESt	

project1.	 Details	 of	 the	 results	 can	 be	 found	 in	 the	 corresponding	

contributions	of	this	book	(see	Section	2.6	and	the	Appendix).	

2.2  Background 

Model-based	systems	engineering	(MBSE)	[Selic	2003]	aims	to	reduce	

the	 conceptual	 gap	 between	 problem	 domains	 (mechanical	

engineering,	 automation,	 biology,	 law,	 etc.)	 and	 the	 solution	 in	

software	 [France	 and	Rumpe	2007],	 and	 to	 integrate	 contributions	

from	the	participating	domains.	For	 this	purpose,	models—often	 in	

the	 terminology	 of	 problem	 domains—are	 used	 as	 documentation.	

Furthermore,	 development	 artifacts	 that	 reduce	 this	 gap	 with	 an	

explicit	description	of	problem	domain	concepts	can	be	accessed	with	

	
1	Website	of	the	CrESt	project:	https://crest.in.tum.de/	(available	in	German	only)	
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sufficient	 formalization	 of	 efficient	 automation.	 These	 artifacts	 also	

simplify	 the	 integration	 of	 contributions	 from	 different	 domain	

experts	by	abstracting	solution	domain	details.	

In	the	German	Federal	Ministry	of	Education	and	Research	(BMBF)	

project	SPES2020	[Pohl	et	al.	2012]	and	the	follow-up	project	SPES_XT	

[Pohl	et	al.	2016],	significant	results	for	MBSE	have	been	achieved	that	

further	 advance	 the	 development	 of	 highly	 automated	 embedded	

systems	and	have	already	established	themselves	as	a	methodological	

approach	in	industry.	

The	two	SPES	projects	provide	a	methodological	toolkit	for	MBSE	

that	 allows	 an	 efficient	 model-based	 development	 of	 embedded	

systems.	At	 the	 same	 time,	 the	 toolkit	 is	 based	on	 a	 solid	 scientific	

foundation	 with	 a	 special	 focus	 on	 consistency	 and	 semantic	

coherence	 (see	 [Broy	 and	 Stolen	 2001],	 [Broy	 2010]).	 The	 SPES	

methodology	building	set	is	based	on	three	principles	of	outstanding	

importance:	

q Consistent	consideration	of	interfaces	along	the	design	process	

q Decomposition	 of	 the	 interface	 behavior	 and	 the	description	 of	

systems	 via	 subsystems	 and	 components	 at	 different	 levels	 of	

granularity	

q Definition	of	models	based	on	the	previous	points	for	a	variety	of	

cross-sectional	 topics	 (variability,	 safety,	 etc.)	 and	 analysis	

options	

In	 SPES,	 a	 system	 model	 is	 a	 conceptual	 (“generic”)	 model	 for	

describing	systems	and	their	properties.	It	describes	what	constitutes	

a	system	as	the	result	of	a	conceptualization.	System	models	define	

the	 components	 of	 the	 system	 and	 its	 structure,	 the	 essential	

properties,	 and	 other	 aspects	 that	 have	 to	 be	 considered	 during	

development.	 Among	 other	 things,	 system	 models	 define	 what	

requirements	 refer	 to	 (subject	 of	 discourse).	 In	 SPES,	 the	 system	

model	consists	of	(see	Figure	2-1):	

q An	 operational	 context2	 that	 influences	 or	 is	 influenced	 by	 the	

system	at	runtime	

q An	interface	that	clearly	separates	the	system	from	its	operational	

context	

q A	behavior	 of	 the	 system	 that	 can	 be	 observed	 at	 the	 interface	

(indicated	by	arrows	at	the	interface)	

	
2	 SPES	 distinguishes	 between	 the	 operational	 context,	which	 in	 turn	 consists	 of	 the	
structural,	 functional,	and	behavioral	context,	and	the	knowledge	context	(see	e.g.,	
[Pohl	et	al.	2016]).	In	this	chapter,	however,	only	the	operational	context	is	relevant.	

Principles of the SPES 

methodology 

System model 
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q An	 inner	 structure	 of	 interrelated	 and	 communicating	 elements	

(architecture),	which	are	themselves	systems	

The	 system	 model	 used	 in	 SPES	 is	 static	 in	 the	 sense	 that	 model	

elements	do	not	change	at	runtime.	This	applies	in	particular	to	the	

appearance	and	disappearance	of	elements	in	the	operational	context	

as	well	as	the	adaptation	of	the	system	interface	at	runtime.	With	the	

transition	 from	 classical	 embedded	 systems	 as	 considered	 in	

SPES2020	and	SPES_XT	to	networked	CESs,	new	applications	for	the	

MBSE	approach	arise.	At	the	same	time,	this	transition	leads	to	a	leap	

in	the	complexity	of	the	systems	under	consideration.	Not	only	single	

embedded	systems	but	also	networks	of	CESs	have	to	be	considered.	

Such	system	networks	can	be	constituted	dynamically	at	runtime	by	a	

multitude	 of	 different	 embedded	 systems	 (homogeneous	 or	

heterogeneous	type)	[Grosz	1996].	In	their	interaction,	these	system	

networks	enable	the	users	to	achieve	a	comprehensive	added	value	

that	 goes	 beyond	 the	 benefits	 of	 the	 individual	 systems.	 In	 such	

systems,	 both	 the	 exact	 system	 configuration	 (i.e.,	 the	 system	

boundary)	 and	 the	 system	 context	 at	 design	 time	 can	 only	 be	

anticipated	 with	 considerable	 uncertainty.	 In	 the	 context	 of	 the	

development	 of	 CESs,	 this	 raises	 new	 and	 important	 questions	

regarding	 the	 functional	 safety	 of	 the	 systems	 and	 the	 dynamically	

formed	system	networks	[Damm	and	Vincentelli	2015],	[SafeTRANS	

2019].	

Fig. 2-1: SPES system model	
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The	BMBF	project	CrESt3,	which	was	conceived	as	a	continuation	

of	 the	 work	 of	 SPES2020	 and	 SPES_XT,	 addressed	 these	 new	

challenges	and	the	increasing	complexity	in	the	development	of	highly	

automated	embedded	systems	and	developed	the	SPES	framework	for	

MBSE	with	regard	to	CESs.	

2.3  Collaborating Embedded Systems 

2.3.1 Collaborative and Collaborating Systems 

With	 the	 term	 collaboration,	 we	 denote	 the	 (active)	 interaction	 of	

several	 embedded	 systems	 in	 one	 system	network.	The	purpose	of	

collaboration	 is	 to	 achieve	 a	 common	 goal	 through	 the	 mutual	

provision	of	 functions	that	 individual	systems	alone	cannot	achieve	

[Broy	and	Schmidt	2001],	 [Sha	et	al.	2008].	Collaboration	therefore	

serves	 to	 achieve	 the	 goals	 defined	 in	 a	 single	 system	 or	 a	 system	

group	 and	 can	 take	 various	 forms	with	 regard	 to	 possible	 binding	

times,	the	type	of	coupling,	the	process	of	forming	the	group,	or	the	

collaboration	 management.	 From	 the	 point	 of	 view	 of	 our	 system	

model,	 it	 is	 not	 so	 easy	 to	 distinguish	 collaboration	 from	 “simple”	

interaction.	In	fact,	collaboration	must	of	course	manifest	itself	at	the	

interfaces	of	the	collaborating	systems	in	the	form	of	interaction.		

A	 collaborative	 system	 can	 therefore	 be	 distinguished	 from	 a	 non-

collaborative	system	not	so	much	by	the	system	model	as	by	its	origin,	

its	use,	and	its	purpose.	Maier	has	defined	two	properties	that	must	

apply	 to	 collaborative	 systems	 (as	 opposed	 to	 non-collaborative	

systems)	[Maier	1998]:	

q Operational	independence	of	elements:	The	systems	involved	in	a	

collaboration	 provide	 added	 value	 even	 if	 they	 are	 operated	

independently	of	the	collaboration.	

q Managerial	independence	of	elements:	The	systems	involved	in	a	

collaboration	are	actually	developed	and	operated	independently.	

Taking	 these	 properties	 into	 account,	 we	 define	 a	 collaborative	

embedded	 system	 (CES):	 CESs	 are	 embedded	 systems	 that	 can	

collaborate	 with	 other	 CESs	 to	 achieve	 goals	 that	 are	 difficult	 or	

impossible	for	a	single	CES	to	achieve	alone.	

	
3	Funded	by	the	German	Federal	Ministry	of	Education	and	Research	under	the	funding	
code	01IS16043	

Collaborative embedded 

system (CES) 
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A	collaborative	system	group	(CSG)	is	formed	dynamically	at	runtime	

by	a	set	of	CESs	that	collaborate	with	each	other.	The	CESs	involved	

can	take	on	different	roles	in	the	group.	It	is	important	to	note	that	a	

CSG	can	also	be	seen	as	a	system	in	the	sense	of	Figure	2-1,	where	the	

internal	structure	is	formed	by	the	collaborating	CESs.	

We	call	a	CES	a	collaborating	CES	if	it	is	actively	involved	in	a	CSG	

at	a	certain	point	in	time.	Note	that	a	system	can	be	collaborative	for	

a	 certain	 CSG	 type	 (e.g.,	 platoon),	 while	 it	 is	 not	 collaborative	 for	

another	CSG	type	(e.g.,	adaptable	and	flexible	factory).	

Note	that	a	CSG	and	the	CESs	are	at	different	levels	of	granularity	

in	 the	SPES	modeling	 framework	(see	[Pohl	et	al.	2016]):	while	 the	

CSG	models	describe	the	overall	system	and	are	thus	 located	at	 the	

highest	 level	of	 granularity,	 the	CES	models	 are	 located	at	 the	next	

level	of	granularity	of	the	framework,	and	thus	represent	architectural	

components	(subsystems)	of	the	CSG.	

	

Collaborative system 

group (CSG) 

Collaborating systems 

Fig. 2-2:  Goals, functions and architectures in collaborative system groups	
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CESs	 can	 be	 developed	 and	 realized	 with	 the	 help	 of	 methods	

defined	in	CrESt4.	The	most	important	concepts	for	the	collaboration	

of	CESs	are	illustrated	in	Figure	2-2.	

2.3.2 Goals of System Networks 

In	addition	to	the	CESs,	the	CSGs	also	have	goals	that	are	negotiated	

when	 the	 CSG	 is	 formed.	 This	 involves	 checking	 whether	 there	 is	

sufficient	agreement	with	regard	to	the	achievement	of	 the	goals	of	

the	 participating	 CESs.	 We	 differentiate	 between	 negotiable	 goals	

(“soft	goals”),	which	can	be	adjusted	if	necessary	to	allow	the	CES	to	

participate	in	a	CSG,	and	non-negotiable	goals	(“hard	goals”),	which,	if	

they	 conflict	with	 the	 goals	 pursued	by	 a	 CSG,	may	 result	 in	 a	 CES	

being	unable	 to	 join	a	CSG.	Goals	can	also	be	refined	hierarchically.	

Furthermore,	 relationships	 can	 be	 used	 to	 define	 dependencies	

between	 goals.	 The	 set	 of	 goals	 pursued	 by	 a	 CES,	 as	 well	 as	 the	

relationships	between	the	individual	goals,	form	the	goal	system	of	a	

CES,	 which	 is	 already	 fundamentally	 (generically)	 defined	 during	

development.	 This	 goal	 system	 is	 then	 individually	 instantiated	 at	

runtime	in	the	respective	CES	instances,	thus	concretizing	the	goals.	

During	the	conceptual	development	of	a	CSG,	a	basic	goal	system	

consisting	 of	 soft	 and	 hard	 goals	 is	 also	 defined.	 This	 goal	 system	

contains	overarching	goals	that	can	only	be	achieved	within	the	CSG	

through	cooperation	between	the	CESs	involved.	At	runtime,	the	CSG	

goal	 model	 is	 instantiated	 by	 goal	 negotiations	 between	 the	

participating	CESs:	the	overarching	goals	are	specified	and	compared	

with	 the	 individual	 goals	 of	 the	 participating	 CESs.	 Within	 the	

collaboration,	 the	 participating	 CESs	 make	 their	 system	 functions	

available	 to	each	other	 in	order	 to	achieve	common	goals	 that	 they	

cannot	achieve	on	their	own.	If	conflicts	arise—for	example,	between	

the	 overarching	 goals	 of	 the	 CSG	 and	 the	 individual	 goals	 of	 the	

participating	CESs—these	must	be	resolved.	

2.3.3 Coordination in System Networks 

Where	different	CESs	contribute	collaboratively	to	a	CSG	goal,	it	must	

be	 ensured	 that	 the	 individual	 contributions	 are	 coordinated	 and	

aligned.	 Different	 control	 mechanisms	 are	 conceivable	 here.	 For	

	
4	For	a	better	distinction	between	CES	and	CSG,	we	assume	in	the	following	that	CESs,	
unlike	 CSGs,	 are	 “static”	 in	 the	 sense	 that	 their	 functional	 scope	 and	 physical	
architecture	are	already	fully	known	at	the	time	of	design.	In	particular,	this	excludes	
the	possibility	of	nesting	system	networks	of	CSGs.	

CES goals 

CSG goals 

Control mechanisms 
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example,	 the	 collaboration	 of	 several	 systems	within	 a	 CSG	 can	 be	

centrally	controlled	by	the	role	of	a	coordinator.	The	CSG	coordinator	

can	also	decide	when	and	under	which	conditions	other	CESs	join	or	

leave	 the	 CSG.	 In	 contrast,	 collaboration	 within	 a	 CSG	 can	 also	 be	

organized	decentrally.	Depending	on	how	critical	the	contribution	of	

individual	CESs	is	to	the	common	goal,	their	commitment	to	the	CSG	

will	 also	 be	 more	 or	 less	 firm:	 for	 example,	 a	 CSG	 can	 forbid	 its	

participants	 to	 leave	 the	 group	 before	 certain	 common	 goals	 have	

been	achieved.	

Whether	 a	 CSG	 is	 to	 be	 managed	 and	 organized	 centrally	 or	

decentrally	depends	on	the	circumstances	of	 the	respective	domain	

on	the	one	hand,	and	on	the	other	hand,	on	the	roles	the	CESs	can	take	

within	 the	 collaboration.	 In	 special	 cases,	 it	 may	 be	 necessary	 to	

prepare	 CESs	 for	 collaboration	 through	 structural	 design.	 Should	

these	 CESs	 wish	 to	 enter	 a	 new	 CSG	 in	 order	 to	 collaboratively	

contribute	 in	 another	 way	 to	 a	 new	 collaborative	 goal,	 a	

reconfiguration	might	be	necessary	that	can	only	be	performed	by	an	

external	 actor	 and	 for	 which	 the	 CES	 or	 even	 the	 CSG	 has	 to	 be	

temporarily	taken	out	of	service.	

2.3.4 Dynamics in System Networks 

In	the	following,	dynamics	is	understood	to	mean	both	the	dynamics	

within	 CSGs	 and	 the	 dynamics	 within	 their	 operational	 contexts.	

Dynamics	 refers	 to	 the	 change	over	 time	 in	 structure	and	behavior	

over	time.	

The	concrete	inner	CSG	structure	is	dynamic,	since	new	CESs	can	

join	and	leave	the	CSG	at	runtime.	For	example,	at	design	time,	there	

is	no	definition	of	how	many	CESs	are	currently	involved	in	the	CSG.	

At	 this	 point	 in	 time,	 only	 the	 types	 and	 roles	 of	 the	 participating	

systems	and	the	basic	structure	of	the	CSG	are	defined.	

The	operational	context	is	also	dynamic,	since	systems	can	enter	

and	leave	the	context.	The	special	consideration	of	dynamics	here	is	

that	there	 is	transition	between	system	components	of	CSGs	(CESs)	

and	their	context.	This	includes,	for	example,	the	fact	that	individual	

systems	in	the	context	of	a	system	join	together	to	form	a	CSG.	The	

question	as	 to	which	objects	belong	 to	 the	context	of	 a	 system	and	

which	do	not	(i.e.,	which	CESs	are	part	of	the	CSG)	depends	on	their	

relevance	in	connection	with	the	fulfillment	of	the	CSG	goals.	

Dynamicity of the CSG 

Dynamicity of the 

operational context 
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For	dynamic	systems,	depending	on	the	application	domain,	openness	

in	 the	sense	of	 the	open	world	assumption5	plays	an	 important	 role	

[Keet	et	al.	2013].	In	contrast	to	the	closed	world	assumption,	there	is	

no	assumption	here	that	the	possible	states	of	the	operational	context	

are	completely	known	from	the	outset,	but	rather	that	states	may	exist	

that	 are	 unknown	 to	 the	 system.	 This	 view	 has	 important	

consequences.	 For	 example,	 an	 object	 recognition	 algorithm	would	

not	be	able	to	reject	an	unknown	object	as	a	possible	malfunction	but	

would	have	to	recognize	“unknown”	objects.	In	other	words,	openness	

is	understood	to	mean	the	property	that	the	environment	in	which	a	

CES	or	CSG	is	to	operate	is	not	fully	known	at	design	time.	If,	from	the	

perspective	of	the	CES	or	CSG,	the	context	in	which	it	is	expected	to	

operate	 is	not	 fully	known,	 this	 is	called	openness	of	context.	 If	 the	

structure	 of	 the	 CSG	 itself	 is	 not	 fully	 known	 at	 the	 time	 of	

development,	 this	 is	 called	openness	of	CSG.	Openness	 can	 refer	 to	

object	instances	and	object	types.	The	former	allows	the	occurrence	

of	additional	objects	of	previously	known	types,	while	the	latter	also	

allows	the	occurrence	of	objects	of	new	types.	

As	a	further	consequence,	CESs	and	CSGs	formed	at	runtime	that	

operate	 in	 open	 contexts	 must	 be	 able	 to	 deal	 with	 imprecise,	

contradictory,	uninterpretable,	and	even	missing	context	information	

[Bandyszak	et	al.	2020].	The	phenomenon	of	such	“fuzzy”	information	

about	 properties	 of	 the	CES	 or	 CSG	 context	 is	 characterized	by	 the	

term	 “uncertainty”	 of	 context	 information.	 CESs	 and	 CSGs	must	 be	

able,	 whenever	 necessary	 and	 possible,	 to	 mitigate	 the	 existing	

uncertainty	 individually	 or	within	 a	 CSG	—	 that	 is,	 to	 dissolve	 the	

uncertainty	 completely,	 reduce	 it,	 or	 take	 appropriate	measures	 to	

continue	to	operate	reliably	and	robustly	in	the	context	of	the	given	

uncertainty.	

At	 the	 design	 stage,	 CSGs	 are	 developed	 conceptually	 —	 for	

example,	 in	 the	 form	 of	 standardization	 of	 interfaces	 and	 the	

definition	 of	 basic	 architectural	 decisions	 and	 concepts	 for	 the	

formation	of	a	CSG.	This	defines	the	type	of	the	CSG	and	its	abstract	

properties	and	goals.	However,	the	overall	system	behavior	and	the	

complete	 architecture	 of	 a	 CSG	 can	 only	 be	 specified	 after	

instantiation	 and	 only	 taking	 into	 account	 the	 CESs.	 This	 concrete	

realization	by	CESs	only	takes	place	dynamically	at	runtime	through	

the	 interaction	of	 the	collaborating	CESs	 involved.	All	prerequisites	

	
5	 The	 “closed	world	 assumption”	 describes	 the	 principle	 that	 only	 events	 that	were	
considered	at	design	time	occur	in	a	context	and	that	other	events	should	be	treated	
as	failures.	

Uncertainty 

Open world assumption 

Conceptual definition 
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that	 a	 CES	 must	 fulfill	 in	 order	 to	 participate	 in	 a	 CSG	 must	 be	

described	conceptually	at	development	time.	If	a	CES	assumes	one	or	

more	roles	in	a	CSG,	it	provides	the	system	group	with	the	necessary	

functions.	

The	 formation	 of	 a	 CSG	 must	 be	 designed	 and	 specified	

conceptually	during	the	development	phase	—	both	at	the	level	of	the	

CESs	and	at	the	level	of	the	CSG	at	various	levels	of	detail	by	describing	

the	 necessary	 interfaces	 and	 protocols.	 This	 ensures	 that	 the	 CESs	

have	a	common	definition	of	the	communication	(suitable	protocols	

and	 interfaces),	 of	 roles	 to	be	 assumed	and	 their	 interaction	 in	 the	

CSG,	system	functions	to	be	provided,	and	other	quality	requirements	

of	the	CSG	during	runtime.	Here,	too,	the	respective	domains	specify	

the	 level	 of	 detail	 to	 which	 a	 CSG	 is	 planned	 during	 this	 concept	

development	and	the	extent	to	which	knowledge	about	the	nature	of	

the	CSG	differs	between	the	CESs	(potentially	involved).	

2.3.5 Functions 

In	 order	 to	 fulfil	 the	 goals	 defined	 in	 the	 CESs	 and	 CSGs,	 different	

functions	 that	 must	 be	 implemented	 in	 the	 CESs	 are	 required.	 A	

function	 can	 be	 described	 at	 its	 interfaces	 by	 inducing	 a	 certain	

behavior	 on	 the	 basis	 of	 predefined,	 possible	 inputs	 and	 thereby	

generating	 different	 outputs	 [Broy	 and	 Stolen	 2001].	 The	 current	

implementation	is	encapsulated	by	the	interface	and	the	input/output	

behavior.	 For	 functions	 to	 actually	 be	 executed,	 they	 must	 be	

implemented	in	an	architecture.	

We	distinguish	(logically)	between	two	classes	of	 functions:	one	

subset	is	formed	by	the	system	functions,	which	can	be	represented	at	

very	different	levels	of	detail	and	represent	the	concrete	end-to-end	

added	value	compared	to	the	system	context	and	to	the	achievement	

of	the	CSG	or	CES	goals	that	a	CSG	or	CES	is	capable	of	providing.	

The	second	class	consists	of	the	collaboration	functions:	prior	to	

collaboration,	the	CESs	must	communicate	with	each	other,	exchange	

information	about	their	possible	contributions	in	the	form	of	system	

functions,	 communicate	 and,	 if	 necessary,	 adapt,	 negotiate,	 and	

prioritize	 their	 goals,	 and	 define	 the	 concrete	 course	 of	 the	

collaboration.	This	requires	a	comparison	between	the	requirements	

for	goal	fulfillment	and	available	system	functions.	The	role	that	each	

CES	will	take	on	within	the	CSG	must	also	be	determined	before	the	

actual	collaboration	takes	place.	This	depends,	among	other	things,	on	

which	role	a	CES	can	generally	take	on	due	to	its	functional	nature.	All	

these	 basic	 functions	 for	 the	 realization	 of	 a	 collaboration,	 and	
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especially	 the	 alignment	 between	 goals	 and	 system	 functions,	 are	

summarized	in	the	model	as	collaboration	functions.	

A	collaboration	function	differs	from	the	system	functions	in	that	

it	does	not	so	much	represent	the	individual	contribution	of	the	CES,	

but	rather	provides	the	functional	basis	for	enabling	the	collaboration.	

Every	CES	must	have	collaboration	 functions	 in	order	 to	be	able	 to	

collaborate	 in	 principle,	 regardless	 of	 which	 concrete	 system	

functions	it	contributes	to	a	collaboration.	Which	CESs	within	a	CSG	

communicate	with	 each	 other	 and	which	 hierarchies	 exist	 to	make	

decisions	 depends	 on	whether	 the	 CSG	 is	 organized	 centrally,	with	

fixed	hierarchies,	or	decentrally.	

In	either	case,	the	CSG	is	a	construct	that	is	pre-designed	at	design	

time,	implemented	in	the	CES,	and	dynamically	assembled	at	runtime.	

Both	the	goals	of	a	CSG	and	its	functions	are	aggregated	components	

that	 are	 implemented	 only	 in	 the	 CES.	 Thus,	 a	 CSG	 function	 for	

achieving	a	CSG	goal	consists	of	a	combination	of	system	functions	of	

several	CESs	involved	in	the	collaboration	or,	if	applicable,	of	one	or	

more	 system	 functions	 of	 a	 CES.	 The	 coordinated	 execution	 of	 the	

system	functions	of	the	CESs	generates	the	behavior	that	realizes	the	

CSG	function.	This	behavior	can	also	be	described	as	emergent,	since	

the	CSG	functions	may	create	new	properties	of	the	CSG	as	a	result	of	

the	interaction	of	its	collaborating	elements.	The	emergent	properties	

of	 the	 CSG	 cannot	 always	 be	 directly—or	 at	 least	 not	 always	

obviously—traced	back	to	properties	of	the	CES,	which	they	have	in	

isolation.	

Just	as	the	functions	of	a	CSG	are	aggregated	from	the	functions	of	

at	 least	one	CES,	the	CSG	architecture	is	formed	just	as	dynamically	

from	 the	 static	 architectures	 of	 the	 CESs.	 In	 contrast	 to	 the	 static	

architecture	of	a	CES,	which	can	be	developed	and	planned	explicitly,	

the	dynamic	architecture	of	a	CSG	is	again	planned	conceptually	and	

the	necessary	elements	are	provided	in	the	architectures	of	the	CESs.	

This	 allows	 a	 comparison	 as	 to	 whether	 a	 CSG	 includes	 the	

corresponding	architectural	 elements	 that	are	necessary	 to	achieve	

the	 overall	 goal	 of	 the	 CSG.	 Only	 in	 this	 way	 is	 it	 possible	 to	

dynamically	form	different	CSGs	at	runtime.	
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2.4  Problem Dimensions of Collaborative Embedded 

Systems 

With	the	consideration	of	collaborative	embedded	systems	in	CrESt,	

two	further	problem	dimensions	are	added	to	the	systems	considered	

in	SPES:	collaboration	and	dynamics	at	runtime.	A	distinction	is	also	

made	 here	 between	 CESs	 and	 CSGs,	 which	 form	 these	 embedded	

systems	 at	 runtime.	 In	 the	 following	 sections,	 we	 explain	 these	

additional	dimensions	in	detail,	especially	with	regard	to	the	system	

concept.	Figure	2-3	provides	an	overview	of	the	most	important	terms	

and	relationships.	

In	addition	to	the	classic	characteristics	of	the	system	model,	such	

as	interface,	observable	behavior	at	the	interface,	operational	context,	

and	internal	structure	(see	Figure	2-1),	communication	between	CESs,	

system	goals,	and	the	role	of	the	CES	in	the	system	network	must	also	

be	considered	in	the	case	of	CESs.	Furthermore,	the	characteristics	are	

no	 longer	 statically	 and	 completely	 known	 at	 design	 time	 but	 can	

change	 at	 runtime.	 For	 example,	 when	 a	 CES	 enters	 the	 CSG,	 its	

internal	structure	changes.	At	the	same	time,	the	operational	context	

of	both	the	entering	CES	and	the	CSG	changes.	For	systems	in	context,	

we	also	distinguish	between	collaborative	systems—that	is,	systems	

that	are	able	to	enter	a	CSG	due	to	their	architecture	and	functions—

Fig. 2-3: Collaborative embedded systems at a glance	
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and	non-collaborative	systems	that	cannot	take	an	active	role	in	the	

CSG	at	any	time.	

Based	 on	 these	 specific	 challenges	 for	 collaborative	 embedded	

systems,	a	taxonomy	of	challenges	can	be	defined,	as	shown	in	Figure	

2-4.	 For	 the	 two	 superordinate	 categories	 “Collaboration”	 and	

“Dynamics,”	a	number	of	characteristics	were	defined.	The	challenges	

are	described	in	detail	in	the	following	sections.	

2.4.1 Challenges Related to Collaboration 

CESs	 must	 be	 designed	 in	 such	 a	 way	 that	 they	 can	 operate	 in	

conceptually	 conceived	 types	 of	 CSG.	 This	 requires	 both	 the	

communication	 of	 objectives	 and	 the	 ability	 to	 take	 on	 different	

collaborative	 roles	 and	 act	 accordingly.	 To	 this	 end,	 these	 systems	

must	be	able	to	make	their	system	functions	available	to	CSG	and	-	also	

in	terms	of	quality	-	to	communicate	them	to	other	CESs	at	runtime.	

For	 this	 purpose,	 collaboration	 is	 considered	 under	 the	 following	

aspects:	

q Goals:	A	CES	must	be	able	 to	 align	 its	 individual	 goals	with	 the	

goals	of	CSG.	In	doing	so,	the	CES	must	decide	what	contribution	

it	 can	make	 to	 the	common	goals	and	which	 individual	goals,	 if	

any,	 must	 be	 adjusted	 (see	 “Hard	 Goals”	 and	 “Soft	 Goals”	 in	

Chapter	2).	

q Functions	/	behavior:	A	CES	must	be	in	a	position	to	provide	CSG	

with	 its	 own	 system	 functions.	 In	 addition,	 options	 must	 be	

Goals 
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Fig. 2-4: Taxonomy of CrESt challenges	
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provided	 for	 how	 it	 can	 adapt	 its	 own	 functions	 and	 qualities	

within	the	framework	of	the	negotiated	CSG	objectives.	

q Architecture	/	Structure:	A	CSG	is	an	initially	virtual	entity	that	is	

thought	 of	 at	 design	 time	 and	 then	 forms	 (and	 can	 dissolve)	

dynamically	at	runtime.	At	design	time	only	a	conceptualization	

takes	 place.	 It	 is	 realized	 through	 the	 interaction	 of	 the	

participating	CES	and	their	architecture	components.		

q Communication:	The	basic	ability	of	the	CES	to	communicate	with	

other	 CESs	 is	 realized	 by	means	 of	 the	 collaboration	 functions.	

Among	 other	 things,	 these	 functions	 also	 form	 the	 basis	 for	

negotiating	 objectives,	 assigning	 roles	 and	 communicating	

available	system	functions	to	CSG.	

2.4.2 Challenges Related to Dynamics 

The	 developers	 of	 dynamic	 CESs	 need	 concepts	 and	 methods	 that	

support	their	design	so	that	they	can	operate	in	a	highly	dynamic	and	

possibly	 open	 operational	 context	 in	 dynamically	 formed	 CSGs	 at	

runtime	 and,	 if	 necessary,	 with	 “fuzzy”	 information	 in	 a	 targeted	

manner.	 As	 shown	 in	 Figure	 2-3,	 the	 context	 of	 a	 CES	 differs	

significantly	from	that	of	a	CSG	according	to	its	hierarchical	structure.	

The	context	of	a	CSG	consists	exclusively	of	surrounding	systems	of	

the	CSG,	while	the	context	of	a	CES	is	formed	by	the	other	CESs	of	a	

CSG	and,	if	applicable,	by	parts	of	the	context	of	the	CSG.	

As	shown	in	Figure	2-2,	the	system	and	collaboration	functions	of	

CSG	are	formed	by	the	functions	of	the	CESs.	A	challenge	to	a	CSG	must	

therefore	always	be	solved	by	the	CESs	involved,	possibly	also	by	the	

interaction	of	several	CESs.	Dynamics,	openness	and	uncertainty	give	

rise	to	the	following	challenges	for	the	development	of	these	systems,	

among	others:	

q CSGs	 must	 be	 able	 to	 adapt	 their	 goals	 to	 the	 changes	 in	 the	

operational	 context	 that	 they	 perceive	 via	 their	 sensor	

technology.	This	is	particularly	the	case	when	CESs	become	part	

of	CSG	or	leave	CSG.	This	requires	the	possibility	to	dynamically	

adjust	 the	 goals	 of	 the	 CESs	 (see	 challenges	 on	 collaboration	

goals).	

q CSGs	must	 be	 able	 to	 cope	with	 changes	 in	 available	 functions.	

This	concerns	on	the	one	hand	the	system	functions	of	the	CESs	in	

an	operational	 context	and	on	 the	other	hand	 the	collaboration	

functions	of	the	CESs	within	the	CSG.	For	this	purpose,	CESs	must	

be	 able	 to	 describe	 their	 available	 system	 or	 collaboration	
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functions	 and	 to	 adapt	 their	 system	 functions	 according	 to	 the	

negotiated	goals.	For	example,	a	CES	must	be	able	to	communicate	

with	new	objects	that	have	been	added	to	its	CSG	or	operational	

context.	 In	 open	 systems	 (in	 the	 sense	 of	 the	 open	 world	

assumption),	 this	 requires	 the	 ability	 to	 communicate	 with	

systems	 of	 previously	 unknown	 types	 and,	 where	 this	 is	 not	

possible,	to	handle	them	safely	in	other	ways.	At	the	CSG	level,	it	

must	 be	 possible	 to	 describe	 the	 functions	 required	 to	 achieve	

certain	goals	in	the	form	of	sought-after	capabilities	and	to	search	

for	these	in	their	CSG	and	operational	context.	They	must	be	able	

to	 recognize	when	new	system	 functions	 are	 available	 and,	 if	 a	

system	 function	 is	 no	 longer	 available,	 search	 for	 alternatives.	

Finally,	a	CSG	must	be	able	to	select	available	alternative	system	

functions	according	to	defined	criteria.	

q The	CESs	of	a	CSG	must	be	able	to	deal	with	structural	changes	of	

the	CSG.	In	particular,	they	must	be	able	to	detect	changes	in	their	

operational	 context	 and	 CSG	 and	 adapt	 their	 interfaces	

accordingly.	The	dynamic	entry	or	exit	of	a	CES	from	the	group	or	

the	change	of	roles	of	the	CES	within	a	CSG	also	affects	the	internal	

structure	of	the	CSG.	

q Both	 CESs	 and	 CSGs	must	 be	 able	 to	 deal	 with	 changes	 in	 the	

operational	context	of	the	CSG	or	of	CESs	within	the	CSG.	To	do	so,	

they	must	be	able	to	consider	the	behavior	of	context	objects	(of	

the	CESs	and	CSGs)	when	planning	their	own	goal	fulfillment	and	

implementing	desired	 functions.	To	analyze	 the	current	context	

behavior	 and	 the	 potential	 changes	 resulting	 from	 it,	 it	 is	

necessary	to	define	the	desired	or	expected	behavior	of	context	

objects.	Finally,	CESs	must	be	able	to	evaluate	behavioral	changes	

in	terms	of	their	 impact	on	the	CES	or	CSG	under	consideration	

and	to	draw	conclusions	from	this.	This	includes,	for	example,	the	

adjustment	of	goals.	

q Dealing	with	uncertainty	and	fuzziness	in	data	collection	is	also	

relevant	for	classical	systems.	For	dynamic	systems,	which	should	

be	able	to	operate	in	open	contexts,	it	must	be	possible	to	resolve	

or	deal	with	uncertainties	in	terms	of	the	open	world	assumption.	

2.5  Application in the Domains “Cooperative Vehicle 

Automation” and “Industry 4.0” 

In	 the	 following,	we	 consider	 and	 concretize	 the	 challenges	 on	 the	

basis	of	exemplary	application	domains.	
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2.5.1 Challenges in the Application Domain “Cooperative 

Vehicle Automation” 

The	use	case	“Cooperative	Vehicle	Automation”	 investigates	system	

networks	 that	 are	 formed	 between	 vehicles	 in	 order	 to	 achieve	

common	 goals.	 An	 obvious	 scenario	 in	 this	 context	 is	 “vehicle	

platooning”	 (computer-controlled	 convoy	 driving).	 In	 the	 sense	 of	

CrESt,	this	is	a	system	group	(i.e.,	a	CSG)	of	individual	vehicles	(CESs)	

that	drive	in	close	succession	in	close	proximity	to	each	other	with	the	

aid	of	automated	control	systems.	Often,	the	common	goal	of	such	a	

network	is	to	reduce	the	fuel	consumption	of	all	participants	and	to	

relieve	the	individual	drivers.	During	their	participation	in	a	platoon,	

individual	 vehicles	 coordinate	 their	 own	 goals	 with	 the	 common	

goals.	 For	 example,	 individual	 vehicles	with	 individual	 destinations	

for	 a	 certain	 route	 can	 join	 a	 platoon	 that	 has	 a	 different	 final	

destination	but	is	travelling	in	the	same	direction.	

Figure	 2-5	 shows	 an	 example	 of	 the	 structure	 of	 such	 a	 platoon,	

consisting	of	vehicles	A	to	D.	Car	A,	at	the	head	of	the	convoy,	takes	on	

the	 central	 role	 of	 coordination,	 referred	 to	 here	 as	 the	 “leading	

vehicle.”	In	this	role,	the	vehicle	coordinates	basic	tasks	such	as	the	

creation	 and	 dissolution	 of	 the	 platoon,	 or	 processes	 such	 as	 the	

execution	of	a	lane	change	for	the	entire	platoon.	The	other	vehicles	

take	on	 the	 role	 of	 “following	vehicle”	 and	 thereby	 transfer	part	 of	

their	control	to	the	lead	vehicle.	In	addition,	individual	vehicles	of	the	

Fig. 2-5: Overview of collaboration in computer-controlled convoy driving	
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platoon	can	also	contribute	further	system	functions.	This	allows	new	

sub-functions	of	the	platoon	to	be	formed	and	the	overall	functionality	

of	 the	 platoon	 to	 be	 expanded.	 For	 example,	 a	 vehicle	 could	 bring	

special	sensors	into	the	platoon	for	better	environmental	monitoring,	

which	are	then	available	to	the	platoon	as	a	whole.	

In	order	for	a	platoon	to	be	formed,	certain	requirements	must	be	

met	by	 the	participating	vehicles.	The	preliminary	design	phase	 for	

platoons	must	therefore	define	which	requirements,	such	as	wireless	

communication	 connections,	 standardized	 communication	protocol,	

suitable	distance	sensors,	must	be	met	by	the	vehicles	of	a	platoon.	

Collaboration 

In	 the	 following,	 we	 look	 at	 the	 specific	 challenges	 in	 the	 area	 of	

collaboration	using	the	example	of	a	vehicle	entering	a	platoon.	Car	E	

wants	to	enter	a	platoon	consisting	of	four	vehicles	(see	Figure	2-5).	

Car	E	must	coordinate	its	individual	goals,	such	as	destination	and	

cruising	speed,	with	the	platoon's	common	goals	before	entering.	The	

cruising	speed	is	a	soft	goal,	so	Car	E	is	allowed	to	adjust	its	speed	to	

the	cruising	speed	of	the	platoon.	

Upon	entry,	Car	E	is	assigned	its	future	role	(usually	as	a	following	

vehicle)	 in	 the	 platoon.	 It	must	 adapt	 its	 behavior	 to	 this	 role.	 For	

example,	 decisions	 on	 initiating	 acceleration,	 braking,	 and	 lane	

changing	processes	are	transferred	from	Car	E	to	the	lead	vehicle.	

When	entering	the	platoon,	Car	E	will	give	an	entry	position.	This	

specification	can	influence	and	optimize	the	structure	of	a	platoon	—	

for	example,	for	an	imminent	exit	of	another	vehicle.	

For	the	entry	of	Car	E	into	the	platoon,	extensive	communication	

between	Car	E	and	the	platoon's	lead	vehicle	is	necessary.	Car	E	has	to	

express	its	wish	to	enter	the	platoon.	The	platoon	has	to	communicate	

its	common	goals,	as	well	as	the	entry	requirements,	such	as	role	and	

entry	position.	 In	addition,	 communication	 is	also	necessary	within	

the	platoon.	Before	entry,	the	lead	car	must	ask	the	members	of	the	

platoon,	for	example,	to	create	a	gap	at	the	entry	position.	After	Car	E	

has	 pulled	 in,	 the	 lead	 vehicle	must	 ask	 the	 other	members	 of	 the	

platoon	to	close	this	gap	again.	

Dynamics 

Let	us	now	look	at	the	special	challenges	in	the	area	of	dynamics	using	

the	example	of	the	entry	of	a	vehicle	(Car	E)	into	the	platoon.	

The	entry	of	Car	E	into	the	platoon	may	lead	to	adjustments	to	the	

community	goals	(soft	goals)	of	the	platoon.	For	example,	Car	E	could	
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bring	special	sensors	that	can	detect	the	environment	more	precisely	

into	the	platoon,	and	thus	enable	a	higher	cruising	speed	for	the	entire	

platoon.	

The	entry	of	Car	E	 can	also	 lead	 to	a	 change	of	 roles	within	 the	

platoon.	For	example,	 for	Car	A	 in	 its	 role	as	 leader,	 the	size	of	 the	

platoon	could	be	limited	to	four	vehicles.	For	the	inclusion	of	Car	E	as	

the	fifth	vehicle,	the	leading	role	must	therefore	be	transferred	to	one	

of	 the	 other	 vehicles	 that	 supports	 the	 corresponding	platoon	 size.	

However,	it	could	also	be	that	Car	A	hands	over	its	role	as	lead	vehicle	

to	Car	E	after	entry	because	Car	A	will	leave	the	platoon	in	a	short	time.	

Functions	such	as	the	coordination	of	acceleration,	braking,	and	lane	

change	of	the	platoon	then	move	from	Car	A	to	Car	E.	

The	entry	of	Car	E	changes	the	internal	structure	of	the	platoon,	

such	as	the	number	and	order	of	the	participating	cars.	Depending	on	

the	sensor	types	contained	in	Car	E	(e.g.,	for	distance	measurement),	

the	interfaces	of	the	other	members	may	have	to	be	adapted.	Interface	

adaptations	may	also	be	necessary	if	sensors	are	missing	or	unknown	

sensor	types	are	used.	

The	context	of	 the	platoon	 is	constantly	changing.	New	vehicles,	

traffic	signs,	but	also	unpredictable	obstacles	on	the	road	can	appear	

at	 any	 time.	 In	 addition,	 new	 functionalities	 can	 appear	 in	 context,	

such	 as	 the	 sensor	 data	 of	 a	 traffic	 control	 system	 that	 provide	

information	about	the	road	surface.	The	platoon	must	be	able	to	detect	

these	changes	fast	enough	and	adapt	 its	behavior	accordingly.	With	

the	entry	of	Car	E	into	the	platoon,	the	context	changes	for	the	platoon	

as	well	as	for	Car	E	and	the	previous	vehicles	of	the	platoon.	For	Car	E,	

the	context	no	longer	contains	the	platoon	as	a	whole,	but	rather	the	

individual	vehicles	inside	the	platoon.	For	the	vehicles	of	the	platoon,	

Car	E	now	becomes	a	member	of	their	own	association.	

Platoons	operate	in	an	open	environment	and	must	therefore	deal	

with	a	high	degree	of	uncertainty	and	 fuzziness.	A	platoon	must	be	

able	to	deal	with	road	users	not	yet	known	at	the	time	of	the	platoon's	

design.	Road	 safety	must	be	 guaranteed	 even	 then.	 Future	 vehicles	

with	 new	 features	 (such	 as	 extended	 information	 about	 the	

environment)	should	be	included	in	the	platoon	and	their	capabilities	

should	be	able	to	be	used.	

2.5.2 Challenges in the Application Domain “Industry 4.0” 

The	visions	of	an	adaptable	and	flexible	factory	are	complex	and	are	

described	by	different	scenarios	in	connection	with	the	Industry	4.0	
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vision	[Plattform	Industry	4.0	2017a],	[Plattform	Industry	4.0	2017b],	

[Plattform	Industry	4.0	2017c].	

One	scenario	frequently	described	in	this	context	is	order-driven	

production,	where	the	CESs	involved	in	the	production	of	a	product	

(also	called	modules	in	the	factory)	form	a	CSG	(also	called	production	

network	in	the	factory)	based	on	the	requirements	of	the	product	to	

be	manufactured	and	with	the	goal	of	manufacturing	the	product.	The	

application	of	the	concept	described	in	2.3.1	results	in	a	production	

network	that	is	formed	to	produce	a	specific	production	order	and	is	

dissolved	again	after	its	completion.	

In	the	example	of	the	adaptable	and	flexible	factory,	the	interaction	of	

the	CESs	in	the	CSG	must	also	be	considered	and	described	by	means	

of	suitable	models	in	order	to	serve	as	a	basis	for	the	development	of	

the	 CESs	 and	 to	 enable	 collaboration	 during	 operation.	 Figure	 2-6	

shows	 such	 an	 existing	 and	 a	 planned	 production	 network	 for	 the	

processing	of	two	production	orders.	

To	process	manufacturing	order	PO1,	a	different	composition	of	

production	modules	 is	 required	 than	 for	manufacturing	 order	 PO2	

(see	Figure	2-6).	When	the	order	is	received,	the	modules	agree,	based	

on	the	order	information,	whether	and	under	which	conditions	(costs,	

quality,	 and	 time)	 they	 can	 contribute	 to	 the	 production.	 For	 the	

Fig. 2-6: Overview of collaboration in order-driven production	



34 Engineering of Collaborative Embedded Systems 

production	of	PO1,	for	example,	a	collaboration	of	modules	A,	B,	and	C	

with	 the	 roles	 production	 planning	 unit,	 production	 station	 (in	 the	

form	of	a	drilling	station),	and	transport	device	is	required,	while	for	

the	production	of	PO2,	a	further	function	of	module	D	in	the	role	of	an	

assembly	device	must	be	added.	Even	 in	 the	adaptable	and	 flexible	

factory,	there	are	modules	that,	due	to	lack	of	suitable	functionality,	

are	not	capable	of	collaborating	with	other	modules	(e.g.,	module	F	in	

the	figure).	

Individual	 goals	 of	 the	 modules,	 such	 as	 achieving	 the	 highest	

possible	 throughput,	 energy-efficient	 production,	 or	 adherence	 to	

certain	 maintenance	 intervals,	 must	 be	 taken	 into	 account	 when	

forming	 production	 networks	 and	 compared	 with	 the	 higher-level	

and	 possibly	 conflicting	 goals	 of	 the	 production	 network.	 The	

fulfilment	of	the	production	order	represents	the	overriding	overall	

goal,	which	can	only	be	achieved	through	the	individual	contributions	

of	the	modules	involved	in	production.	

In	this	scenario,	it	is	assumed	that	in	different	factories,	different	

modules	 with	 heterogeneous	 system	 functions	 or	 production	

functions	 (such	 as	 drilling,	 milling,	 transport,	 and	 assembly)	 are	

available	 for	 the	production	of	 individual	 customer	orders,	 initially	

detached	from	each	other.	Depending	on	the	shape	of	the	product	to	

be	manufactured,	different	manufacturing	functions	are	required	for	

production.	 In	 contrast	 to	 platooning,	 this	 scenario	 is	 mainly	

characterized	 by	 the	 multitude	 of	 very	 different	 functions	 of	

individual	CESs.	

The	contributing	modules	must	both	align	their	functions	with	the	

requirements	 resulting	 from	 the	 order	 and	 communicate	 their	

respective	 contribution	 to	 the	production	 to	each	other	 in	order	 to	

jointly	 determine	 the	 feasibility	 and	 the	 sequence	 of	 processing.	

Depending	 on	 the	 functions	 required,	 it	 may	 be	 necessary	 to	

reconfigure	modules	before	production	can	start	because	they	cannot	

perform	a	required	function	in	the	current	configuration.	Depending	

on	 the	 scope,	 the	 reconfiguration	 can	 be	 performed	 either	

automatically	 by	 the	 module	 itself,	 or	 by	 an	 external	 actor.	 The	

frequency	with	which	individual	modules	are	reconfigured	depends	

on	the	requirements	of	the	respective	production	network.	

By	providing	their	respective,	very	heterogeneous	 functions,	 the	

modules	 assume	 roles	 required	 for	 the	 production	 (such	 as	

production	planning	unit,	production	cell,	assembly	station,	transport	

device)	and	contribute	to	production	within	a	CSG.	
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Collaboration 

In	 order	 to	 realize	 the	 collaboration	 of	 the	 modules	 for	 the	 joint	

production	 of	 a	 product,	 numerous	 challenges	 have	 to	 be	 met.	 By	

combining	the	very	heterogeneous	functions	of	individual	modules,	it	

should	 be	 possible	 to	manufacture	 a	 product	 that	 a	 single	module	

could	not	manufacture	on	its	own	due	to	its	limited	possibilities.	

Since	each	individual	module	can	make	only	a	limited	contribution	

to	 the	 overall	 production,	 and	 since	 these	 individual	 contributions	

must	 be	 coordinated	 for	 an	 aggregated	 overall	 contribution,	

achievable	 intermediate	 goals	 (such	 as	 progress	 in	 the	 production	

process	 that	 can	 be	 achieved	 by	 the	 individual	 module)	 must	 be	

defined.	This	requires	that	the	modules	have	machine-interpretable	

descriptions	 for	 their	 respective	 functions	 and	 that	 they	 exchange	

these	 descriptions,	 as	 well	 as	 metadata	 (e.g.,	 units	 used,	 qualities	

provided)	 in	 the	 context	 of	 communication	 with	 other	 modules	

through	 their	 collaboration	 functions.	 From	 these	 descriptions,	 we	

can	derive	whether	and	to	what	extent	a	contribution	can	be	made	to	

the	production	of	a	product.	

During	production,	consideration	must	be	given	to	the	fact	that	the	

sequence	 of	 functions	 to	 be	 performed	 by	 the	 modules	 varies	

depending	on	the	product	to	be	manufactured.	The	information	about	

the	 sequence	 of	 the	 functions	 of	 the	 modules	 to	 be	 executed	 is	

determined	based	on	the	production	order.	While,	for	example,	in	the	

case	 of	 a	 platoon,	 the	 functions	 to	 be	 executed	 for	 integrating	 or	

leaving	the	platoon	are	very	similar,	even	with	varying	vehicles	and	

destinations,	 in	 a	 factory,	 even	 when	 manufacturing	 very	 similar	

products,	 a	 geometrically	 determined,	 very	 different	 sequence	 of	

functions	may	be	required	in	production.	

The	 production	 sequence	 as	 the	 goal	 of	 collaboration	 and	 the	

resulting	involvement	of	the	modules	must	therefore	be	redefined	for	

each	production	order.	For	example,	 for	 the	production	of	PO1	and	

PO2,	both	functions	of	module	A	and	module	B	are	required.	For	PO1,	

however,	it	may	be	necessary	for	module	A	to	execute	its	production	

functions	 first	and	module	B	afterwards,	whereas	PO2	requires	 the	

functions	of	module	B	first	and	then	those	of	module	A.	PO2	may	even	

require	 manual	 reconfiguration	 by	 an	 employee	 in	 the	 factory	 of	

module	 B	 because	 a	 specific	 tool	 is	 required.	 This	 reconfiguration	

must	also	be	considered	and	provided	for	in	the	collaboration.	

In	addition	to	providing	individual	system	functions,	the	architecture	

of	 factory	modules	also	 implements	communication	with	other	CSG	

modules.	 While	 communication	 about	 platooning	 targets	 is	 done	

dynamically	at	system	runtime,	targets	of	CSGs	and	CESs	of	adaptable	
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and	 flexible	 factories	 are	 aligned	 at	 configuration	 time.	 Due	 to	 the	

heterogeneity	of	goals,	roles,	collaboration,	and	system	functions,	the	

ways	 in	which	modules	are	combined	to	 form	CSGs	are	much	more	

complex	 than	 in	 platooning	 and	 require	 intelligent	 procedures	 for	

coordination.	

In	the	adaptable	and	flexible	factory	in	particular,	and	in	similar	

heterogeneous	collaborative	contexts,	it	may	therefore	be	necessary	

to	involve	people	as	actors	(experts)	in	the	CSG	formation	process.	In	

addition	 to	 the	 inter-CES	 communication,	 opportunities	 to	 involve	

experts	in	collaboration	planning	must	also	be	provided.	

Dynamics 

The	 goal	 pursued	 by	 a	 production	 network	 is	 to	 fulfil	 a	 single	

production	 order.	 The	 production	 network	 comprises	 all	 modules	

that	contribute	to	the	production	of	the	corresponding	product	with	

their	production	functions	and,	if	necessary,	additional	functions	such	

as	production	monitoring.	If,	for	example,	module	B	fails	in	its	role	as	

a	 production	 cell	 (drilling	 station)	 due	 to	 an	 error	 during	 the	

processing	of	PO1,	compensation	strategies	are	required	to	ensure	the	

fulfilment	 of	 the	 order.	 In	 this	 case,	 the	 production	 network	 could	

request	the	required	function	from	module	E,	since	this	module	does	

not	belong	to	any	network	at	this	time	and	has	the	basic	possibility	of	

assuming	the	required	role.	

The	failure	of	a	system	function	of	a	module	as	well	as	the	search	

for	and	 integration	of	alternative	modules	with	comparable	 system	

functions	shows	the	dynamics	with	regard	to	function	and	behavior.	

Such	a	change	can	result	in	further	adaptations	because	new	transport	

routes	may	have	to	be	considered.	

Every	 time	 a	 module	 fails	 or	 a	 new	 module	 is	 added	 to	 the	

production	 network,	 the	 architecture	 and	 structure	 of	 the	 network	

also	change.	

Furthermore,	 production	 networks	 must	 be	 able	 to	 deal	 with	

changes	 in	 their	 context.	 For	 example,	 the	 delivery	 of	 required	

materials	by	external	suppliers	in	the	context	of	PO1	could	change.	

While	in	platooning,	a	vehicle	with	the	role	of	“following	vehicle”	

leaving	the	platoon	can	be	assumed	to	be	an	everyday	occurrence	and	

usually	does	not	prevent	the	joint	achievement	of	goals,	the	failure	of	

modules	in	the	production	network	can	mean	that	the	order	cannot	

be	fulfilled.	These	and	other	forms	of	uncertainty	must	also	be	taken	

into	account	during	the	design	of	individual	modules	of	the	adaptable	

and	flexible	factory.	
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2.6  Concepts and Methods for the Development of 

Collaborative Embedded Systems  

2.6.1 Enhancements Regarding SPES2020 and SPES_XT 

To	 meet	 the	 requirements	 for	 the	 development	 of	 collaborative	

embedded	 systems,	 new	 methods	 have	 been	 developed	 in	 CrESt.	

These	methods	were	classified	according	to	their	contribution	to	the	

taxonomy	 of	 challenges	 (see	 Figure	 2-4).	 Some	 methods	 can	 be	

classified	 into	 the	 taxonomy	 several	 times	 because	 they	 offer	

solutions	for	different	challenges.	

The	“Process	Building	Block	Framework”	was	used	to	document	

the	 methods	 (see	 [Pohl	 et	 al.	 2016]).	 This	 framework	 allows	

systematic	documentation	of	how	artifacts	are	created	and	processed	

in	the	development	process.	Each	“process	building	block”	has	a	well-

defined	input	(e.g.,	models,	etc.)	and	output	(models,	analysis	results,	

etc.).	 Input	 and	 output	 can	 be	 further	 restricted	 by	 pre-	 and	 post-

conditions	and	are	assigned	to	the	SPES	viewpoints.	Process	building	

blocks	 can	 be	 connected	 to	 each	 other	 via	 relationships	 and	 thus	

provide	a	mapping	to	the	desired	development	process.	

In	 SPES2020	 and	 SPES_XT,	 a	 framework	 for	 the	 creation	 of	 a	

system	 model	 was	 developed.	 The	 models	 are	 organized	 in	 four	

viewpoints:	 requirements	 viewpoint,	 functional	 viewpoint,	 logical	

viewpoint,	 and	 technical	 viewpoint.	 In	 addition,	 the	 framework	

includes	 special	 models	 for	 cross-cutting	 topics	 such	 as	 safety,	

variability,	 and	 validation.	 For	 the	 description	 of	 CESs	 in	 a	 system	

model,	 this	 framework	 has	 been	 extended	 in	 CrESt.	 The	 existing	

viewpoint	structure	was	retained.	Existing	models	were	extended	and	

a	 number	 of	 new	model	 types	were	 defined.	 These	 extensions	 are	

used,	among	other	things,	to	describe	a	CSG	and	its	relationships	to	

CESs	—	for	example,	with	respect	to	goals	and	functions	(see	Figure	

2-7).	 The	 two	 main	 classes	 of	 the	 taxonomy	 (Figure	 2-4)	

“Collaboration”	and	“Dynamics”	impact	all	four	viewpoints.	Therefore,	

they	have	to	be	considered	in	the	models	of	all	viewpoints.	In	addition	

to	 the	 extensions	 of	 existing	 viewpoints,	 specific	model	 types	 have	

been	defined	that	consider	collaboration	and	dynamics	and	cannot	be	
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assigned	directly	to	existing	viewpoints.	They	are	orthogonal	to	the	

viewpoints	 and	 have	 cross-connections	 to	 several	 viewpoints.	

Examples	are	models	that	describe	collaboration	strategies	in	a	CSG	

or	information	about	dynamics	at	runtime	(see	Figure	2-8).	

2.6.2 Collaboration 

In	order	 to	 support	 the	development	of	CESs	 and	CSGs	 in	 terms	of	

collaboration,	 the	 methodological	 toolbox	 of	 SPES,	 including	 the	

modeling	approach	contained	therein,	was	extended	in	CrESt.	A	list	of	

Fig. 2-7: CrESt framework (part1) 

Fig. 2-8: CrESt framework (part2)	
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methods	 developed	 to	 support	 collaboration	 can	 be	 found	 in	 the	

appendix	of	this	chapter6.	

Goals 

The	Goal-Oriented	Requirements	Language	(GRL)	[Daun	et	al.	2019]	

can	be	used	to	model	the	common	goals	of	a	CSG	and	the	relationships	

to	 the	 individual	 goals	 of	 the	 CES	 members.	 With	 the	 help	 of	 this	

formal	 description,	 the	 necessary	 skills	 and	 key	 performance	

indicators	 (KPIs)	 of	 the	 CSG	 members,	 whose	 interaction	 in	 the	

context	 of	 a	 collaboration	 makes	 the	 achievement	 of	 the	 common	

goals	possible,	can	be	derived.	

In	order	to	analyze	the	individual	goals	of	potential	CSG	members	

or	their	development	organizations,	CrESt	defined	a	suitable	language	

for	partner	network	models.	

In	 order	 to	 illustrate	 the	 variability	 or	 configurability	 of	 a	 CSG	

based	on	the	configuration	possibilities	of	its	members,	CrESt	results	

allow	for	the	combination	of	different	variability	models.	

Based	 on	 these	 extensions	 of	 the	modeling	 framework,	 specific	

methods	were	developed	to	achieve	the	goals	of	a	collaboration.	Thus,	

it	is	possible	to	determine,	at	runtime,	whether	or	not	a	collaborative	

goal	 can	be	 achieved	 in	 the	 current	CES	 constellation	with	 the	CES	

capabilities	currently	available.	The	possibility	to	achieve	a	common	

goal	by	making	possible	adjustments	to	the	participating	CESs	is	also	

taken	 into	 account.	 For	 example,	 this	 approach	 can	 be	 used	 to	

determine,	for	an	adaptable	and	flexible	factory,	whether	it	is	possible	

to	produce	a	product	with	the	required	quality.	If	not,	the	approach	

allows	a	check	to	determine	whether	a	suitable	(re-)	configuration	of	

the	modules	can	make	that	production	possible.	Further	details	can	be	

found	in	Chapter	6.		

In	order	to	achieve	a	common	goal	of	a	CSG,	it	may	be	necessary	

for	individual	members	to	adapt	the	individual	goals	they	pursue	in	

order	to	subordinate	them	to	those	of	the	group.	For	example,	in	order	

to	reduce	their	own	fuel	consumption	by	participating	in	a	platoon,	all	

participating	 vehicles	 must	 adapt	 their	 speed	 to	 the	 speed	 of	 the	

platoon.	With	 the	help	of	CrESt	methods,	 suitable	 strategies	 can	be	

derived	and	verified	at	runtime	to	optimally	achieve	both	the	common	

goals	 of	 a	 CSG	 and	 the	 goals	 pursued	 by	 the	 members	 of	 the	

collaborating	CESs	(for	details,	see	Chapter	9	and	Chapter	10).	

	
6	 The	 CrESt	 results	 are	 available	 on	 request.	 See:	 https://crest.in.tum.de/	 (website	
available	in	German	only),	
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Functions and Behavior 

The	modeling	of	functions	has	been	extended	to	support	the	modeling	

of	 CESs	 in	 the	 framework.	 Two	 types	 of	 functions	 can	 now	 be	

distinguished.	

The	first	type	of	function	is	the	collaboration	functions	necessary	

for	the	collaboration	of	CESs	in	a	CSG	and	the	system	functions	of	a	

CES	that	serve	to	achieve	the	system	goals.	To	enable	the	dedicated	

consideration	 of	 collaboration	 functions	 in	 particular,	 appropriate	

modeling	 approaches	 were	 provided	 in	 order	 to	 ultimately	 enable	

collaboration	at	runtime	and	the	associated	systematic	coordination	

of	different	functionalities	in	a	CSG.	When	designing	a	CSG,	it	is	now	

possible	to	specify	which	collaboration	functions	are	necessary	for	the	

participation	of	a	CES	in	a	CSG.	

In	addition,	the	conceptual	relationships	between	system	and	CSG	

functions,	as	well	as,	for	example,	goals	and	roles	in	a	collaboration,	

were	worked	out.	For	a	CSG,	we	can	specify	which	roles	the	individual	

CES	members	can	take	on	and	which	functions	they	have	to	provide	

to	the	CSG	for	this	purpose.	In	a	platoon,	for	example,	the	lead	vehicle	

must	be	able	to	plan	and	execute	lane	changes	for	the	entire	platoon.	

By	 means	 of	 collaboration	 functions,	 system	 functions	 such	 as	

acceleration	and	braking	must	be	orchestrated	in	a	suitable	way,	so	

that,	 for	 example,	 the	 entry	 and	 exit	 of	 a	 vehicle	 into	 and	 from	 a	

platoon	is	made	possible.	A	detailed	description	of	function	modeling	

can	be	found	in	Chapter	4		and	Chapter	5.	

Additionally,	 the	 framework	 has	 been	 extended	 to	 formally	

describe	 the	 behavior	 of	 a	 CSG	 through	 contracts	 and	 scenarios	 at	

design	 time	 (see	 Section	 8.4).	 Furthermore,	 approaches	 including	

suitable	tools	were	developed	to	analyze	the	behavior	of	a	CSG	by	co-

simulation.	Details	can	be	 found	 in	Chapter	12	and	Chapter	13.	The	

confidence	of	the	CES	members	in	the	behavior	of	the	other	members	

plays	an	important	role	in	the	creation	of	a	CSG.	In	CrESt,	an	approach	

was	therefore	developed	to	build	up	mutual	trust	in	the	behavior	of	

CES	members,	for	instance	within	a	platoon,	with	the	help	of	digital	

twins	(see	Chapter	14).	

Architecture and Structure 

The	goal-oriented	requirements	models	are	used	 in	CrESt	 to	derive	

supporting	 architectures	 of	 CESs	 and	 CSGs.	 In	 addition,	 the	

architecture	modeling	in	the	framework	has	been	extended	to	support	

the	virtual	characteristics	of	a	CSG.	This	means	that	all	components	of	

a	 CSG	 architecture	 are	 realized	 by	 components	 of	 the	 participating	
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CESs.	The	design	of	a	CSG	is	therefore	described	at	two	levels.	At	the	

development	 stage,	 the	 architecture	 is	 defined	 at	 an	 abstract	 level	

with	 the	 help	 of	 reference	 architectures	 developed	 in	 CrESt	 (for	

example,	in	the	context	of	standardization).	A	detailed	description	of	

this	approach	can	be	found	in	Chapter	3	and	Chapter	5.	At	runtime,	

the	abstract	architecture	is	instantiated	into	a	concrete	architecture.	

For	 example,	 only	 the	 framework	 conditions	 for	 a	 platoon	 are	

specified	 at	 design	 time.	 At	 runtime,	 a	 platoon	 then	 consists	 of	 a	

defined	number	of	concrete	vehicles.	

Communication 

CESs	must	be	able	to	communicate	with	the	different	partners	both	

within	a	CSG	and	in	their	environment.	For	example,	in	a	platoon,	the	

following	vehicles	must	be	able	to	be	instructed	by	the	lead	vehicle	to	

form	a	gap	for	the	entering	vehicle	at	the	given	position.	

In	 CrESt,	 an	 approach	 has	 been	 developed	 to	 achieve	 semantic	

interoperability	 between	 different	 and	 changing	 communication	

partners	regarding	the	exchanged	(possibly	complex)	information	by	

means	 of	 ontologies.	 For	 example,	 it	 is	 important	 to	 exchange	

information	 about	 the	 specific	 capabilities	 of	 the	 individual	 CES	

members.	The	CrESt	framework	was	therefore	extended	by	a	formal	

description	of	the	capabilities	of	a	CES	(for	details,	see	Section	6.3		and	

Chapter	7).	

Safety	contracts	must	also	be	communicated	at	runtime	for	safety-

critical	 systems.	 In	 CrESt,	 a	 corresponding	 method	 has	 been	

developed	for	this	purpose.	(see	Section	8.4).	Furthermore,	suitable	

communication	patterns	were	defined	for	the	communication	of	CESs	

in	 a	 CSG	 and	made	 available	 on	 the	 basis	 of	 the	Coaty	middleware	

framework	 [Coaty].	 A	 detailed	 description	 can	 be	 found	 in	 Section	

10.6.	

2.6.3 Dynamics 

With	regard	to	the	problem	dimension	dynamics,	both	the	modeling	

of	CESs	and	CSGs	and	the	methodological	toolkit	for	developing	these	

systems	have	been	expanded.	The	appendix	of	this	document	contains	

a	list	of	the	methods	developed	in	CrESt	for	this	dimension7.	

	
7	 The	 CrESt	 results	 are	 available	 on	 request.	 See:	 https://crest.in.tum.de/	 (website	
available	in	German	only).	
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Goals 

With	the	approaches	developed	in	CrESt,	community	goals	can	now	

be	negotiated	dynamically	at	runtime.	The	decisions	made	at	runtime	

are	based	on	strategies	for	ensuring	that	individual	and	community	

goals	are	achieved	as	well	as	possible.	Such	strategies	also	serve	to	

plan	and	enable	adaptation	at	runtime	based	on	the	achievement	of	

goals.	CrESt	provides	methods	for	deriving	appropriate	strategies	and	

operationalizing	the	adaptation	(see	also	Chapter	9).	

In	order	to	achieve	the	common	goals	of	a	CSG,	all	CES	members	

must	 fulfill	 their	 commitments.	 Therefore,	 CrESt	 has	 developed	

methods	for	assessing	the	risk	and	impact	of	erroneous	behavior	of	a	

CES	and	for	ensuring	that	the	goals	are	met	in	this	case	as	well.	In	the	

use	case	of	the	adaptable	and	flexible	factory,	for	example,	the	failure	

of	one	module	must	not	lead	to	serious	damage	to	the	factory	workers	

and	the	other	modules.	A	prerequisite	for	this	is	a	method	for	a	goal-

based	 review	 of	 CESs	 at	 runtime.	 These	methods	 are	 described	 in	

Section	10.2	and	Section	8.3.4.	

Functions and Behavior 

Both	CESs	and	CSGs	change	their	behavior	dynamically	at	runtime.	In	

the	 case	 of	 a	 CSG,	 for	 example,	 this	 can	 be	 done	 by	 CES	members	

joining	and	leaving	the	CSG.	This	dynamic	behavior	makes	it	difficult	

to	 perform	 safety-critical	 analyses	 completely	 at	 design	 time.	

Therefore,	methods	are	made	available	in	the	framework	where	parts	

of	the	security	analysis	can	be	shifted	to	runtime.	In	order	to	execute	

these	 parts	 with	 acceptable	 effort	 at	 runtime,	 corresponding	

preparatory	work	at	design	time	is	necessary.	Analyses	with	regard	to	

risks,	errors,	and	uncertainties	can	thus	be	analyzed	in	a	model-based	

manner	at	design	time	and	combined	into	modular	safety	checks	that	

are	evaluated	at	runtime	(see	Chapter	8	and	Chapter	3).	In	addition,	

argument-based	and	contract-based	approaches	based	on	behavioral	

models	 that	 allow	 a	 semi-automated	 or	 fully	 automated	 safety	

demonstration	 at	 runtime	 have	 been	 developed	 (Section	 8.4).	 A	

model-based	approach	to	risk	analysis	supports	safety	engineers	 in	

assessing	 the	 safety	 of	 newly	 configured	 systems	 at	 runtime.	

Problems	 arising	 from	 adjustments	 to	 systems	 at	 runtime	 can	 be	

identified	 by	 predictive	 simulation	 under	 certain	 circumstances.	 A	

detailed	description	can	be	found	in	Section	10.3.	

In	addition,	CrESt	also	provides	suitable	monitoring	methods	that	

monitor	both	functional	behavior	and	time	behavior.	
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Architecture and Structure  

In	 CrESt,	 an	 approach	 was	 developed	 for	 deriving	 a	 dynamic	

architecture	 by	 considering	 the	 corresponding	 architectures	 for	

different	context	situations.	Dynamic	architectures	of	CSGs	can	also	be	

designed	using	reference	architectures	from	the	building	set.	At	the	

development	 stage,	 the	 architecture	 is	 defined	 only	 at	 an	 abstract	

level	 (for	 instance,	 in	 the	 context	 of	 standardization).	The	 concrete	

CESs	or	the	number	of	CESs	that	make	up	the	architecture	at	runtime	

are	 not	 known	 at	 this	 time.	 Only	 at	 runtime	 is	 this	 abstract	

architecture	instantiated	into	a	concrete	architecture	(for	details,	see	

Chapter	3	and	Chapter	5.	During	runtime,	this	concrete	architecture	

can	change	again	and	again	as	the	members	of	the	CSG	change	—	that	

is,	when	they	enter	or	leave	the	system.	

In	 CrESt,	 approaches	 from	 software	 product	 line	 development	

were	used	to	enable	the	dynamic	binding	of	components	at	runtime	

and	 to	 analyze	 possible	 architectures	 at	 development	 time	 with	

regard	to	their	variable—that	is,	potentially	dynamic—components.	

This	approach	 is	detailed	 in	Chapter	5.	A	CES	 is	often	 integrated	 in	

different	CSGs,	which	poses	special	challenges	for	variability	modeling	

at	design	time,	since	short-term	change	requests	 to	a	CES	are	often	

implemented	only	for	a	specific	configuration	in	a	single	CSG.	In	CrESt,	

methods	have	been	developed	to	merge	these	changes	into	a	single	

CES	configuration	with	the	current	version	of	the	CES	product	lines	

fully	automatically	(see	Chapter	18		for	more	details).	

Testing	of	a	designed	CSG	is	made	more	difficult	by	the	fact	that	a	

large	number	of	different	CES	combinations	are	possible.	In	order	to	

test	a	large	number	of	scenarios	during	development,	methods	for	co-

simulating	 the	 real	 world	 with	 the	 virtual	 world	 in	 CrESt	 were	

developed.	Using	evolutionary	test	methods,	the	critical	situations	of	

a	 system	 can	 be	 identified	 and	 the	 quantity	 of	 test	 cases	 can	 be	

reduced	to	these	situations.	

Context 

CESs	 operate	 in	 a	 constantly	 changing	 environment	 to	 which	 they	

have	 to	 adapt	 their	 behavior.	 In	 CrESt,	 approaches	 have	 been	

developed	 to	 support	 the	 systems	 in	 adapting	 and	 using	 context	

information.	 The	 creation	 of	 context-sensitive	 variability	 models	

facilitates	 the	 search	 for	 a	 valid	 CSG	 configuration	 for	 a	 changed	

context.	

Another	 approach	 combines	 the	 use	 of	 digital	 twins	 with	

predictive	simulation	using	the	perceived	context	to	find	the	optimal	

Dynamic architectures 

Dynamic binding 

Co-simulation methods 

Context-sensitive 

variability models 

Digital twins 



44 Engineering of Collaborative Embedded Systems 

configuration	for	each	situation	(Section	3.2,	Chapter	15,	and	Section	

10.3).		

In	 addition,	 methods	 have	 also	 been	 developed	 to	 observe	 and	

evaluate	the	effects	of	context	changes	on	the	system	and	its	behavior	

at	 runtime	 (see	 Section	8.3.1).	 These	 are	based	on	 the	modeling	of	

runtime-specific	 context	 models.	 The	 CrESt	 framework	 now	 also	

supports	 sufficient	 testing	 of	 adapting	 systems	 in	 a	 dynamic	

environment.	Further	details	can	be	found	in	Chapter	6.	

Uncertainty  

CESs	 operate	 in	 an	 open	 and	 dynamic	 environment.	 They	 are	

developed	 independently	 of	 each	 other	 and	 can	 combine	 to	 form	

different	 constellations	 at	 runtime.	 This	 significantly	 increases	 the	

complexity	 regarding	 potential	 uncertainties	 that	 can	 occur	 at	

runtime.	 In	 CrESt,	 methods	 have	 been	 developed	 to	 systematically	

identify	 the	 different	 types	 of	 uncertainties	 (e.g.,	 regarding	

collaboration,	data	quality,	sensor	perception,	information	exchange)	

at	design	time	(see	Chapter	7).	For	the	systematic	documentation	of	

the	uncertainties	identified,	a	model-based	approach	was	developed	

in	 which	 the	 uncertainties	 are	 described	 orthogonally—that	 is,	 in	

separate	models	with	uncertainty-specific	model	elements—and	are	

related	to	various	system	or	context	models.	

For	 an	 adaptable	 and	 flexible	 factory,	 for	 example,	 this	 allows	

uncertainties	that	could	disrupt	the	production	process	or	 lead	to	a	

production	 stop	 to	be	analyzed	and	documented.	The	uncertainties	

identified	can	then	be	linked	to	the	models	of	the	individual	machines	

and	the	model	used	to	describe	the	production	process.	For	a	platoon,	

this	method	can	be	used	to	identify	and	model	uncertainties	such	as	

incompleteness	 and	 ambiguity	 with	 regard	 to	 the	 information	

exchanged	between	vehicles	on	the	driving	environment	(for	details	

see	Section	7.3.1).		

Another	 method	 developed	 in	 CrESt	 aims	 at	 identifying	 and	

handling	 uncertainties	 that	 may	 arise	 from	 the	 use	 of	 data-driven	

components—that	 is,	 AI-based	 techniques—for	 the	 evaluation	 of	

environmental	 data	 (see	 Section	 7.3.2).	 For	 this	 purpose,	 the	

quantification	of	the	uncertainty	regarding	the	output	of	data-driven	

components	 (e.g.,	 the	 recognition	 of	 a	 traffic	 sign)	 at	 runtime	 is	

enabled.	This	 serves	 to	ensure	 that	data-driven	components	whose	

behavior	cannot	be	completely	predicted	at	development	time	meet	

safety-critical	requirements	during	operation.	
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2.7  Conclusion 

Within	 the	 CrESt	 project,	 important	 concepts	 of	 collaborative	

embedded	 systems	 were	 identified.	 From	 the	 resulting	 specific	

challenges,	a	number	of	key	features	(such	as	goals,	communication,	

uncertainty)	 were	 developed.	 The	 methodological	 building	 blocks	

developed,	as	well	as	the	extensions	of	existing	building	blocks,	focus	

on	 addressing	 these	 challenges	 and	 were	 assigned	 to	 the	 main	

features.	

A	 specific,	 somewhat	 more	 restrictive	 system	 concept	 was	

deliberately	chosen	as	 the	basis	 for	 the	work.	On	the	one	hand,	 the	

assumption	was	made	that	a	CES	collaborates	in	at	most	one	CSG	at	

any	 given	 time.	 On	 the	 other	 hand,	 hierarchical	 CSGs	 (i.e.,	 system	

networks	of	system	networks)	were	excluded	from	the	analysis.	For	

many	 use	 cases,	 including	 those	 considered	 in	 the	 project,	 these	

assumptions	are	quite	practical.	Future	work	in	this	topic	area	should	

look	more	closely	at	these	limitations.	

Increasingly,	methods	of	artificial	intelligence	(AI)	are	being	used	

in	 embedded	 systems.	 The	 AI	 methods	 (for	 example,	 machine	

learning,	deep	learning,	data	analytics,	semantic	technologies)	are	as	

diverse	 as	 their	 applications.	 These	 range	 from	 the	 analysis	 and	

classification	 of	 existing	 situations	 to	 the	 interpretation	 and	

evaluation,	diagnosis	and	prognosis,	and	the	creation	of	proposals	for	

action	and	independent	action	in	the	sense	of	autonomous	systems.	

The	 use	 of	 AI	 technologies	 makes	 it	 possible	 to	 process	 incoming	

information	 appropriately	 and	 to	 adapt	 to	 changing	 conditions	 at	

runtime.	

A	central	challenge	for	the	integration	of	AI	technologies	in	CESs	

and	 CSGs	 is	 to	 guarantee	 the	 essential	 functionality	 and	 quality	

characteristics	of	the	systems.	In	general,	the	behavior	of	AI	methods	

cannot	be	completely	determined	at	development	time.	Therefore,	it	

is	unclear	which	adaptations	the	systems	make	at	runtime	and	in	what	

way	this	 influences	the	collaboration	and	dynamics	of	the	CESs	and	

CSGs.	An	interesting	question	here	is	whether	and	how	the	necessary	

conceptual	development	of	the	CSG	level	can	be	replaced	by	the	use	of	

AI	methods	at	runtime.	

Furthermore,	 the	 integration	of	AI	components	 in	the	context	of	

uncertainties	 leads	 to	 novel	 effects	 and	 challenges	 that	 have	 to	 be	

considered	as	early	as	development	time.	These	include,	for	example,	

data	 that	 is	 not	 100%	 trustworthy	 (i.e.,	 data	 with	 undetected	

systematic	 deviations	 or	 fuzziness),	 non-deterministic	 behavior,	

runtime	 variances,	 malicious	 misinformation,	 and	 commands	 from	
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outside	 the	 system	 boundaries.	 These	 uncertainties	 affect	 the	

knowledge	 gained	 from	 AI	 components.	 This	 and	 the	 dynamic	

adaptability	 create	 completely	new	challenges	 for	 the	development	

and	quality	assurance	of	embedded	systems.	

The	secured	integration	of	powerful	AI	technologies	in	CESs	and	

CSGs	 marks	 a	 decisive	 development	 step	 for	 future	 collaborative	

systems.	The	necessary	extensions	of	the	design	methodology	would	

have	to	be	investigated	in	future	projects.	
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2.9  Appendix 

In	 the	 CrESt	 project,	 methods	 and	 building	 blocks	 for	 modeling	

collaborative	 systems	 and	 system	 networks	 were	 developed.	 The	

documents	containing	a	detailed	description	of	the	project	results	can	

be	 requested	 via	 the	 project	 website	 (https://crest.in.tum.de/,	

website	available	in	German	only).	
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