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Abstract. This paper describes a machine learning method, called Regression
by Selecting Best Feature Projections (RSBFP). In the training phase, RSBFP
projects the training data on each feature dimension and aims to find the
predictive power of each feature attribute by constructing simple linear
regression lines, one per each continuous feature and number of categories per
each categorical feature. Because, although the predictive power of a
continuous feature is constant, it varies for each distinct value of categorical
features. Then the simple linear regression lines are sorted according to their
predictive power. In the querying phase of learning, the best linear regression
line and thus the best feature projection are selected to make predictions.
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1 Introduction

Prediction has been one of the most common problems researched in data mining and
machine learning. Predicting the values of categorical features is known as
classification, whereas predicting the values of continuous features is known as
regression. From this point of view, classification can be considered as a subcategory
of regression. In machine learning, much research has been performed for
classification. But, recently the focus of researchers has moved towards regression,
since many of the real-life problems can be modeled as regression problems.

There are two different approaches for regression in machine learning community:
Eager and lazy learning. Eager regression methods construct rigorous models by using
the training data, and the prediction task is based on these models. The advantage of
eager regression methods is not only the ability to obtain the interpretation of the
underlying data, but also the reduced query time. On the other hand, the main
disadvantage is their long train time requirement. Lazy regression methods, on the
other hand, do not construct models by using the training data. Instead, they delay all
processing to prediction phase. The most important disadvantage of lazy regression
methods is the fact that, they do not provide an interpretable model of the training
data, because the model is usually the training data itself. It is not a compact
description of the training data, when compared to the models constructed by eager
regression methods, such as regression trees and rule based regression.

In the literature, many eager and lazy regression methods exist. Among eager
regression methods, CART [1], RETIS [7], M5 [5], DART [2], and Stacked
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Regressions [9] induce regression trees, FORS [6] uses inductive logic
programming for regression, RULE [3] induces regression rules, and MARS [8]
constructs mathematical models. Among lazy regression methods, kNN [4, 10, 15] is
the most popular nonparametric instance-based approach.

In this paper, we describe an eager learning method, namely Regression by
Selecting Best Feature Projections (RSBFP) [13, 14]. This method makes use of the
linear least squares regression.

A preprocessing phase is required to increase the predictive power of the
method. According to the Chebyshev’s result [12], for any positive number k, at least
(1 — 1/k%) * 100% of the values in any population of numbers are within & standard
deviations of the mean. We find the standard deviation of the target values of the
training data, and discard the training data whose target value is not within k standard
deviations of the mean target. Empiricaly, we reach the best prediction by taking k

as \2.
In the first phase, RSBFP constructs projections of the training data on each

feature, and this phase continues by constructing simple linear regression lines, one
per each continuous feature and number of categories per each categorical feature.
Then, these simple linear regression lines are sorted according to their prediction
ability. In the querying phase of learning, the target value of a query instance is
predicted using the simple linear regression line having the minimum relative error,
i.e. having the maximum predictive power. If this linear regression line is not suitable
for our query instance, we keep searching for the best linear regression line among the
ordered list of simple linear regression lines.

In this paper, RSBFP is compared with three eager (RULE, MARS, DART) and
one lazy method (KNN) in terms of predictive power and computational complexity.
RSBFP is better not only in terms of predictive power but also in terms of
computational complexity, when compared to these well-known methods. For most
data mining or knowledge discovery applications, where very large databases are in
concern, this is thought of a solution because of low computational complexity. Again
RSBFP is noted to be powerful in the presence missing feature values, target noise
and irrelevant features.

In Section 2, we review the kNN, RULE, MARS and DART methods for
regression. Section 3 gives a detailed description of the RSBFP. Section 4 is devoted
to the empirical evaluation of RSBFP and its comparison with other methods. Finally,
in Section 5, conclusions are presented.

2 Regression Overview

kNN is the most commonly used lazy method for both classification and regression
problems. The underlying idea behind the kNN method is that the closest instances to
the query point have similar target values to the query. Hence, the kNN method first
finds the closest instances to the query point in the instance space according to a
distance measure. Generally, the Euclidean distance metric is used to measure the
similarity between two points in the instance space. Therefore, by using Euclidean
distance metric as our distance measure, k closest instances to the query point are
found. Then kNN outputs the distance-weighted average of the target values of those
closest instances as the prediction for that query instance.
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In machine learning, inducing rules from a given train data is also popular. Weiss
and Indurkhya adapted the rule-based classification algorithm [11], Swap-1, for
regression. Swap-1 learns decision rules in Disjunctive Normal Form (DNF). Since
Swap-1 is designed for the prediction of categorical features, using a preprocessing
procedure, the numeric feature in regression to be predicted is transformed to a
nominal one. For this transformation, the P-class algorithm is used [3]. If we let {y}
be a set of output values, this transformation can be regarded as a one-dimensional
clustering of training instances on response variable y, in order to form classes. The
purpose is to make y values within one class similar, and across classes dissimilar. The
assignment of these values to classes is done in such a way that the distance between
each y; and its class mean must be minimum. After formation of pseudo-classes and
the application of Swap-1, a pruning and optimization procedure can be applied to
construct an optimum set of regression rules.

MARS [8] method partitions the training set into regions by splitting the features
recursively into two regions, by constructing a binary regression tree. MARS is
continuous at the borders of the partitioned regions. It is an eager, partitioning,
interpretable and an adaptive method.

DART, also an eager method, is the latest regression tree induction program
developed by Friedman [2]. It avoids limitations of disjoint partitioning, used for other
tree-based regression methods, by constructing overlapping regions with increased
training cost.

3 Regression by Selecting Best Feature Projections (RSBFP)

RSBFP method tries to determine the feature projection that achieves the highest
prediction accuracy. The next subsection describes the training phase for RSBFP, then
we describe the querying phase.

3.1 Training

Training in RSBFP begins simply by storing the training data set as projections to
each feature separately. A copy of the target values is associated with each projection
and the training data set is sorted for each feature dimension according to their feature
values. If a training instance includes missing values, it is not simply ignored as in
many regression algorithms. Instead, that training instance is stored for the features on
which its value is given. The next step involves constructing the simple linear
regression lines for each feature. This step differs for categorical and continuous
features. In the case of continuous features, exactly one simple linear regression line
per feature is constructed. On the other hand, the number of simple linear regression
lines per each categorical feature is the number of distinct feature values at the feature
of concern. For any categorical feature, the parametric form of any simple regression
line is constant, and it is equal to the average target value of the training instances
whose corresponding feature value is equal to that categorical value. The training
phase continues by sorting these regression lines according to their predictive power.
The training phase can be illustrated through an example.
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Let our example domain consist of four features, fi, f>, f; and f;, where f, f> are
continuous and f, f; are categorical. For continuous features, we define minvalue[f]
and maxvalue[f] to denote the minimum and maximum value of feature f, respectively.
For categorical features, No_categories [f] is defined to give the number of distinct
categories of feature f. In our example domain, let the following values be observed:

minvalue(fi] = 4, maxvalue[f;] = 10

minvalue([f5] = 2, maxvalue[f;] = 8
No_categories [f3] =2 (values: A, B)
No_categories [f4] =3 (values: X, Y, Z)

For this example domain, 7 simple linear regression lines are constructed: 1 forfj, 1
for f5, 2 for f;, and finally 3 for f;. Let the following be the parametric form of the
simple linear regression lines:

Simple linear regression line for f: target = 2f; - 5

Simple linear regression line for f>: target = -4f, + 7

Simple linear regression line for A category of f3: target =6
Simple linear regression line for B category of f;: target = -5
Simple linear regression line for X category of f;: target = 10
Simple linear regression line for Y category of f;: target = 1
Simple linear regression line for Z category of f; : target = 12

The training phase is completed by sorting these simple linear regression lines
according to their predictive accuracy. The relative error (RE) of the regression lines
is used as the indicator of predictive power: the smaller the RE, the stronger the
predictive power. The RE of a simple linear regression line is computed by the
following formula:

MAD
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where Q is the number of training instances used to construct the simple linear

regression line, ¢ is the median of the target values of Q training instances, #(g;) is the
actual target value of the /" training instance. The MAD (Mean Absolute Distance) is
defined as follows:

1 & .
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Here, 7 (g;) denotes the predicted target value of the i™ training instance according to
the induced simple linear regression line.

We had 7 simple linear regression lines, and let’s suppose that they are sorted in the
following order, from the best predictive to the worst one:

f=A > fi=X> > fi > fi=Y > fi=Z > f;=B
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This shows that any categorical feature’s predictive power may vary among its
categories. For the above sorting schema, categorical feature f; ’s predictions are
reliable among its category A, although it is very poor among category B.

3.2 Querying

In order to predict the target value of a query instance #, the RSBFP method uses
exactly one linear regression line. This line may not always be the best one. The
reason for this situation is explained via an example. Let the feature values of the
query instance t; be as the following:

H@) =35, f6)=10, fi(t) =B, fi(t) = missing

Although the best linear regression line is f;=A, this line can not be used for our
t;, since f3(f) # A. The next best linear regression line, which is worse than only
f5=A, is f4=X. This line is also inappropriate for our #. No prediction can be made for
missing feature values (fy(#;,) = missing). Therefore, the search for the best linear
regression line continues. The line constructed by f, comes next. It is again not
possible to benefit from this simple linear regression line. Because f,(#;) = 10, and it
is not in the range of f,, (2,8). Fortunately, we find an appropriate regression line in
the fourth trial. Our fi(#;), which is 5, is in the range of fi, (4,10). So the prediction
made for target value of 7 is (2 * fi(#,) - 5) = (2 * 5 - 5) = 5. Once the appropriate
linear regression line is found, remaining linear regression lines need not be dealed
anymore.

4 Empirical Evaluation

RSBFP method was compared with the other well-known methods mentioned above,
in terms of predictive accuracy and time complexity. We have used a repository
consisting of 26 data files in our experiments. The characteristics of the data files are
summarized in Tablel. Most of these data files are used for the experimental analysis
of function approximation techniques and for training and demonstration by machine
learning and statistics community.

10 fold cross-validation technique was employed in the experiments. For lazy
regression method k parameter was taken as 10, where k denotes the number of
nearest neighbors considered around the query instance.

In terms of predictive accuracy, RSBFP performed the best on 9 data files among
the 26, and obtained the lowest mean relative error (Table 2).

In terms of time complexity, RSBFP performed the best in the total (training +
querying) execution time, and became the fastest method (Table 3, 4).

In machine learning, it is very important for an algorithm to still perform well when
noise, missing feature value and irrelevant features are added to the system.
Experimental results showed that RSBFP was again the best method whenever we
added 20% target noise, 20% missing feature value and 30 irrelevant features to the
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system, by having the lowest mean relative errors. RSBFP performed the best on 7
data files in the presence of 20% missing feature value, the best on 21 data files in the
presence of 20% target noise and the best on 10 data files in the presence of 30
irrelevant features (Table 5, 6, 7).

5 Conclusions

In this paper, we have presented an eager regression method based on selecting best
feature projections. RSBFP is better than other well-known eager and lazy regression
methods in terms of prediction accuracy and computational complexity. It also enables
the interpretation of the training data. That is, the method clearly states the best feature
projections that are powerful enough to determine the value of the target feature.

The robustness of any regression method can be determined by analyzing the
predictive power of that method in the presence of target noise, irrelevant features and
missing feature values. These three factors heavily exist in real life databases, and it is
important for a learning algorithm to give promising results in the presence of those
factors. Empirical results indicate that RSBFP is also a robust method.

Table 1. Characteristics of the data files used in the empirical evaluations, C: Continuous, N:

Nominal

Dataset Original Name Instances Features Missing
(C+N) Values

AB Abalone 4177 8(7+1) None
AP Airport 135 44+0) None
AU Auto-mpg 398 7(06+1) 6
BA Baseball 337 16 (16 + 0) None
BU Buying 100 39(39+0) 27
CH Cpu 209 7(06+1) None
CN Country 122 20 (20+ 0) 34
ED Education 1500 43 (43 +0) 2918
EL Electric 240 12(10+2) 58
FA Fat 252 1717 +0) None
FC Fishcatch 158 TG+1) 87
FF Fruitfly 125 43+1) None
HO Housing 506 1312+ 1) None
HR Home Run Race 163 19 (19 + 0) None
NE Northridge 2929 10 (10+0) None
NT Normal Temp. 130 22+0) None
PL Plastic 1650 2(2+0) None
PV Poverty 97 6(5+1) 6
RE Read 681 2524+ 1) 1097
S2 Solar Flare 1066 10 (0 + 10) None
SC Schools 62 19 (19 + 0) 1
SE Servo 167 4(0+4) None
SP Stock Prices 950 9M9+0) None
TV Televisions 40 4(4+0) None
usS Usnews Coll. 1269 31(31+0) 7624

VL Villages 766 32(29+3) 3986




Table 2. Relative errors (REs) of algorithms. Best REs are shown in bold font

Table 3. Train time of algorithms in milliseconds. Best results are shown in bold font

An Eager Regression Method Based on Best Feature Projections

Dataset RSBFP KNN RULE MARS DART
AB 0729 0.661 0899 0683 0678
AP 0550 0612 0744 0720  0.546
AU 0489 0321 0451 0333 0346
BA 0768 0443 0666 0493 0508
BU 0.678 0961 0946 0947  0.896
CH 0781 0944 0678 0735 0510
CN 1429 1642 6307 5110  1.695
ED 0668 0654 0218 0359 0410
EL 1.003 1194 1528 1.066 1.118
FA 0725 0785 0820 0305 0638
FC 0578 0697 0355 0214 0415
FF 1016 1201 1558 1012 1.077
HO 0698 0600 0641 0526 0522
HR 0890 0907 0890 0769 0986
NE 0969 1034 1217 0928  0.873
NT 0976 1232 1250 1012 1112
PL 0887 0475 0477 0404 0432
PV 0921 0796 0916 1251  0.691
RE 0997 1062 1352 1045 1.189
S2 1434 2307 1792 1556  1.695
sC 0376 0388 0341 0223 0352
SE 0868 0619 0229 0432 0337
SP 1416 0599 0906 0781 0754
TV 1176 1895 4195 7203  2.690
US 0402 0480 0550 0412  0.623
VL 0940 1017 1267 1138 1355
Mean 0.860 0905 1200 1140 0.864

Dataset RSBFP KNN RULE MARS DART
AB 148 8.9 3219 10270 477775
AP 1.1 0 90.8 1592 62

AU 8.9 0.6 2489 5705 1890.1
BA 19 0 181.8  915.1 3171.1
BU 10.5 0 67.1 761.7 7944
CH 4.1 0 52.7 5753 286
CN 8 0.1 108.6 4753 481

ED 2782 135 862.8 101439 27266
EL 8.1 0.2 69.5 407.5 1017
FA 15.8 0 161.1 985 1773.9
FC 2.1 0 478 2402 2014
FF 1.1 0 34.1 99.5 459
HO 21.2 1 264.9 1413.9 8119.7
HR 8.2 0 57.5 6163 8939
NE 1305 74 3493 5709.9 87815
NT 0 0 30.6 69.3 18.9
PL 10 0.2 1753 8248 10024.4
PV 1 0 40.9 1273 44

RE 52 3 196 2744.6  33044.6
S2 36.1 35 108.8 6672 9714
SC 3 0 453 260.8  84.4

SE 1.8 0 37 1164 834

SP 28.5 14 365.1 22814 173464
TV 0 0 30.9 31.1 3.1

Us 1364 74 2547.1 84352 168169
VL 74.6 4.4 513.6  3597.8 23405
Mean 38.777 1.985 50193 2019.2 33261

223
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Table 4. Query time of algorithms in milliseconds. Best results are shown in bold font

Dataset RSBFP KNN  RULE MARS DART

AB 233 6547 144331 79 6.1
AP I 34 1417 0 0
AU 3 645 4622 0 0
BA 2.1 546 2448 0 0
BU 0 16 321 0 0
CH 1 116 83 0 0
CN 1 8.4 984 0 0.1
ED 9 2609.7 3123 2.7 17
EL 1.6 21 1175 0 0
FA 2 331 964 0 0
FC 1.1 7.9 488 0 0
FF 0.9 2 454 0 0
HO 3.2 1078 4105 0 0
HR 0.6 133 43 0 0
NE 14 33994 113268 4.7 175
NT 1 1.9 308 0 0
PL 167 5719 21927 0.2 1.2
PV 0 22 3710 0
RE 3 2656 6272 0 1

S2 4 407.8 2236 04 0
SC 0 2 27.8 3.7 0
SE 0.1 42 491 0 0
Sp 6.2 3032 1090.9 0.1 0
TV 0 0 24 0 0
US 8 13832 18773 7 2
VL 6 439 11182 03 0
Mean 4.184 62947 13538 1.038  0.533

Table 5. REs of algorithms, where 20% missing feature value are added. Best Res are shown
in bold font (* Means result isn’t available due to singular variance/covariance matrix)

Dataset RSBFP KNN  RULE MARS DART
AB 0.729  0.750  0.961 0.748  0.688
AP 0562 0726 0.676  0.798  0.546
AU 0.500 0414 0526 0414  0.363
BA 0.785 0.553 0.833 0.637 0576
BU 0.785  0.951 0878  0.862 1.026
CH 0.746 0922 0832 0747  0.608
CN 1.480 1.856  3.698 3733 2377
ED 0685 0743 0497 0595 0.536
EL 1.005 1.097 1.537 1.073 1.191
FA 0.749  0.849 0948  0.731 0.735
FC 0570  0.675 0543 0537  0.401
FF 1.019 1.711 1.557 1012 1.347
HO 0.718  0.761 0.748  0.649  0.590
HR 0.899 0910 1.040  0.836 0.974
NE 0.974 1.072 1272 0972 *

NT 1.020 1.229 1.363  0.989 1.222
PL 0903 0.733  0.686 0.679  0.420
PV 0920 0.976 1.189 1.026  0.792
RE 0.996 1.059 1.364 1.048 1.229

S2 1.429 1.851 1.751 1.557 1421
SC 0.409 0449 0500 0303 0370
SE 0.879 0921 0849 0.746  0.495
Sp 1430 0744 0904 0930 0.707

TV 1.272 4398  3.645 16.50 2512
Us 0460 0558  0.620 0497  0.844
VL 0.949 1.056 1.410 1.090  *

Mean  0.880 1.086 1.186 1.527  0.920
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Table 6. REs of algorithms, where 20% target noise are added. Best REs are shown in bold
font

Dataset RSBFP KNN RULE MARS DART
AB 0.819 7592 9.301 7.602  6.603
AP 0.952  0.807 1.122  0.856  0.785
AU 0.488 1.832  2.531 2.107 1.981
BA 0.813 0457 0712 0537  0.556
BU 0.597 12.66 12.92 13.30 10.67
CH 0.815 0930 0.782 0.745  0.636
CN 1.516 1.676  3.102 5874  2.040
ED 0.653 2166 2384 2164 2276
EL 0.978 1.465 1.899 1.148 1.431
FA 0.684 2525 3208 2447  2.058
FC 0.544 0710 0.528  0.501 0.387

FF 1.030 2394 3247 1.710  2.089
HO 0.865  2.801 3.635 2893 2611
HR 0.863 7.853 11.53 1029  6.115
NE 0.986  38.84 4232 3766 31.54
NT 0.951 1.403  2.220 1.037 1.196
PL 0.852 5492 5777 4921 5.107

PV 0.829 9429 9456 4213  6.038
RE 0952  6.597 1033 6.759  7.108

Table 7. REs of algorithms, where 30 irrelevant features are added. Best Res are shown in bold
font (* Means result isn’t available due to singular variance/covariance matrix)

Dataset RSBFP KNN  RULE MARS DART
AB 0.728 0873 0934 0.682 *

AP 0.555 1514 0723 0682  0.657
AU 0488 0538 0491 0368 0511
BA 0.768 0568 0574 0536  0.628
BU 0.678 0968 1073 0877  0.969
CH 0781  1.107 0753  0.613  0.668
CN 1425 2854 1794 4126  1.662
ED 0.668 0802 0268 0404 0573
EL 1.006 1037 1367 1134 1236
FA 0725  1.026 1039 0249 0877
FC 0578 0917 0456 0247  0.420
FF 1030 1.063 1513 1777 1430
HO 0698 0920 0701 0521 0.653
HR 0.890 0932 1049 0847 1165
NE 0969 1.076 1284 0916 *

NT 1.000 1.079 1484 1370 1.156
PL 0.887 0961 0575 0407 0.734
PV 0966 0.855 0934 1.005 1.013
RE 0.998  1.045 1380 1.042 1311
S2 1433 1454 1765 1629 1490
SC 0376 0582 038 0305 0391
SE 0926 0835 0471 0798 0.641
SP 1416  1.188 0914 0817  0.756
TV 1220 3241 5572 5.614 2709
US 0402 0757 0557 0394  0.906
VL 0939 1050 1454 1257 1307
Mean 0.867 1124 1135 1100 1.000
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