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Firms nowadays are increasingly proactive in trying to strategically capitalize on consumer networks and
social interactions. In this paper, we complement an emerging body of research on the engineering of word-

of-mouth effects by exploring a different angle through which firms can strategically exploit the value-generation
potential of the user network. Namely, we consider how software firms should optimize the strength of network
effects at utility level by adjusting the level of embedded social media features in tandem with the right market
seeding and pricing strategies in the presence of seeding disutility. We explore two opposing seeding cost
models where seeding-induced disutility can be either positively or negatively correlated with customer type.
We consider both complete and incomplete information scenarios for the firm. Under complete information,
we uncover a complementarity relationship between seeding and building social media features that holds for
both disutility models. When the cost of any of these actions increases, rather than compensating by a stronger
action on the other dimension to restore the overall level of network effects, the firm will actually scale back on
the other initiative as well. Under incomplete information, this complementarity holds when seeding disutility
is negatively correlated with customer type but may not always hold in the other disutility model, potentially
leading to fundamentally different optimal strategies. We also discuss how our insights apply to asymmetric
networks.
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digital goods and services

History : David Godes, Senior Editor; Zsolt Katona, Associate Editor. This paper was received on January 15,
2012, and was with the authors 4 months for 2 revisions. Published online in Articles in Advance
December 20, 2012.

1. Introduction
For many categories of products, it has been widely
known in the industry and documented in a rich
research literature that the existing network of users
can impact in many ways the adoption process. First,
it may induce word-of-mouth (WOM) effects, leading
to faster or more efficient propagation of informa-
tion about the product, helping consumers in the
valuation learning process. Second, increased adop-
tion within certain social groups, even in the absence
of informative interpersonal communication, may
lead to herding behavior, i.e., imitation effects, espe-
cially when the intended market exhibits homophilic
tendencies. Third, if the product is susceptible to net-
work effects at individual utility level, a larger net-
work may boost the value of the product to each user
and, implicitly, increase the willingness-to-pay (WTP)
of potential adopters.
The rapid expansion of the Internet user base (with

over 2.26 billion individuals connected according

to Internet World Stats 2012) and the relatively
recent advent of social media tools provided firms
with unprecedented abilities to reach and capital-
ize on the network of users. Many businesses with
an online storefront (e.g., Amazon, Apple App Store,
Beach Camera, Best Buy, Newegg, Target, etc.) intro-
duced features and channels to allow users to rate
products. Similarly, many practices and businesses
(from car dealers to medical doctors) are now rated
online by customers. Two-sided platform providers
(e.g., Airbnb, eBay, eLance) introduced feedback
mechanisms through which participants can build
reputation. Many providers of content creation and
productivity software (e.g., Adobe, Google Docs,
Microsoft Word, wikis) introduced collaboration tools
that made these products or services more appeal-
ing to various users. Along the same lines, several
cloud storage services (e.g., Dropbox, Mozy) allow
users to share documents. Some companies also sup-
port online forums through which customers can
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interact with each other and start discussion threads
about product-related topics (e.g., Dell, Amazon Web
Services). Moreover, the value of social and pro-
fessional networks (e.g., Facebook, LinkedIn, Sales-
force Chatter); massive multiplayer online games
(e.g., Blizzard’s World of Warcraft); video, voice, and
text chatting tools (e.g., Google Talk, Skype, Yahoo
Messenger); or blogging and microblogging tools
(e.g., Twitter) is predicated on social interactions.
Many other examples can be mentioned where social
media features have facilitated growth in value or
acceleration of information dissemination in associa-
tion with products by enhancing the potential benefit
of user interactions.
Most of the literature capturing the influence of

consumer networks on the product adoption tradi-
tionally considers the manifestation, strength, and
impact of such effects outside the influence reach
of the firm (e.g., Bass 1969, Robinson and Lakhani
1975, Kalish 1983). In other words, although social
interactions do occur and have been shown to influ-
ence consumer behavior, very few studies actually
explored how the firms should manage and strategi-
cally influence these interactions (Godes et al. 2005).
Recent studies began opening this path, focussing pri-
marily on firms’ strategies and opportunities to engi-
neer WOM effects. Biyalogorsky et al. (2001) study
how consumer referral actions should be incentivized.
Dellarocas (2006) inspects how strategic manipu-
lation of online forums can shift the information
value of online reviews for customers. Chen and Xie
(2008) explore the firm’s benefit from establishing an
online community where consumers can post reviews.
Forman et al. (2008) empirically show that the preva-
lence of reviewer disclosure of identity information
can be associated with an increase in consumer trust
in the reviews, with impact on subsequent online
product sales. Thus, firms might benefit from strate-
gically creating online review platforms and incen-
tive mechanisms that encourage reviewers to share
more information. Godes and Mayzlin (2009) empir-
ically study how firms should strategically recruit
customers for WOM campaigns based on loyalty con-
siderations to drive sales. Aral and Walker (2011)
highlight the effectiveness of viral product features
in generating social contagion. Aral et al. (2011) ana-
lyze the performance of seeding and referral incentive
programs as two popular methods to engineer social
contagion.
We extend this literature by considering how

a monopolistic firm can strategically engineer the
strength of network effects at utility level via social
media. On this dimension, we focus on deriv-
ing the optimal level of social media functional-
ity that increases the value of social interactions to
each user. Such functionality includes features and

environments that facilitate communication between
users (e.g., chat capabilities, virtual reality envi-
ronments where avatars can interact, screen shar-
ing), collaboration on and cocreation of content (e.g.,
wikis, content editing, and tagging), peer endorse-
ment or referral (e.g., on professional networks such
as LinkedIn), building of reputation, etc. In a different
context, Bakos and Katsamakas (2008) explore how an
intermediary would optimally engineer the strength
of cross-side network effects when designing a two-
sided Internet platform. In contrast, we consider a
vendor that endogenizes the strength of direct (same-
side) network effects experienced by the buyers in
parallel with seeding the market, when there are syn-
ergies between the two actions, as will be further dis-
cussed in the paper.
Our study focuses on paid digital goods and ser-

vices where the value is mostly induced by the
network. Some examples include (but are not re-
stricted to) massive multiplayer online games (e.g.,
World of Warcraft), social dating sites (e.g., eHarmony,
Match.com), professional social networks (Salesforce’s
Chatter Plus), and specialized online forums with paid
memberships (e.g., Angie’s List, Naturescapes.net).
We point out that our results go beyond digital
goods and services, and apply to other products and
services (e.g., voice communication services) where
marginal costs are negligible and the bulk of value
is derived from the network. When network effects
strongly dominate stand-alone benefits from the prod-
uct (i.e., benefits in the absence of the network),
firms may find it profitable to spark adoption by giv-
ing away some consumption for free. In this paper,
we focus on seeding strategies, whereby the firms
give the products with full functionality and perpet-
ual license to a few customers to boost the WTP
of other customers and catalyze adoption (Lehmann
and Esteban-Bravo 2006, Jiang and Sarkar 2009,
Galeotti and Goyal 2009). Alternative strategies that
are also employed in the industry to spark adoption
involve freemium approaches (limited-time free trials
or free versions with stripped-down functionality—
Niculescu and Wu 2012).
In addition to potential demand cannibalization

and boost in network effects, in the context of paid
products, seeding may induce a separate effect on the
paying customers. If some customers are charged for
the product, then seeding implies price discrimina-
tion in the market: seeded customers pay less (zero)
compared to unseeded individuals who end up buy-
ing the product. If seeding is extensive and paying
customers observe it, then they might consider the
price scheme unfair. Extant empirical studies illus-
trate that price discrimination could potentially lower
customers’ WTP. Oliver and Shor (2003) show evi-
dence of strong negative effects on fairness percep-
tion, satisfaction, and purchase completion among
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online shoppers that are prompted to enter a coupon
code toward the conclusion of the checkout process
for such customers that did not receive a code in
advance. Novemsky and Schweitzer (2004) explore
the role of internal social comparisons (between buyer
and seller) and external social comparisons (between
buyer and buyer) in negotiator satisfaction. They find
that buyer’s satisfaction will be increased if other buy-
ers have a smaller surplus. Xia et al. (2004) provide a
literature review and conceptual framework to under-
stand the fairness of pricing. When price comparisons
are perceived as unfavorable for similar transactions,
they predict that customers will have an adverse
response to the seller’s strategy, which may involve
negative emotions (such as anger or outrage), nega-
tive WOM, and reduced demand. According to Hinz
et al. (2011), when price discrimination is observed, it
is often the case that customers feel unhappy about
the unfair pricing. Also, it is not uncommon in the
industry for adopters to question pricing practices
of the firms and exert pressure on them. For exam-
ple, Amazon offered a public apology and refunds to
over 6,000 customers in response to public backlash
over a series of price tests through which different
online shoppers were quoted different prices for var-
ious DVDs (?). In another example, after introducing
the first generation iPhone in June 2007, within just
three months Apple dropped the price by $200 for the
entire market. Faced with a flood of complaints from
early adopters, Apple decided to refund each of them
$100 in the form of store credit (Wingfield 2007).
Building on prior literature and industry observa-

tions, in the context of digital goods and services with
an associated price tag, we formalize the negative
effects of seeding associated with price discrimination
via a disutility incurred by paying customers. In our
model, the more customers are seeded, the greater
is the backlash and valuation downgrading from
paying customers who question the fairness of the
pricing scheme. To capture various potential market
scenarios, we consider two contrasting seeding disu-
tility models. Under the first seeding disutility model,
SDU+, for each customer, the seeding-induced disu-
tility is positively correlated with her type. Thus, the
highest-type customers are experiencing the highest
seeding-induced disutility. Under the second model,
SDU−, every customer experiences a seeding disutil-
ity that is negatively correlated to her type. In this case,
high-type customers do not experience much disutil-
ity because of seeding. Various examples justifying
each setup are included in §2.
In this paper we explore the trade-off between ben-

efits and costs associated with seeding and building
social media features into the digital product. On one
hand seeding boosts WTP of potential customers
because it leads to larger user networks. On the other

hand, seeding induces disutility for paying customers
and, contingent on seed allocation, can cannibalize
demand. Similarly, building social media features that
boost the strength of network effects at the utility
level (i.e., by allowing more value extraction from
social interactions) would lead to increased WTP for
the customers but involves building efforts. Taking
these trade-offs into consideration, we seek to find
out what are the optimal seeding, pricing, and social
media strategies for the firm.
Depending on firm access to market information,

we explore two scenarios: complete information on
firm side (the firm knows enough about the cus-
tomers such that it can perform targeted seeding)
and incomplete information (the firm does not know
much about the customers other than the consumer
distribution and, thus, cannot resort to targeted seed-
ing). First, under complete information, for each of
the disutility models, we solve completely the market
equilibrium, discuss market coverage, and investigate
the interaction effects between seeding and building
social media features. Under both disutility scenar-
ios, we find that if the marginal cost/penalty associ-
ated with one of these initiatives increases, the firm
will scale back (or sometimes leave unchanged) its
efforts on the other dimension as well. This is inter-
esting because, at the utility level, an upward change
in each of these two dimensions would increase the
impact of the network effects. However, if the invest-
ment required to build more social media features in
the product is higher, while the firm scales back on
such features, it will not try to compensate by seeding
more. Similarly, if the seeding disutility rate is higher,
while the firm scales back on seeding, it does not try
to boost the strength of network effects.
Under incomplete information, while the firm de-

cides strategically on the seeding volume, we assume
the seeds end up being spread uniformly in the mar-
ket. Under disutility model SDU−, complementarity
between seeding and building social media features
continues to hold. However, under SDU+, some new
patterns emerge. When the seeding penalty is small,
it may be actually possible for both levels of seeding
and social media features to be increasing in the seed-
ing penalty. When seeding penalty is intermediate,
the two actions act as substitutes to each other with
respect to changes in penalty rate. When the seeding
penalty increases, the firm reduces seeding and builds
at the same time stronger network effects. Once seed-
ing disutility is large, we encounter the same com-
plementarity effects as in all the other settings. Also,
for small social media building costs, the actions act
as substitutes to each other with respect to changes
in social media costs. If it is more expensive to build
social media features but not too expensive, the firm
increases the seeding ratio and decreases the level of
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social media features. However, once the social media
cost becomes large enough, the outcome reverts to the
previously uncovered complementarity in actions.
We also explore how our frameworks and results

extend to asymmetric networks where connections
between users are active only in one direction. We
show that some of the previous insights continue to
remain robust, and we also inspect various seeding
patterns induced by the network structure.
Our paper has important practical implications.

First, in the industry, firms recognize the value of
network effects and put a lot of effort into harness-
ing them. This paper and the framework and results
within provide a host of practical and actionable
insights into how to optimally use in tandem two
levers (seeding and building social media features)
aimed at boosting network effects taking into account
how they can jointly impact the market outcome. In
particular, in addition to development cost consider-
ations, firms should also consider the magnitude and
form of seeding disutility when deciding the opti-
mal social media strategy. For example, as discussed
above, higher seeding disutility may incentivize firms
to scale back on the level of social media features
embedded in their products. In parallel, we also
suggest pricing strategies that effectively jumpstart
and sustain adoption. Our analysis further indicates
that barriers to entry are higher for firms in envi-
ronments characterized by SDU+ seeding disutility
model. Another practical implication of our results is
toward measuring the value of information. Unprece-
dented amounts of consumer data are collected in the
market and many players are now engaging in big
data analytics. Firms can choose to invest internally
in such capabilities or procure such information from
an increasing number of third-party providers who
specialize in collecting, analyzing, and selling market
information. By deriving the optimal strategies and
profits under complete and incomplete information,
this paper takes an important step toward measuring
how much value firms should place on identifying
customer characteristics. We further discuss the value
of information in the conclusion.
The rest of the paper is structured as follows. In §2,

we introduce our general modeling framework. In §3,
we present the analysis of the complete information
case. In §4, we extend our discussion to incomplete
information settings. In §5, we extend our analysis to
asymmetric networks and provide further discussions
on robustness of our key findings. We conclude in §6.
All proofs of our results can be found in the appendix.

2. General Model
Consider a software market with a monopolistic firm
and a heterogeneous and stationary pool of potential

customers with mass normalized to 1 and types � dis-
tributed uniformly in the interval 60117. For simplicity,
in the main part of the paper we focus on a symmet-
ric, fully connected consumer network and assume
the software exhibits heterogeneous network effects. We
relax the symmetry assumption in §5. Thus, if the
current installed base has size �, then a customer of
type � will get a direct benefit b�� from the software,
where b captures the strength of network effects.
Apart from the network-generated value, we assume
the product carries negligible stand-alone value. Our
model is consistent with setups in Dhebar and Oren
(1985, 1986).
To boost paying customers’ product valuation, the

software firm seeds a fraction � of the market. While
the seeding process in itself jumpstarts adoption, it
also generates disutility at the individual level for pay-
ing customers as discussed in the Introduction. For
each paying customer �, we model this disutility as
a function ã4�1�5 that is nonnegative, convex and
increasing in �, and captures heterogeneity of this
effect as experienced by each customer. The nonlin-
ear dependence on the size of the seeded pool cap-
tures the fact that disutility is very limited for small
seeded pools but rapidly increases as more customers
are seeded.
In this paper, we consider a setup where customers

progressively join the network toward a market equi-
librium. Seeding occurs immediately before the prod-
uct is released for sale. Customers do not know the
overall type distribution in the market and act in a
myopic fashion, making their adoption decision based
on the perceived utility from the product computed
using the current observed installed base. In gen-
eral, in the software industry (and others), there are
many cases where firms make public the informa-
tion regarding installed base or such information is
estimated and reported with regularity by market
research firms.1 Consistent with such observations,
we assume in our model that customers have access
to this information. If at a given moment the installed
base is of size � (including seeded customers), then a
paying customer of type � would momentarily per-
ceive the utility from buying the product as

u4� � �1b1p1�5= b��−ã4�1�5− p0 (1)

A customer of type � adopts as soon as she perceives
u4� � ·5≥ 0. This setup is consistent with Rohlfs (1974)
and Dhebar and Oren (1985), among others.

1 For example VG Chartz (http://www.vgchartz.com) reports
industry-wide weekly sales numbers (in terms of number of units
sold) for both software games and console hardware. Also, in
Japan, all mobile telecom carriers make public on a monthly basis
their most current subscriber numbers on their corporate websites
and through the Japanese Telecommunications Carriers Association
(Niculescu and Whang 2012).
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The firm is proactive in managing the strength
of network effects via choosing the right amount of
social media features that boost the value of social
interactions to each user. As such, we assume that
the firm will incur a convex cost cb2 to induce net-
work effects at marginal strength b, with c > 0. If we
denote by N4�1b1p5 the mass of paying customers2 at
the conclusion of the adoption process (in equilibrium),
then the firm’s optimization problem becomes

max
�∈401151 b>01 p>0

�4�1b1p5= pN4�1b1p5− cb20 (2)

We consider all development efforts with the excep-
tion of the building of social media features sunk.
This reflects a realistic scenario where the firm is re-
evaluating its strategy closer to market release when
more accurate information is available.3 Moreover, as
we are focusing on digital goods and services, the
reproduction costs are assumed negligible.
Although, as discussed in the Introduction, it has

been documented that price discrimination can lead
to a decrease in WTP because of perceived unfairness,
there is very little research connecting this disutility
to consumer characteristics. Related literature offers
various insights as to how various customer groups
react to negative firm actions (e.g., price increases
or service failures). For example, under conditions
of high price inequality, consumers that shop with
higher frequency perceive price increases as less fair
compared to customers that shop with lower fre-
quency (Huppertz et al. 1978). A different study by
Martin et al. (2009) takes a somewhat opposite stance
by showing that loyal customers do not necessarily
perceive major price increases less fair than nonloyal
customers (and, in the case of small price increases,
actually the opposite might occur). The same study
proposes that, under conditions of a price increase,
post customer loyalty is greater for previously loyal
customers than nonloyal customers. Such findings are
also consistent with Hess et al. (2003), whereby it is
argued that more loyal customers invest in maintain-
ing the relationship with the vendor and, thus, are
more forgiving toward minor negative actions com-
pared to nonloyal customers. However, some cus-
tomers may come to expect certain relational benefits
in exchange for their loyalty. For example, customer
service quality expectations may be positively corre-
lated to the longevity of the customer-firm relation-
ship duration (Heilman et al. 2000).

2 Which, in the context of the market size being normalized to one,
is the same as the fraction of the market that constitutes paying
installed base.
3 Our results still hold under a fixed cost associated with research
and development not directly related to social media features. The
only difference would be that the regions where the firm chooses
to enter the market would shrink.

Thus, the above literature suggests that disutility
from firm’s actions may be different for distinct cus-
tomer groups. However, in the absence of a clear con-
sensus regarding how seeding-induced disutility is
related to customer type (or WTP), for completeness of
the analysis we choose to explore two opposing mod-
els to account for various market peculiarities. The
seeding disutility functions under the two models are
parameterized as follows:

model SDU+2 ã4�1�5= s�2�1

model SDU−2 ã4�1�5= s�241− �51

where s ≥ 0. Under model SDU+, for each customer,
the seeding-induced disutility is positively correlated
with her type. Thus, the highest-type customers are
experiencing the highest seeding-induced disutility.
Under model SDU−, every customer experiences a
seeding disutility that is negatively correlated to her
type. In this case, high-type customers do not experi-
ence much disutility because of seeding.
If adoption starts, then, at any subsequent moment,

the instantaneous utility is increasing in type under
both SDU+ and SDU−.4 Consequently, our model is
consistent with the extant literature on vertical differ-
entiation in the sense that if a customer adopts, all
higher-type customers must adopt as well. As such,
customer type is positively correlated with instanta-
neous consumer WTP. If there are different types that
perceive at a given time nonnegative utility from the
product and they have not adopted yet, for simplicity
we assume the higher-type moves first. In that sense,
we assume that type (hence, utility) is positively cor-
related with the urgency to use the product for what-
ever mission-critical needs that customer has.

3. Complete Information
We first consider the case where the firm has com-
plete information about customer types and, thus, can
perform seeding targeted toward specific individual
types. For example, such scenarios may correspond
to markets where consumers leave a considerable and
relevant informational footprint after (online) activ-
ities, which is made available to the vendor. Such
information may be collected perhaps in association
with the consumption of a related product/service
offered by the same vendor or by a partner of the
vendor. In other cases, users have to satisfy certain
conditions to qualify for the free offer, and they must
reveal this information to the provider prior to receiv-

4 Under SDU+, at a given point along the adoption process, if
installed base is �, then u4� � ·5 = 4b� − s�25� − p. If the adoption
starts, it means that b� − s�2 > 0 such that the firm can charge a
positive price. Then, at later stages, � ≥ � because installed base
includes both seeded and paying customers. Under SDU−, u4� � ·5=
4b�+ s�25�− s�2 − p. Thus, for any �≥ �, if adoption starts, then at
any given point instantaneous utility is increasing in customer type.
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ing the product. For example, through its Dreamspark
global initiative, Microsoft is making developer grade
software available for free to students in many coun-
tries around the world (Microsoft 2008). To qualify,
students have to prove their affiliation with an aca-
demic institution (which, in the United States, can be
done by providing a .edu email address). In another
example, in 2009, in a $15 million initiative, Autodesk
seeded 100 early-stage clean tech companies with free
software bundles each worth approximately $150,000
(Autodesk 2009). In these examples, Microsoft and
Autodesk managed to target a particular segment of
the market with their free offer.

3.1. Optimal Strategy Under Model SDU
+

We start by exploring necessary conditions for
optimality:

Lemma 1. Under SDU+ and complete information, if
the firm stays in the market (i.e., it can make profit) then
its optimal strategy 8�∗1 b∗1 p∗9 and optimal seed allocation
must satisfy the following:
(i) b∗�∗ − s�∗2 ≥ p∗3
(ii) all customers with types � ∈ 601�∗5 are seeded;
(iii) all customers with types � ∈ 6�∗117 purchase the

product.

Part (i) of Lemma 1 states that seeding cannot be
effective at sparking adoption unless it is coupled
with strong enough network effects. In other words,
the optimal strategy has to be chosen in such a way
that at least the highest-type customers want to adopt
at the very beginning. Parts (ii) and (iii) basically cap-
ture the fact that, under optimal seed allocation, there
is no segment of the market left without a product.
Although it seems more or less intuitive that seeds
should go to the low-type customers to prevent sales
cannibalization, what is interesting is that, under the
optimal strategy, if any unseeded customer purchases
the product, then all unseeded customers purchase
the product. Seeding more induces two opposing
effects at the instantaneous utility level: it increases
the network benefits and it also increases the seeding
disutility. Nevertheless, the firm will choose to manip-
ulate the three controls (seeding, level of social media
features, and pricing) in such a way as to seed right
up to the lowest-type paying customers. Paid adop-
tion occurs in decreasing order of types for customers
with type � ∈ 6�117. The following result characterizes
the optimal strategy of the firm.

Proposition 1. Under SDU+ and complete informa-
tion, if cs ≥ 1/4, then the firm exits the market. Otherwise,
if cs < 1/4, then the firm enters the market and its optimal
strategy 8�∗1 b∗1 p∗9 is given by

�∗ = 341− 2cs5−
√
1− 4cs+ 36c2s2

4
≤ 1

2
1

b∗ = �∗41−�∗5

2c
1 p∗ = b∗�∗ − s�∗20

As it turns out, the individual rationality (IR) con-
straint at adoption time is binding for the highest
type. Thus, under an optimal strategy, the firm will
choose a price such that seeding just jumpstarts adop-
tion and this minimal push is enough for the adoption
to gain momentum and not stall until every unseeded
consumer purchases the product.
We emphasize that this equilibrium strategy is not

dependant on adoption sequence. Suppose customers
exhibit various degrees of inertia in reacting to mar-
ket changes (such as installed base growth), but they
all eventually react to such changes. First, for any
given seeding ratio, pricing such that IR constraint
is binding for the highest-type customers represents
the highest price the firm can charge such that adop-
tion can start (once the highest-type customers decide
to make a move). Once adoption starts, if it evolves
in decreasing order of types, it can be shown that
IR constraint at adoption time will not be binding
for any of the other paying customers except for the
highest-type paying customers. Even if adoption does
not occur in decreasing sequence of types, as long as it
does not stall, we reach the same full market coverage
and, thus, an identical optimal strategy. Otherwise, if
at any moment adoption stalls momentarily (perhaps
because of some higher-type customers being slow in
reacting to market evolution compared to lower type
customers), it will pick up eventually as there will
always be some unseeded type for whom adoption
yields nonnegative utility. As such, full market cover-
age is reached again. In such cases, pricing lower such
that IR constraint is not binding for the highest type
is suboptimal. Thus, the strategy derived in Proposi-
tion 1 remains optimal even under different adoption
sequences.
Next, we focus our attention on the interaction be-

tween building more social media features to increase
the strength of network effects and seeding the mar-
ket. Technically each of these actions on the firm’s
behalf is aimed at boosting WTP but they both come
at a cost. So a natural question arises: are these
actions complementary or in substitution of each
other? In other words, if the cost/penalty associated
with being more proactive on one of these two dimen-
sions increases, would the firm increase or decrease its
activity on the other dimension? The following result
addresses this question:

Proposition 2. Under SDU+ and complete informa-
tion, when the firm stays in the market 4cs < 1/45, seeding
and embedding more social media features are complemen-
tary actions. If any of the costs associated with these actions
4s or c5 increases, the firm scales back on both dimensions
4i.e., ¡�∗/¡s ≤ 0, ¡�∗/¡c ≤ 0, ¡b∗/¡s ≤ 0, ¡b∗/¡c ≤ 05.

The fact that the firm scales back on a particular
action if the associated cost/penalty with that respec-
tive action increases (i.e., ¡�∗/¡s ≤ 0, ¡b∗/¡c ≤ 0) is
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to be expected. However, the interesting results in
Proposition 2 characterize the interaction between the
two actions. At first glance, one might expect that as
the cost of boosting the strength of network effects
via more sophisticated social media features increases,
the firm might turn to the other lever it has access to,
seeding, in order to increase WTP (and vice versa).
However, seeding is valuable to the firm as long as
it does not cannibalize too much demand and does
not induce paying customers to downgrade their val-
uation of the product too much. When it is more
costly to generate strong marginal network effects via
social media, the firm reduces its investment along
that dimension. In turn, if it were to compensate such
an action by a boost in seeding, to reach the same
overall level of network effects the firm would have
to seed more customers. Thus, for similar network
effects, the firm would actually see both an increase
in seeding penalty and, because of full market cover-
age, a decrease in the number of paying customers.
As it turns out, these two effects dominate the ben-
efits from the boost in overall network benefits from
seeding, and, consequently, the firm prefers to down-
size the seeding pool as well.
A similar argument goes in the other direction.

If the seeding-induced downgrading of WTP of pay-
ing customers is more intense, then the firm first
scales back on seeding. Again, at first glance, it might
seem like a good idea in such a case to simultaneously
boost the strength of network effects so that the firm
does not have to rely on seeding that much. Neverthe-
less, once operating at optimal network effect strength
levels, it is costly to further upgrade b, and this cost
is not recovered by the benefit of an upward shift in
WTP because of stronger network effects.
When seeding does not induce any disutility for the

paying customers (s = 0), then �∗ = 1/2, b∗ = 1/48c5,
and p∗ = 1/416c5. In such cases, the optimal seeding
ratio and, implicitly, the ratio of paying customers
are independent from the strength of network effects
embedded in the product. If the cost of adding social
media features is increasing, the firm settles for a
lower strength of network effects and, at the same
time, charges customers less such that IR constraint
remains binding for the highest type while the seed-
ing ratio is kept unaltered.
As seen from Proposition 1, the upper bound for

�∗ is 1/2. Thus, under the optimal strategy, the soft-
ware firm prefers an outcome where the majority of
customers are paying customers whose WTP is influ-
enced by a well-balanced combination of seeding and
social media features that boost network effects.
Last, we mention that the results in this section can

be extended to more general type distribution func-
tions and utility structures. This discussion has been
included in Appendix B.

3.2. Optimal Strategy Under Model SDU
−

In this section, we explore a setting where customer
type is negatively correlated with seeding-induced
disutility. As argued in §2, in some instances, more
loyal customers may perceive less disutility because of
seeding procedures compared to less loyal customers.
It may be the case that more loyal customers also have
higher WTP. Customers with higher WTP may be big
clients such as corporations who developed a relation-
ship with the vendor over time and for whom switch-
ing costs would be too high. Such clients might be less
likely to fret much over some other customers receiv-
ing the product for free. At the other end of the type
spectrum, customers who do not derive much value
from the product and might operate on a tight budget
might be more upset if others got it for free. The fol-
lowing lemma characterizes the market segmentation
under the vendor’s optimal strategy.

Lemma 2. Under SDU− and complete information, if
the firm stays in the market (i.e., it can make profit) then
its optimal strategy 8�∗1 b∗1 p∗9 and optimal seed allocation
must satisfy the following:
(i) b∗�∗ ≥ p∗3
(ii) there exists a marginal type �m > �∗ such that all

customers with type � ∈ 6�m117 purchase the product, no
customers of type � < �m purchase the product, and all
seeds come from the interval 601 �m5 (though they may not
need to be grouped at the very low end).

Condition (i) illustrates the fact that adoption has
to start with the highest-type customers. Condition
(ii) states that, similar to the SDU+ case, paid adop-
tion occurs among the top-tier customers. Neverthe-
less, unlike in the case of SDU+, full market coverage
may not be optimal. We will revisit this point later.
Firm’s optimal strategy is presented below.

Proposition 3. Under SDU− and complete informa-
tion, the firm always enters the market. Let �∗

m be the low-
est type among paying customers under optimality. Then
firm’s optimal strategy is as follows:
Region 1: 0≤ cs ≤ 1/8. Then

�∗ = 1

2
1 b∗ = 1

8c
1 �∗

m = 1

2
3

Region 2: 1/8< cs < 431− 7
√
175/16. Then

�∗ = 3�∗
m − 11 b∗ = 41− �∗

m5�
∗
m
2

c
1 �∗

m = x̃1

where x̃ is defined as the unique real solution to the
equation cs42 − 6x5 + x3 = 0 over the interval 6−1 +√
1+ 8cs1

√
2cs7;

Region 3: 431− 7
√
175/16≤ cs. Then

�∗ = 3�∗
m − 11
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b∗ = 1− 24cs− 36c2s2 + 41+ 6cs5
√
1+ 36cs+ 36c2s2

16c
1

�∗
m = −b∗ + 3s+

√

b∗4b∗ + 3s5

9s
0

Under all regions, p∗ = b∗41− �∗
m +�∗5�∗

m − s�∗241− �∗
m5.

One immediate difference from SDU+ is that, under
SDU−, the firm will always prefer to enter the market.
That is because the highest-type customers experi-
ence very small seeding disutility and thus their WTP
is more or less dictated by network-generated value.
If c is very high, low b can induce positive WTP at
top tier, which, coupled with low (but not too low)
prices would induce revenues that would dominate
associated social media costs.
Another difference from SDU+ is that, under SDU−,

the IR constraint at adoption time is binding for the
marginal-type paying customers rather than the high-
est paying customers. Thus, at the very beginning,
many customers may be willing to adopt solely based
on the network value generated by the seeds. One of
the reasons leading to this outcome is the fact that
seeding disutility is low for top-tier customers under
model SDU−.
One interesting aspect of the optimal strategy under

SDU− is that, when seeding penalties and costs asso-
ciated with social media features are relatively low
(cs ≤ 1/8), then the firm responds to the disutil-
ity solely through adjusting the price downward by
the biggest seeding disutility a paying customer can
experience (i.e., the one experienced by the lowest
paying type �m). Its seeding and social media engi-
neering strategies do not change under small fluc-
tuations in seeding penalty. Also, in such regions,
seeding is not influenced by changes in the cost of
adding more social media features. However, in mar-
kets characterized by higher costs (cs > 1/8), the opti-
mal seeding and social media engineering strategies
will depend on both s and c. As it turns out, dif-
ferently from SDU+, under SDU−, full market cover-
age does not always hold. The following corollary to
Proposition 3 captures this:

Corollary 1. Under SDU− and complete informa-
tion, full market coverage 4�∗ = �∗

m5 is attained only when
cs ≤ 1/8. When cs > 1/8, then �∗ < �∗

m, and there are
always customers that are not purchasing the product and
are not seeded.

When the costs associated with seeding and/or
building more social media features into the product
are relatively high, it is not optimal to seed more or
lower the price to a level where all unseeded cus-
tomers adopt. Unseeded customers of low type actu-
ally have high disutility from seeding so their WTP
would be rather low. The firm is better off keep-
ing the price higher and extracting more consumer

surplus from the high tier. Seeding the aforemen-
tioned unseeded customers would also generate a
decrease in WTP for customers in the mid-type range
(where there is significant seeding disutility) that
would shrink or completely eliminate any benefits
from the increased WTP at the high end (where there
is little seeding disutility).
In regions 2 and 3, as �∗ < �∗

m and �∗ = 3�∗
m − 1, it

follows immediately that �∗ < 1/2. Thus, again, it is
never optimal to seed more than half of the market.
In spite of the differences in both model and opti-

mal strategy, we find that the complementarity result
between seeding and building social media features
for model SDU+ (Proposition 2) extends to SDU−.

Proposition 4. Under SDU− and complete informa-
tion, optimal seeding ratio �∗ and optimal strength of net-
work effects b∗ are both nonincreasing in c and s.

For region 1, b∗ is independent of s and �∗ is inde-
pendent of both c and s. Strict monotonicity is experi-
enced in regions 2 and 3. As discussed above, under
SDU−, under optimality, IR constraint is binding for
the lowest paying type because highest types have
negligible seeding disutility. If adding more social
media features becomes costlier, the firm will reduce
its investment in social media and thus, decrease
the marginal network-generated value of the product.
This, in turn, would lower WTP for all customers.
If the firm would respond by increasing seeding
to boost network effects, actually the WTP of the
low end of the paying group would decrease a lot
and that dictates price. Thus, the firm would see
either a smaller paying segment or would have to
charge a lower price, and those actions would lead
to a lower profit. As a result, it is better for the
firm to decrease seeding as well. Alternatively, if s
increases, the low end gets affected most. To compen-
sate for that decrease, the firm would have to invest
a lot in social media features. Granted that at the
top tier this increases WTP for the customers, how-
ever, in regions 2 and 3, where c was also relatively
high, associated social media costs would increase
steeply for such a process and wipe out other ben-
efits. Therefore, the firm finds it more profitable to
actually decrease social media features and manipu-
late demand more through price.

4. Incomplete Information
When the firm has incomplete market information,
i.e., it knows the type distribution but not the exact
type of each customer, it may not be able to target
individual customers by type. In this scenario, when
a firm attempts to seed the market, one of the inher-
ent downsides is the potential to cannibalize some
of the demand from high-type customers because the
firm cannot ensure that the seeds go to the lowest
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end (Niculescu and Wu 2012). For example, in the app
markets for iOS and Android devices, it is not uncom-
mon for some of the developers to offer their apps for
free for a limited period of time to boost adoption in
the market. In such cases, any customer who comes
across the app during this limited time window can
download it for free. We consider the case where the
firm decides strategically on the seeding volume but
the seeds end up being spread uniformly in the mar-
ket. We again explore both models SDU+ and SDU−

for a complete picture of how the firm adjusts seeding
and the level of social media features in products in
response to fluctuations in costs depending on market
specifics.
Before we discuss each model, we would like to

point out some other differences between uniform
seeding and seeding under complete information.
Under complete information, we saw in §3 that full
market coverage always occurs under SDU+ and it
may occur also for SDU− contingent on small costs.
However, under uniform seeding, full market cover-
age never occurs, regardless of the seeding disutility
model. This is because for any positive price, there
will always be unseeded customers with low types
for whom benefits fall below that price. Moreover, for
both seeding disutility models, the IR constraint at the
adoption time is binding for the lowest-type paying
customers. This is not the case under complete infor-
mation for SDU+.

4.1. Uniform Seeding Under Model SDU
+

In this case, firm’s optimal solution is as follows:

Proposition 5. Under SDU+ and uniform seeding,
when the firm decides to enter the market, its optimal strat-
egy 8�∗1 b∗1 p∗9 is given by

�∗ = z4b∗5 ∈
[

01
245− 2

√
25

17

]

1

b∗ = argmax
b≥0

{

b41− 2z4b55z4b5− s2z4b54

b

− sz4b5241− 3z4b55− cb2
}

1

p∗ = �∗4b∗ − s�∗51

where z4b5 is defined as the unique solution to the equation
b241 − 4z5 − 4s2z3 + bsz4−2 + 9z5 = 0 over the interval
601 4245− 2

√
255/177. The marginal paying type is �∗

m =
4�∗4b∗ − s�∗55/4b∗41−�∗55. Also, b∗ exists and is unique.
Moreover, there exists a bound � ≤ 1/4 such that when
cs > � then the firm does not enter the market.

First, we observe that the upper bound on seeding
has decreased dramatically 44245−2

√
255/17≈ 0025555

compared to the complete information case 41/25.
The fact that uniform seeding effectively reduces the

available market at the high end deters the firms from
pursuing overly aggressive seeding campaigns. Revis-
iting the app market example, this observation is con-
sistent with the practice to limit the free promotion to
a short window to avoid excessive seeding. Moreover,
profit under complete information seeding dominates
profit under uniform seeding. Thus, when the firm
would not enter the market under the former case,
it will also not do so under the latter. When s = 0,
the optimal strategy is given by �∗ = 1/4, b∗ = 1/416c5,
and p∗ = 1/464c5.
Given the complexity of the solution, we perform

a numerical sensitivity analysis on the optimal seed-
ing ratio �∗ and level of social media features b∗

with respect to their associated costs. This analysis
yields very interesting and, in certain regions, different
results, compared to the ones under complete informa-
tion. We capture these results in Figure 1, where pan-
els (a)–(c) illustrate how �∗ and b∗ change with respect
to s, and panels (d)–(f) explore sensitivity with respect
to c. We see that the complementarity results now hold
only when costs are sufficiently large (cs high enough).
In such a case, similar insights compared to the ones
in §3.1 apply and we omit this discussion for brevity.
When c is small, we can see that it is optimal to build
a high level of social media features in the product,
but such a practice would not be optimal for high c.
Thus, similar to the complete information case and
quite intuitive in nature, b∗ will tend to decrease in c.

However, this is where similarities stop. First,
under small cs we notice that �∗ is increasing in both c
and s. Moreover, b∗ tends to also increase in s when s
is small. To get a better understanding of the sen-
sitivity with respect to s, we illustrate in Figure 2
several properties of the equilibrium outcome corre-
sponding to panel (a) in Figure 1. Note that under
complete information we have full market coverage
and an increase in �∗ would always result in a shrink-
ing of the size of the paying group. When new seeds
are given away, all of them are actually cannibaliz-
ing paying customers. However, as it turns out, under
uniform seeding, because we do not have full market
coverage (because of unseeded low types not adopt-
ing), new seeds only cannibalize a fraction of the
paying customers as they get distributed uniformly.
Thus, the firm can actually increase at the same time
both the seeding ratio �∗ and the size of the pay-
ing group 41−�∗541− �∗

m5, as can be seen from panels
(a) and (d) of Figure 2. Given that increasing seed-
ing involves more seeds to the high types as well, the
high-type paying group shrinks. However, the firm
responds by lowering price and expanding adoption
toward the lower end of the market, as can be seen
from panels (b) and (c). When s is small, increasing
seeding comes at a low penalty and thus, it results
mostly in increased WTP. Additional increase in b also
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Figure 1 Optimal �∗ and b∗ Under Uniform Seeding and Seeding Disutility Model SDU
+
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Notes. The yy -plots have b∗ on the left-hand y -axis and �∗ on the right-hand y -axis. Panels (a)–(c) consider sensitivity with respect to s, whereas panels

(d)–(e) consider sensitivity with respect to c.

further adds to the increase in WTP. In such a case,
the newly added revenue from the low end of the
market (because of lower price and higher WTP, both
of which induce more customers to join) may actu-
ally cut the double losses at the high end (because of
fewer unseeded customers and lower price).
As s increases, for intermediate ranges we see that

the firm will switch toward using social media engi-
neering as a substitute for seeding. Once s is not too
small, the benefits from extra seeding vanish as the
WTP cannot be boosted that high without substantial
investments in boosting b because of the increasing
disutility. This effect, together with the reduced pool

Figure 2 Details of Equilibrium When c= 003 Under Uniform Seeding and Model SDU
+
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of paying high-type customers, make increasing the
seeding ratio suboptimal. In such a region, in parallel
with a decrease in �∗ we see an increase in b∗. The
firm finds it optimal to continue to expand the mar-
ket into lower types by decreasing price, thus absorb-
ing the increase in the seeding disutility. At the same
time, the decrease in �∗ also expands the group of
high-type paying customers. When the seeding disu-
tility is not too high, the firm will still keep �∗ at
relatively high levels, adjusting upward b∗ in paral-
lel with the decrease in �∗ to reverse a decrease in
network value. In this case, maintaining b∗ at high
levels is also worth it given that increase in WTP of
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high types. Nevertheless, once s becomes too high, it
is too costly for the firm to use this approach because
it would be necessary to invest a lot in b∗ to maintain
WTP at high levels. Thus, in such regions, the firm
will resort to decreasing all three controls 8�∗1 b∗1 p∗9.

For c, we see in panels (d)–(f) of Figure 1 that under
small values, seeding ratio is increasing in c, which,
again, indicates that seeding and social media engi-
neering are substitutes to each other in generating
profit. An increase in c will induce a decrease in the
level of social media features embedded in the prod-
uct. Similar evolutions of p∗, �∗

m, and 41−�∗541− �∗
m5

with respect to c are observed as in the case of
changes in s (plots are omitted for brevity). For small
ranges of c, even if b∗ decreases, it remains moder-
ate in value, providing the potential for a substan-
tial network value if installed base is robust. Small
upward adjustments in seeding ratio might be prof-
itable as they help retain network value and allow
the firm to profitably expand in the lower type seg-
ment of the market by lowering the price. However,
the boost in seeding is taken advantage of exactly
through network effects and, thus, once c gets really
high, the firm would not find it optimal to further
invest in b∗ which, in turn, would expose customers
to a potentially high seeding disutility without high
benefits from the network. To compensate for this,
the firm will reduce the seeding ratio, thus increasing
the number of paying customers among the higher
types and also reducing the disutility at all levels.
The associated price decrease also allows the firm to
strategically extend the group of paying customers
toward more of the lower-type customers.

4.2. Uniform Seeding Under Model SDU
−

Under uniform seeding and model SDU−, firm’s opti-
mal strategy is as follows:

Proposition 6. Under SDU− and uniform seeding,
the firm always enters the market and its optimal strategy
8�∗1 b∗1 p∗9 is given by

�∗ =



















−2b∗ +
√

4b∗2 + 3b∗s

3s
∈
[

01
5−

√
5

10

]

1 s > 0

1

4
1 s = 0

b∗ = 1− 12cs− 9c2s2 + 41+ 3cs5
√
1+ 18cs+ 9c2s2

32c
1

p∗ = 2b∗ + b∗�∗ − 6s�∗2

9
0

The marginal paying type is �∗
m = 1/3.

Under SDU− and uniform seeding, the marginal
paying type is always the same (�∗

m = 1/3), in con-
trast with most of the cases previously studied, with

the exception of the low-cost region 1 under SDU−

and complete information. Even compared to the lat-
ter, there is one important difference, namely, that in
the current case, while �∗

m is constant, the firm adjusts
all its controls �∗1 b∗1 p∗ in response to fluctuations in
c and s. Moreover, when s > 0, as �∗ can be rewrit-
ten as �∗ = 41/3544−2b∗5/s +

√

4b∗/s54b∗/s+ 355, given
that b∗/s is a function of cs, it follows that �∗ is a
function of cs, and opposite-direction cost fluctua-
tions that leave cs unchanged also leave the seeding
ratio unchanged. Moreover, we note that, compared
to the full information case, the upper bound on the
seeding ratio also decreases significantly from 1/2 to
45−

√
55/10≈ 002764. Similar to the discussion in §4.1,

given that seeding strategies reduce the top-tier pay-
ing group under uniform seeding, the firms will not
engage in overly subsidizing adoption.
We next explore the sensitivity of �∗ and b∗ with

respect to costs. An increase in s would result in a
decrease in WTP pronounced more significantly at
lower type levels. As such, unlike under SDU+, the
firm does not see it beneficial to expand into the lower
market by inducing lower �∗

m and more paid adop-
tion. In turn, it shifts toward increasing the paying
group toward the top tier by lowering �∗. In tandem,
it also lowers b∗ as there is less pressure to induce
strong network effects to compensate for seeding disu-
tility and this allows the firm to ease down on costs
of building a high level of social media features into
the product. On the other hand, when c increases,
given convexity of social media costs, insights remain
robust behind b∗ being decreasing. Once the network-
induced value decreases for all types, if the firmwould
try to compensate with an increase in seeding, it will
induce a higher disutility and reduce the number of
paying customers at the top tier. The firm would then
have to operate at suboptimal price levels to sustain
a robust adoption. As such, the firm also prefers to
reduce the seeding ratio, preventing a strong drop in
WTP and, at the same time, increasing the size of
the paying group. Thus, the complementarity results
uncovered under full information continue to hold.
The above insights are formalized in the next result.

Proposition 7. Under SDU− and uniform seeding,
optimal seeding ratio �∗ and optimal strength of network
effects b∗ are both nonincreasing in c and s.

Unlike in the case of complete information, the two
seeding disutility models may lead to optimal strate-
gies that are different not only in specific value but
in more fundamental ways. As such, when there is
seeding disutility in the market, it is very impor-
tant for firms to account for its proper form when
detailed consumer information is lacking. Returning
to the iOS example at the beginning of §4, app devel-
opers can use such insights to better time the length
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of the promotional campaigns (i.e., control the size of
the seeded pool of customers) contingent on market
characteristics.

5. Extension: Asymmetric Networks
In this section, we present an illustration of how
our results can be extended to asymmetric networks.
Among others, network asymmetry may be induced
by lack of full connectivity (e.g., Zubcsek and Sarvary
2011) and/or by single-direction links (e.g., Lehmann
and Esteban-Bravo 2006). As such, there are a vast
number of possible asymmetric network scenarios.
We will explore one case that pertains to the latter
category.
Suppose the market has two disjoint consumer seg-

ments: low-value segment L (� ∈ 601 r7) and high-
value segment H (� ∈ 4r117). Suppose the network
is fully connected but asymmetric in nature. Within
each segment, all links are bidirectional. Across seg-
ments, links are unidirectional, going from high-
value segment to low-value segment, but not vice
versa. In a sense, the high-value and low-value seg-
ments correspond to the innovators and imitators in
Lehmann and Esteban-Bravo (2006). We assume that
the network-induced value for each customer is given
by the volume of incoming links. For each segment,
the seeding ratio is always upper bounded by the size
of the segment.
In this extension, we focus on SDU+ seeding disu-

tility model.5 We further assume that seeding disu-
tility is only manifesting within the high valuation
segment (and only with respect to seeds in that seg-
ment), whereas in the low-value segment it is neg-
ligible (sL = 0, sH = s > 0). Of course, this is just one
example of how seeding disutility can manifest in
the market. We consider the case of full information.
Although the market is segmented, we still assume
that the seller only approaches it with a unique
price. Seller’s optimization problem consists of how to
choose p∗, b∗, and seeding levels {�∗

L1�
∗
H 9 correspond-

ing to each segment.
It is straightforward to establish the following prop-

erties in equilibrium under optimal strategy. First, all
seeds should go to the lowest end in each segment.
Second, both segments will be fully covered. Let us
focus on the high-end segment first. If the segment H
is not completely seeded (that might be an option),
and price is low enough such that paid adoption
can start in that segment, given that segment H can
be treated in isolation (it is not influenced by seg-
ment L), similar to our previous results it turns out
that adoption goes all the way until the high seg-
ment is covered without stalling. It is irrelevant if at

5 Similar insights hold under SDU− and their discussion has been
omitted for brevity.

some point along the process adoption also started
at the low level. Note that if there is any paid adop-
tion in segment H , the highest-type customers must
always be willing to adopt from the start. It cannot be
optimal for some customers to be left without seeds
in the high-end segment and the price be set above
the WTP of the highest type. This is because low-
segment adoption cannot increase WTP at the high
end (because of unidirectional links) and thus, those
unseeded customers in segment H will never buy.
However, seeding them would increase WTP in the
low-end segment even further (because segment L
does not exhibit seeding disutility). As such, in opti-
mality, either the entire segment H is seeded or all
unseeded customers purchase the product.
Next, in terms of equilibrium, we point out that it is

irrelevant whether paid adoption starts in segment L
before being complete in segment H . If it starts after,
basically the WTP of the first adopters in segment L
will be higher. Nevertheless, if it starts before, if at
any point there is any stalling in segment L, adoption
will pick up again once adoption from above picks
up. As such, any equilibrium outcome where paid
adoption in the low segment is starting before paid
adoption is complete in the high segment can be repli-
cated under a strategy where the low-segment market
is opened after high-segment market is fully covered.
If it is optimal to set the price very high such that
there is no adoption in the low-value segment, then it
is irrelevant whether customers are seeded in that seg-
ment or not because of asymmetry. As such, for sim-
plicity, we can assume in these settings full seeding
of the low-value segment. However, if it is optimal to
have paid adoption in the low-end segment as well,
then, once adoption starts, it can again be shown that
it will not stall until everyone is covered (because of
the concavity of the instantaneous WTP, via a similar
argument as in the case of symmetric networks).
Under optimality, it can be easily shown that

when r is close to one, it is optimal to seed the entire
high-end segment, and when r is close to zero, it
is optimal to price in such a way that there will be
no paid adoption anyways in the low-end segment.
When r is in an intermediate range, it is optimal to
seed a fraction of each segment and have paid adop-
tion in each segment as well.
We focus the remaining part of our discussion on

the interesting regions for r , c, and s, where it is opti-
mal to have paid adoption in both segments. Figures 3
and 4 illustrate sensitivity of �∗

L, �
∗
H , �

∗
L +�∗

H , and b∗

with respect to cost parameters s and c. In the plots,
parameter r is chosen at 004 and we consider c1 s ∈
600110047, ranges that ensure optimality of paid adop-
tion in both segments.

First, as it can be seen from panels (a)–(c) in Fig-
ure 3, aggregate seeding ratio �∗ = �∗

L+�∗
H is decreas-

ing in s. Thus, we uncover a similar pattern as in
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Figure 3 Sensitivity of Optimal Strategies with Respect to s Under Asymmetric Network Structure and Seeding Disutility Model SDU
+
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the case of the symmetric network. For low ranges
of s, if s increases, the seeding disutility in segment
H increases but there is no impact on segment L. All
else equal, the decrease in WTP in segment H puts
downward pressure on price. This impacts not only
revenue from high-end segment but also that from
low-end segment. To prevent too much revenue loss,
the firm will react first by releasing some of the pres-
sure on price in the high-end by boosting b∗. When c
is low, as in panels (d) and (g) or (e) and (h), the firm
will embed a relatively higher level of social media
features in the product. As b∗ is pushed even higher,
while s is still small, it may be beneficial to increase
�∗
H in response to an increase in s because in both

segments seeding is taken advantage of via network
effects. In the low-end segment, the boost in b∗ elim-
inates some of the need for a high level of seeding
and, thus, the firm can actually decrease �∗

L without
affecting too much the WTP of consumers in that seg-
ment. For high c, as in panels (f) and (i), in small
ranges of s, given that it is too expensive to operate
at high levels of b∗, the boost in b∗ allows the firm
to reduce its reliance on seeding in the low-end seg-
ment. It will also result to the same practice in the

high-end segment for different reasons. Because b∗ is
small, for small s, as s increases the small boost in b∗

cannot compensate for the increase in seeding disu-
tility. As such, we see in panels (e) and (f) that �∗

H is
decreasing in s. This reasoning applies pretty much
in all cases once s gets large enough because seeding
disutility simply grows too big and the firm will curb
seeding in the high-end segment, because it cannot
boost b∗ too much because of the associated convex
costs. When c is high, this is also accompanied by an
expected decrease in b∗, as can be seen in panel (i) of
Figure 3.
Figure 4 captures sensitivity with respect to c.

Again, from panels (a)–(c) we see that aggregate seed-
ing ratio is decreasing in c. At the same time, convex-
ity of social media costs induces b∗ to decrease in c.
Thus, insights from the symmetric network case carry
through. As c increases, b∗ decreases, and, as a result,
in both segments, the network value of the product
decreases. When c is low and s is not too high, to
avoid pressure on price, the firm might try to boost
�∗
H . This can be seen in panels (d) and (e). However,

once seeding disutility is too high, this is not opti-
mal anymore, as can be seen in panel (h). Once c is
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Figure 4 Sensitivity of Optimal Strategies with Respect to c Under Asymmetric Network Structure and Seeding Disutility Model SDU
+
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too high, b∗ is pushed too low and seeding penalty
would be too high if the firm would try to push seed-
ing further. As such, it will decrease �∗

H . Looking at
the low-end segment, as the firm makes adjustments
in the high-end segment to prevent too much pres-
sure on price, it will expand its sales in the low-end
segment by reducing seeding ratio, thus having more
paying customers.

6. Conclusion
Firms nowadays are increasingly proactive in try-
ing to strategically capitalize on consumer networks
and social interactions. In this paper, we comple-
ment an emerging body of research on the engi-
neering of WOM effects by exploring a different
angle through which firms can strategically exploit
the value-generation potential of the user network.
Namely, we consider how software firms should opti-
mize the strength of network effects at the utility level
in tandem with the right seeding and pricing strate-
gies in the presence of seeding disutilities. To the
best of our knowledge, our study is one of the first
explorations of this research path. Our results have

important managerial implications for practitioners in
the industry who are trying to capitalize on network
effects in a more effective way. Moreover, the appli-
cability of our results is augmented by the fact that
we consider two potential seeding disutility scenarios,
thus covering multiple plausible consumer reactions
in the market.
Under complete information when the firm can

target individual customer types, after deriving the
optimal firm strategy and the associated market
structure, we uncover counterintuitive complemen-
tarities between seeding and the building of social
media features in the presence of disutility associated
with seeding. Although both initiatives contribute to
a direct increase in WTP of consumers, each of them
comes at a cost. The inherent trade-offs induce the
firm to scale back on any of these initiatives if the
cost associated with the other increases. Thus, mar-
kets with high seeding disutility because of price dis-
crimination are also exhibiting low network effects
embedded in the products. Alternatively, markets for
products where significant investment in social media
features is necessary to make an impact on the net-
work value also experience low levels of market
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seeding. We further show that our results are robust
to both seeding disutility models.
Under incomplete information, although comple-

mentarity between seeding and building social media
features continues to hold for SDU− everywhere,
under disutility model SDU+ we uncover a host of
new insights. In particular, a more peculiar comple-
mentarity can occur as well, where, for small seeding
penalties, it may be optimal for both seeding ratio and
level of social media features to be increasing in the
seeding penalty. Moreover, for intermediate seeding
penalties or low costs we uncover the potential for
the two actions to act as substitutes. Thus, different
disutility models may actually lead to very different
optimal strategies under incomplete information. This
highlights the importance of not overlooking the form
of the seeding disutility in various markets, especially
in the absence of consumer information.
In an extension, we also explore how our frame-

work and insights can be extended to certain classes
of asymmetric networks. At a high level, some of the
previous results remain robust, while new insights
also emerge. Moreover, we explore how the firm
jointly approaches the seeding process for different
segments in the market by allocating seeds in each
segment. For example, when both costs are high
and the market is almost evenly split between the
high and the low segments, complementarity between
seeding and building social media features continues
to hold. On the other hand, when seeding penalty is
low, this complementarity relationship breaks as the
firm may find it optimal to adjust overall seeding
ratio and social media features in opposite directions
in response to an increase in seeding penalty.
As expected, the value of information computed by

taking the difference (or percent difference) between
profits under complete and incomplete information is
decreasing in both c and s. We only briefly mention
here this point because it is intuitive. As it is becom-
ing increasingly costly to induce high WTP, firms are
less willing to pay high premiums for low returns on
additional information.
Although our paper is among the first to address

in an analytical setting the interaction between social
media and seeding strategies, it does have its own
limitations that present various interesting opportuni-
ties for future research. First, we assumed customers
have limited information about the market structure
(type distribution) and act myopically. In that sense,
our study adds to the rich literature that assumes
a more or less pronounced form of bounded ratio-
nality on the demand side. In future studies, this
assumption can be relaxed toward an analysis of mar-
kets in the presence of strategic customers. We expect
many of our insights to carry through. Second, one
could look into extending our modeling framework to

explore the implications of competition on how firms
would jointly adjust seeding and social media fea-
tures. Third, alternative forms of network effects (e.g.,
additive) can be considered in association with prod-
ucts that also carry an intrinsic value that is indepen-
dent of the user network. Fourth, as an alternative to
seeding, firms can consider freemium strategies to
jump-start adoption. Fifth, it would be interesting
to dive even deeper into exploring asymmetric net-
works, going beyond our illustration in §5. Although
we focused mostly on the existence and direction of
links between users, an interesting setting to consider
would be one where links also have weights. As such,
firms might focus seeding strategies toward opinion
leaders. Also, it would be interesting to explore firm’s
strategies in asymmetric networks where some of the
users might consider a product to be a “status good,”
deriving additional utility from being associated with
the respective brand image (Kuksov 2007, Kuksov
and Xie 2012). Sixth, for simplicity and, in some
cases, analytical tractability, we assumed a reasonable
sequence of adoption whereby higher types move first
in cases when multiple customers who did not adopt
yet would derive positive utility at a given moment.
As discussed in the paper, the adoption sequence
does not influence the results in §§3.1 and 5. How-
ever, it would be insightful to relax this assumption
and explore how it affects optimal seeding and social
media strategies under SDU−. Last but not least, it
would be a very informative exercise to empirically
test our model predictions.
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Appendix A. Proofs

Proof of Lemma 1. (i) If b∗�∗ − s�∗2 < p∗, then paid
adoption cannot start regardless of how seeds are assigned.
Immediately after seeding, there is a mass of consumers of
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size � in the market. Given that we assume customers are
myopic, even the highest-type customers (�= 1) cannot per-
ceive a positive momentary utility at that stage. Thus, no
unseeded customers is willing to be the first to pay for the
software.

(ii, iii) We prove (ii) and (iii) simultaneously. Note that
if the firm chooses to enter the market (i.e., it can make
profit), then �∗ > 0 and b∗ > 0. Via simple interchange argu-
ments, it can be easily shown that the lowest-type paying
customers must have type greater or equal to the highest-
type seeded customers. Basically all that we have to show is
that there are no unseeded customers that are left without
a product.

Let �̄s be the highest type among seeded customers and
�p be the lowest type among paying customers. Then 0 ≤
�∗ ≤ �̄s ≤ �p ≤ 1. It is trivial to see that the highest-type
customers (with �= 1) will be purchasing customers under
any optimal seeding policy and seeds allocation.

Consider the function

h4�5
△= 6b∗41− �+�∗5− s�∗27�− p∗0

Then h is concave in �. If all customers with types above �
adopt, then h4�5 would represent the perceived utility for
type � at the moment this type is considering adoption.
Because consumers of type � = 1 are adopters, it must be
the case that h415≥ 0. Moreover, the following holds:

4b∗ − s�∗25�∗ = b∗�∗ − s�∗3 ≥ b∗�∗ − s�∗20

Consequently,
h4�∗5≥ h415≥ 00

Because h is concave in �, thus, h4�5 ≥ 0 for all � ∈ 6�∗117.
Because �̄s ≥ �∗, then it immediately follows that adoption
cannot stall before �̄s adopts. Consequently, we have �̄s = �p
and all customers above �̄s adopt.

The only thing left to prove is that �̄s = �∗, i.e., there
are no unseeded customers below �̄s . We prove this argu-
ment by contradiction. Suppose that under an optimal seed-
ing allocation and optimal parameter values, �̄s >�∗. Then,
by seeding in interval 601�∗5, the customers in the interval
6�∗1 �̄s5 will also adopt given that h4�5 ≥ 0 for � ≥ �∗, and
thus profit will increase. Contradiction. Such a seeding allo-
cation cannot be optimal. Thus, �̄s = �∗. Customers in the
interval 601�∗5 are seeded and all other customers end up
buying the product. �

Proof of Proposition 1. According to Lemma 1, the
firm will only consider scenarios where b�− s�2 ≥ p. Then,
customers with types � ∈ 601�5 are seeded and customers
with types � ∈ 6�117 are purchasing the product. For each
paying customer �, at purchase time the installed base is
�4�1�5 = 1− � + � because, in addition to all seeded cus-
tomers, all customers with higher types would have already
purchased the product and no customer with lower types is
moving ahead of current type. Therefore, the utility of the
customer of type � at purchase time is

u4� � �1b1p1�4�1�55= 6b41− �+�5− s�27�− p0 (A1)

The utility function is concave in �. Thus, for adoption to
start and not to stall, it is necessary and sufficient that the

utilities of the first paying customer and last paying cus-
tomer are nonnegative:

u4�= 1 � �1b1p1�411�55= 4b�− s�25− p≥ 01

u4�= � � �1b1p1�4�1�55= 4b− s�25�− p≥ 00

Given that � ∈ 60117 we have b�− s�2 ≤ b�− s�3. Because
the firm is profit maximizing, the IR constraint will be bind-
ing for the highest type and thus

p∗4�1 b5= b�− s�20 (A2)

Consequently

�4�1b5= 4b�− s�2541−�5− cb20

�4�1 b5 is quadratic and concave in b. Note that for the con-
straint b�− s�2 ≥ p to hold, it is necessary that b ≥ s�. Solv-
ing this constrained optimization problem, it immediately
follows that

b∗4�5=max

{

s�1
�41−�5

2c

}

0

Note that

s�≥ �41−�5

2c
⇔ �≥ 1− 2cs0

Then

�4�5=











1

4c
×�241−�541− 4cs−�5 if �< 1− 2cs1

−cb2 otherwise0

Thus, if � ≥ 1 − 2cs the firm cannot make any profit and
would exit the market. Therefore, to make a profit, the firm
would choose � < 1− 2cs. In this case, note that �4�5 = 0
has four roots �1 = �2 = 0, �3 = 1, and �4 = 1 − 4cs. We
distinguish two cases:

(i) 1/4 ≤ cs. Then �4 ≤ �1 = �2 = 0 < �3. Then �4�5 is
decreasing on 4−�1�47, decreasing and then increasing on
6�4107, bouncing off at zero because that is a double root,
decreasing and then increasing on 60117, and increasing on
611�5. Given that the firm considers � ∈ 6011− 2cs5 conse-
quently we must have �∗ = 0. The optimal price and opti-
mal network effects are zero and the firm exits the market
because it cannot make any profit.

(ii) 1/4 > cs. In this case, �1 = �2 = 0 < �4 = 1 − 4cs <
�3 = 1. Then �4�5 is decreasing on 4−�107, bouncing off
at zero because that is a double root, increasing and then
decreasing on 6011−4cs7, decreasing and increasing on 61−
4cs117, and increasing on 611�5. Therefore, �∗ is the unique
root of the first order condition (FOC) that falls in the inter-
val 4011− 4cs5. That root is not zero (which is one of the
roots of the FOC). Computing the FOC, we get

¡�

¡�
= �

2c
× 61− 4cs−�43− 6cs5+ 2�270

The FOC gives optimal seeding ratio

�∗ = 341− 2cs5

4
−

√
1− 4cs+ 36c2s2

4
0

It is trivial to verify that �∗ ≤ 1/2. �

Proof of Proposition 2. Follows directly from comput-
ing the derivatives of the optimal quantities �∗ and b∗

derived in Proposition 1 with respect to c and s. �
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Proof of Lemma 2. (i) At the very beginning, right
after the seeding process and before any paid adoption
has occurred, a customer of type � perceives an instanta-
neous utility u4� � ·5= 4b��− s�241− �55− p= 4b�+ s�25�−
s�2 − p. Thus, at the very beginning (and actually also
at every moment afterward), the instantaneous utility is
increasing in type. Therefore, at least the highest-type cus-
tomers must want to adopt. Thus, we need u41 � ·5 ≥ 0, or
b�≥ p.

(ii) Given that at any moment utility will be increasing in
type (disutility is the same once seeding has occurred and
the network benefits increase more for the higher types), it
can be easily observed (via an interchange argument) that
seeding should not be at the high end. No seeded customer
should have a higher type than a paying customer. More-
over, given monotonicity of utility in type at any given time,
everyone with type above the marginal type should adopt
as well. �

Proof of Proposition 3. We present here a sketch of
the proof. Some portions are omitted for brevity but avail-
able from the authors upon request. First, for the firm to
make any profit, it is necessary to charge a positive price.
That means that the highest-type adopters (�= 1) must have
positive benefit from the product before any paid adop-
tion occurs. Because b� > 0, highest-type adopters always
have a positive WTP for the product. For a paying customer
of type �, at the moment of purchase (after all the higher
types have already adopted and before any other lower type
adopts), her perceived utility is

u4� � ·5= 6b41− �+�5�− s�241− �57− p0

The utility function is concave in �. Given that u40 � ·5 =
−s�2 − p ≤ 0, adoption stops at a certain marginal type �m,
where u4�m � ·5 = 0 ≤ u41 � ·5, or, equivalently, �m ≤ � +
4s�25/b. Optimal price is given by p∗ = b41 − �m + �5�m −
s�241− �m5. Also, �m ≥ �. Then the profit is given by

�4�m1�1 b5

= p41− �m5− cb2

= 6b41− �m +�5�m − s�241− �m5741− �m5− cb20 (A3)

We consider two different cases: (i) s = 0 and (ii) s > 0.
(i) s = 0. In this case, the optimal strategy under SDU−

is identical to the optimal strategy under SDU+, which has
been derived in Proposition 1.

(ii) s > 0. In this case, profit function in (A3) is quadratic
in �. We optimize first in � under the constraint 0 ≤ � ≤
�m ≤ min8�+ 4s�25/b119. Moreover, we verify within each
region that the profit is positive. Note that the profit func-
tion is concave in �. Solving unconstrained ¡�/¡� = 0,
we obtain root �= 4b�m5/42s41− �m55. Moreover, given that
�≥ 0, it can be shown that �+ 4s�25/b ≥ �m is equivalent to
�≥ 4−b+

√

b4b+ 4s�m55/42s5. Thus, we have

�∗ =max

{−b+
√

b4b+ 4s�m5

2s
1 min

{

�m1
b�m

2s41− �m5

}}

0

After considering and comparing all the feasible cases (anal-
ysis omitted for brevity but available from the authors), it
can be shown that the optimal solution is the following:

Region 1: 0< cs ≤ 1/8. In this case �∗ = �∗m = 1/2, b∗ =
1/48c5, �∗ = 41− 4cs5/464c5.

Region 2: 1/8 < cs < 431− 7
√
175/16. In this case, �∗ =

4b∗�∗m5/42s41− �∗m55, �∗m is the unique real solution to the
equation cs42 − 6�m5 + �3m = 0 over the interval 6−1 +√
1+ 8cs1

√
2cs7, b∗ = 42s41− �∗m5

2�∗m5/44cs− �∗m
25, and �∗ =

4s41− �∗m5
4�∗m

25/44cs− �∗m
25. Replacing cs = �∗m

3/46�∗m − 25,
it can be shown that �∗ = 3�∗m − 1, b∗ = 441− �∗m5�

∗
m
25/c, and

�∗ = s41− �∗m5
343�∗m − 15.

Region 3: 431− 7
√
175/16≤ cs. Then

�∗ =
−b∗ +

√

b∗4b∗ + 4s�∗m5

2s
1 �∗m = −b∗ + 3s+

√

b∗4b∗ + 3s5

9s
1

and b∗ = 1− 24cs− 36c2s2 + 41+ 6cs5
√
1+ 36cs+ 36c2s2

16c
1

and �∗ = b∗4−b∗c+�∗ −�∗�∗m50

Replacing �∗m into �∗ and �∗, we obtain

�∗ = −b∗ +
√

b∗4b∗ + 3s5

3s
and

�∗ = b∗46s�∗ −�∗
√

b∗4b∗ + 3s5− 9csb∗ + b∗�∗5

9s
0

Then, we see that −b∗
√

b∗4b∗ + 3s5= 3�∗s. Replacing in �∗m,
we obtain �∗m = 41+�∗5/3, or �∗ = 3�∗m − 1.

It can be shown that the optimal profit is positive in all
regions. �

Proof of Corollary 1. Follows immediately from the
proof of Proposition 3. �

Proof of Proposition 4. As Proposition 3 states, the
optimal strategy is characterized over three distinct regions
for the value of cs. We explore each region separately.

Region 1: 0 ≤ cs ≤ 1/8. This case is straightforward.
Results hold in weak form with respect to changes in s and
only b responds to changes in c.

Region 2: 1/8 < cs < 431− 7
√
175/16. Note first that the

optimal values �∗ and b∗ depend on �∗m. Thus, we need to
first understand the monotonicity of �∗m with respect to c
and s; �∗m is defined in implicit form as the unique solu-
tion to equation cs42−6�m5+�3m = 0 over the interval 6−1+√
1+ 8cs1

√
2cs7. Let us denote � = cs and define function

�4�m1�5
△= �42−6�m5+�3m. Then �∗m4�5 is the unique function

such that �4�∗m4�51�5= 0 for every � ∈ 41/81 431− 7
√
175/165.

Therefore, over this interval,

¡�∗m4�5

¡�
=− ¡�/¡�

¡�/¡�m
=− 2− 6�∗m

34�∗m
2 − 2�5

0

As discussed in the proof of Proposition 3, in region 2, �∗m <
√

2�. Moreover, �∗m > 1/3. Thus, clearly, ¡�∗m4�5/¡� < 0. Con-
sequently, since �= cs, �∗m is decreasing in both c and s.

Because �∗ = 3�∗m − 1, it immediately follows that
¡�∗/¡s < 0 and ¡�∗/¡c < 0.

Next, we consider the derivatives of b∗ with respect to c
and s:

¡b∗

¡c
= �∗m6c42− 3�∗m54¡�

∗
m/¡c5− 41− �∗m5�

∗
m7

c2
and

¡b∗

¡s
= �∗m42− 3�∗m5

c
× ¡�∗m

¡s
0

It can be easily seen that �∗m < 1/2. Given that 2 − 3�∗m >
0, ¡�∗m/¡s < 0, ¡�∗m/¡c < 01 then it immediately follows that
¡b∗/¡s < 0 and ¡b∗/¡c < 00
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Region 3: 431− 7
√
175/16 ≤ cs. Because we have the for-

mula for b∗ only in terms of c and s, it can be easily verified
that ¡b∗/¡s < 0 and ¡b∗/¡c < 0.

From the proof of Proposition 3, in region 3, we know
that �∗ = 4−b∗ +

√

b∗4b∗ + 3s55/43s5. It immediately follows
that

¡�∗

¡c
= 4

√
b∗ + 3s−

√
b∗52

6s
√

b∗4b∗ + 3s5
× ¡b∗

¡c
and

¡�∗

¡s
= −4

√
b∗ + 3s−

√
b∗524b∗ − s4¡b∗/¡s55

6s2
√

b∗4b∗ + 3s5
0

It can be easily seen that ¡�∗/¡c < 0. Furthermore,
note that b∗ = s�4cs5, where �4x5

△= 41 − 24x − 36x2 +
41 + 6x5

√
1+ 36x+ 36x25/416x5. It can be shown that

�4x5 is decreasing when x ≥ 431− 7
√
175/16. Then b∗ −

s4¡b∗/¡s5=−cs2� ′4cs5 > 0. Then, it immediately follows that
¡�∗/¡s < 0. �

Proof of Proposition 5. Note that the profit in this
model cannot exceed the profit under full information,
where the seeds are allocated optimally. Since, according
to Proposition 1, under full information the firm does not
enter the market when cs > 1/4, this holds true as well in
the uniform seeding case. Thus, there exists � ≤ 1/4, such
that, when cs > � then the firm chooses not to enter the
market.

First, for the firm to make any profit, it is necessary to
charge a positive price. That means that the highest-type
adopters (�= 1) must have positive benefit from the product
before any paid adoption occurs. Thus, it is necessary to
have b ≥ s�. For any (paying or nonpaying) individual with
type �, there are �� seeded customers with type smaller
than �. Therefore, when a paying customer of type � decides
to purchase the product, at the moment of purchase (after
all the higher types already adopted and before any other
lower type adopts) her perceived utility is

u4� � ·5= 6b41− �+��5− s�27�− p0

The utility function is concave in �. Given that u40 � ·5 =
−p ≤ 0, adoption stops at a certain marginal type �m,
where u4�m � ·5 = 0 ≤ u41 � ·5, or, equivalently, �m ≤
4�4b− s�55/4b41−�55.6 Then, it follows that p = 6b41− �m +
��m5− s�27�m, and the profit is given by

�4�m1�1 b5

= p41−�541− �m5− cb2

= 6b41− �m +��m5− s�27�m41−�541− �m5− cb20 (A4)

We optimize first in �m under constraint �m ≤
min84�4b− s�55/4b41−�55119. Note that the profit is
cubic in �m with a positive coefficient for �3m. Solving for
¡�/¡�m = 0, we obtain the following two local extremes:

�m11=
2b−b�−s�2−

√
b2−b2�+b2�2−bs�2−bs�3+s2�4

3b41−�5
1

�m12=
2b−b�−s�2+

√
b2−b2�+b2�2−bs�2−bs�3+s2�4

3b41−�5
0

6 We dismiss the case �m = 1 because in that case the firm cannot
make profit.

It can be shown that 0≤ �m11 ≤ 1≤ �m12. Thus, the profit is
increasing in �m over 601 �m117 and decreasing over 6�m11117.
Thus

�∗m =min

{

�m111
�4b− s�5

b41−�5

}

0 (A5)

We will split the analysis into 10 cases, based on when
�m11 < 4≥54�4b− s�55/4b41−�55.

Case 1. 1/2<�< 1 and b ≥ 4s�25/42�− 15.
Case 2. 45+

√
55/10 < � < 1 and 4−3s�2 + 5s�3 −√

5s�241−�55/4241− 5�+ 5�255≤ b < 4s�25/42�− 15.
Case 3. 45+

√
55/10<�< 1 and s�≤ b < 4−3s�2 + 5s�3 −√

5s�241−�55/4241− 5�+ 5�255.
Case 4. �= 45+

√
55/10 and 443+

√
55s5/454

√
5− 155≤ b <

4s�25/42�− 15.
Case 5. � = 45+

√
55/10 and s� ≤ b < 443 +

√
55s5/

454
√
5− 155.

Case 6. 1/2 < � < 45+
√
55/10 and 4−3s�2 + 5s�3 −√

5s�241−�55/4241− 5�+ 5�255≤ b < 4s�25/42�− 15.
Case 7. 1/2 < � < 45+

√
55/10 and s� ≤ b < 4−3s�2 +

5s�3 −
√
5s�241−�55/4241− 5�+ 5�255.

Case 8. 45−
√
55/10 < � ≤ 1/2 and 4−3s�2 + 5s�3 −√

5s�241−�55/4241− 5�+ 5�255≤ b.
Case 9. 45−

√
55/10 < � ≤ 1/2 and s� ≤ b < 4−3s�2 +

5s�3 −
√
5s�241−�55/4241− 5�+ 5�255.

Case 10. 0<�≤ 45−
√
55/10.

For Cases 1, 2, 4, 7, and 9, we have �∗m = �m11 <
4�4b− s�55/4b41−�55. For all the other Cases (3, 5, 6, 8, 10),
we have �∗m = 4�4b− s�55/4b41−�55 ≤ �m11. Replacing �∗m
in (A4), we obtain an expression for profit in terms of b
and �. It can be shown that when � > 45−

√
55/10, i.e., in

cases 1–9, for any given feasible b, profit is decreasing in �.
Thus, none of these cases is possible under optimality. Con-
sequently, under optimality, the firm will choose � and b such
that case 10 occurs. Thus, under optimality

�∗m=
�∗4b∗−s�∗5

b∗41−�∗5
1 0<�∗≤ 5−

√
5

10
1 b∗≥s�∗0 (A6)

Replacing �∗m in (A4), we obtain

�4�1b5= b41− 2�5�− s2�4

b
− s�241− 3�5− cb20 (A7)

It can be shown that when � < 45−
√
55/10, then

¡2�4�1b5/¡�2 ≤ 0 for any feasible b, i.e., profit is con-
cave in the seeding ratio. Also, ¡�4�1b5/¡���=0 > 0,
¡�4�1b5/¡���=45−

√
55/10 < 0. Moreover, when b < s, it can also

be shown that ¡�4�1b5/¡���=b/s < 0. Thus, the optimal seed-
ing ratio is interior, unique, and satisfies FOC. Further-
more, �∗4b5 < b/s for any b, so the only constraint on b
that we imposed will be satisfied. For any b, the seeding
ratio is given in implicit form as the unique solution to
¡�4�1b5/¡�= 0 over the interval 601 45−

√
55/105. Simplify-

ing FOC, for any b, �∗4b5 satisfies

b261− 4�∗4b57− 4s2�∗4b53 + bs�∗4b56−2+ 9�∗4b57= 0 and

�∗4b5 <
5−

√
5

10
0

(A8)

For any general value � ∈ 44245− 2
√
255/171 45−

√
55/105,

we have b241 − 4�5 − 4s2�3 + bs�4−2 + 9�5 < 0 for any



Dou, Niculescu, and Wu: Engineering Network Effects via Social Media and Seeding
182 Information Systems Research 24(1), pp. 164–185, © 2013 INFORMS

b ≥ 0, s ≥ 0. Thus, it must be the case that �∗4b5 ∈
601 4245− 2

√
255/177.

In regions where the firm enters the market, we need
to prove existence and uniqueness of b∗ maximizing
�4�∗4b51 b5 in (A7).

First, when s = 0, it immediately follows that the unique
solution is b∗ = 1/416c5.

For the remaining part of the proof we focus on the case
when s > 0. Using (A8) to simplify (A7), we obtain

�4b5= b243− 16cs5+ 6b4−2b+ s5�∗4b5+ 411b− 8s5s�∗4b52

16s
0

(A9)

From (A8) we have limb→0 �
∗4b5 = 0; hence from (A9) we

have limb→0�4b5 = 0. Moreover, when b = 0, the firm can-
not make profit as no consumer will buy the product
for a positive price. As such �405 = 0. It can be shown
that limb→� �∗4b5 = 1/4. From Equation (A7), we see that,
in this case, −cb2 will be the dominant term as b gets
large. Hence, limb→��4b5 = −�. It follows immediately
that for large b, the profit will be decreasing in b. Given
that �∗4b5 ∈ 601 4245− 2

√
255/177, there exists b̄ > 0 such that

�4b5 < 0 for all b > b̄, �405= 0, and �4b5 is continuously dif-
ferentiable on compact 601 b̄7, the existence of a maximum
is guaranteed for �4b5 over 601�5.

We next move to prove uniqueness of b∗ in cases where
s > 0 and the firm chooses to enter the market, i.e., in cases
when �4b∗5 > 0. Since �405= 0, b∗ must be interior and sat-
isfy FOC of (A9), i.e., ¡�4b5/¡b�b=b∗ = 0.

We will prove below that FOC of (A9) can have a
unique solution when �∗4b5 ∈ 401 4245− 2

√
255/177, �∗4b5 sat-

isfies (A8), and b > 0. We can skip case �∗ = 0 because in
that case the firm will set b∗ = 0 because it cannot make any
profit. Differentiating (A8) with respect to b and using the
implicit function theorem, we obtain

d�∗4b5

db
= 2b41− 4�∗5+ s�∗49�∗ − 25

26b42b+ s5− 9bs�∗ + 6s2�∗27
0 (A10)

It can be easily shown that b42b+ s5− 9bs�+ 6s2�2 > 0 for
any b > 0, s > 0, 0 ≤ � ≤ 4245− 2

√
255/17. Thus, the deriva-

tive in (A10) is properly defined. Taking total derivatives in
Equation (A9) with respect to b, we obtain d�/db= ¡�/¡b+
¡� /¡�∗ × d�∗/db. Inserting (A10), we obtain

d�

db
= 4−32b3c+ s2�∗268+ 3�∗411�∗ − 657

+ 2b263+ 8cs49�∗ − 15+ 2�∗412�∗ − 757

− bs�∗68+�∗472�∗ + 96cs− 31575

· 486b42b+ s5− 9bs�∗ + 6s2�∗275−10 (A11)

As discussed above, the denominator is always positive.
Thus, for FOC to be satisfied, the numerator must be zero.
We discuss two cases:

(i) �∗ = 1/4. Then, from (A8) it follows that b∗ = s.
Replacing b∗ in (A11), we have d�/db = 0 if and only if
cs = 33/5120

(ii) �∗ ∈ 4011/45∪ 41/41 4245− 2
√
255/177. Then, from (A8)

we have

b2 = 4s2�∗3 + bs�∗42− 9�∗5

1− 4�∗ 0 (A12)

Repeatedly using (A12) to reduce the degree of b, we can
transform the numerator in the left-hand side of (A11) into
a linear equation in b. It follows that a maximizing b value
must satisfy

b = 4s�∗4−8+ 58�∗ + 64cs�∗ − 97�∗2 − 576cs�∗2 − 88�∗3

+ 11152cs�∗3 + 240�∗455

· 44− 32cs− 63�∗ + 336cs�∗ + 340�∗2 − 11232cs�∗2

− 752�∗3 + 11568cs�∗3 + 576�∗45−10 (A13)

A profit-maximizing pair 4�4b∗51 b∗5 must satisfy both (A8)
and (A13). Inserting (A13) into (A8), we obtain

�14�
∗5×�24�

∗5×�34�
∗5= 01 (A14)

where

�14�5
△= −48s241− 4�5241−�5�25

· 4616cs47�− 2541+ 7�42�− 155

+ 44�− 154−4+�447+ 8�418�− 19555725−11

�24�5
△= 4+ 34�2 − 23�1

�34�5
△= 256c2s2�2 − 2cs49�− 2544+�2 − 8�5

− 4�− 1544�− 1544+ 3�46�− 5550

It can be immediately seen that �14�5 < 0 and �24�5 > 0
for all � ∈ 4011/45 ∪ 41/41 4245− 2

√
255/177. Thus, (A14)

can hold if and only if �34�
∗5 = 0. Thus, for b to be

unique, it is necessary and sufficient for �34�5 to have a
unique solution over 4011/45∪ 41/41 4245− 2

√
255/177 when

cs < 1/4. It can be shown that d�34�5/d� > 0 on 401 4245−
2
√
255/177 when cs < 1/4. Moreover, �3405=−4+ 16cs < 0

and �344245 − 2
√
255/175 = 4411024433− 20

√
255/28954cs −

421
√
2− 105/54452 ≥ 0. Thus, �34�5 = 0 has a unique solu-

tion in the desired region. Moreover, given that �341/45 =
41/3254−33+ 512cs5, we see that a unique optimal solution
under case (ii) always exists when cs 6= 33/512. When cs =
33/512, no solution exists under case (ii) but a unique solu-
tion exists under case (i). �

Proof of Proposition 6. Note that in this model, for any
b > 0 and �> 0, because b� > 0, the firm can get the adop-
tion started under a positive price because the highest-type
customers have no seeding-induced disutility. The firm will
never choose �= 0 or b= 0. For any (paying or nonpaying)
individual with type �, there is a mass of size �� of seeded
customers with types smaller than �. Therefore, when a pay-
ing customer of type � decides to purchase the product, at
the moment of purchase (after all the higher types already
adopted and before any other lower type adopts) her per-
ceived utility is

u4� � ·5= 6b41− �+��5�− s�241− �57− p0

The utility function is concave in �. Given that u40 � ·5 =
−s�2 − p ≤ 0, adoption stops at a certain marginal type �m,
where u4�m � ·5 = 0 ≤ u41 � ·5, or, equivalently, �m ≤
4�4b+ s�55/4b41−�55.7 Then, it follows that the optimal

7 We dismiss the case �m = 1 because in that case the firm cannot
make profit.
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price is p= b41−�m+��m5�m− s�241−�m5, and the profit is
given by

�4�m1�1 b5 = p41−�541− �m5− cb2

= 6b41− �m +��m5�m − s�241− �m57

· 41−�541− �m5− cb20 (A15)

We optimize first in �m under constraint �m ≤ min84�4b +
s�55/4b41−�55119. Note that the profit is cubic in �m with a
positive coefficient for �3m. Solving for ¡�/¡�m = 0, we obtain
the following two local extremes:

�m11=
2b−b�+s�2−

√
b2−b2�+b2�2−2bs�2+4bs�3+s2�4

3b41−�5
1

�m12=
2b−b�+s�2+

√
b2−b2�+b2�2−2bs�2+4bs�3+s2�4

3b41−�5
0

It can be shown that 0 ≤ �m11 ≤ 1 ≤ �m12. Therefore, the
profit is increasing in �m over 601 �m117 and decreasing over
6�m11117. Thus

�∗m =min

{

�m111
�4b+ s�5

b41−�5

}

0 (A16)

We will split the analysis into five cases, based on when
�m11 ≤ 4≥54�4b+ s�55/4b41−�55.

Case 1. 1/2≤ �.
Case 2. 0<�< 1/2 and b ≤ 4s�25/41− 2�5.
Case 3. 45−

√
55/10≤ �< 1/2 and 4s�25/41− 2�5 < b.

Case 4. 0 < � < 45 −
√
55/10 and 4s�25/41 − 2�5 < b ≤

4s�241− 2�+
√

�41−�555/41− 5�+ 5�25.
Case 5. 0 < � < 45 −

√
55/10 and 4s�241 − 2� +

√

�41−�555/41− 5�+ 5�25 < b.
For Cases 1–4, we have �∗m = �m11 ≤ 4�4b + s�55/
4b41 − �55. For Case 5, we have �∗m = 4�4b + s�55/
4b41−�55≤ �m11. Replacing �∗m in (A4), we obtain an expres-
sion for profit in terms of b and �. It can be shown that in
all Cases 1–4, for any given feasible b, profit is decreasing
in �. Thus, none of these cases is possible under optimal-
ity. Case �= 45−

√
55/10 can be easily ruled out as well (to

make sure that the optimal solution is not at the boundary
of Case 3). Consequently, under optimality, the firm will choose
� and b such that Case 5 occurs. Thus, under optimality,

�∗m = �∗4b∗ + s�∗5

b∗41−�∗5
1 0<�∗ <

5−
√
5

10
1

b∗ >
s�∗241− 2�∗ +

√

�∗41−�∗55

1− 5�∗ + 5�∗2 0

(A17)

Replacing �∗m in (A15), we obtain

�4�1b5= b41− 2�5�− s�3 − cb20 (A18)

We consider two cases: (i) s = 0 and (ii) s > 0.
(i) s = 0. In this case, the optimal strategy under SDU−

with uniform seeding is identical to the optimal strategy
under SDU+, which has been derived in Proposition 5.

(ii) s > 0. In this case, from A18, for any b, we see that
profit is cubic in � with negative coefficient for the degree 3
term. The solutions to �4�1b5/¡�= 0 are

�1=
−2b−

√
4b2+3bs

3s
<0<�2=

−2b+
√
4b2+3bs

3s
<

5−
√
5

10
0

It immediately follows that

�∗4b5= −2b+
√
4b2 + 3bs

3s
0 (A19)

It can be verified that

s�∗4b5261− 2�∗4b5+
√

�∗4b541−�∗4b557

1− 5�∗4b5+ 5�∗4b52
< b

for any b > 0. Thus, the constraint in Case 5 holds for any
b once the firm seeds a fraction �∗4b5 of the market. Then,
inserting �∗4b5 into (A18), we obtain

�4b5= b648b+ 6s5
√

b44b+ 3s5− 16b2 − 9bs42+ 3cs57

27s2
0 (A20)

Then, it can be shown that ¡�4b5/¡b= 0 has three roots

b1 = 1− 12cs− 9c2s2 − 41+ 3cs5
√
1+ 18cs+ 9c2s2

32c
< b2 = 0

< b3 =
1− 12cs− 9c2s2 + 41+ 3cs5

√
1+ 18cs+ 9c2s2

32c
1

and ¡�4b5/¡b < 0 on 4b1105 ∪ 4b31�5 and ¡�4b5/¡b > 0 on
4−�1 b15∪ 401 b35. Consequently,

b∗=b3=
1−12cs−9c2s2+41+3cs5

√
1+18cs+9c2s2

32c
0 (A21)

Then, it immediately follows that �∗m = 1/3. Plugging in
all the optimal parameters in the profit function, it can be
shown that the optimal profit is positive for any s > 0 and
c > 0. �

Proof of Proposition 7. Follows directly from comput-
ing the derivatives of the equilibrium �∗ and b∗ derived in
Proposition 6 with respect to c and s. �

Appendix B. Generalization of Model SDU
+

Under Complete Information
The analysis of firm’s strategies under seeding disutility
model SDU+ and full information (on the seller side) can
be extended to general consumer utility structures and type
distributions as detailed in the next two subsections.

B.1. General Utility Structures
In this section we explore a more general form of the util-
ity function, where the link between customer types and
WTP is moderated by a function w that is twice differen-
tiable, with ¡w/¡� > 0, w405 = 0, and w415 = 1. Thus, if at
the current moment the installed base has size �, the utility
perceived momentarily by a paying customer of type � is

u4� � �1b1p1�5= 4b�− s�25w4�5− p0 (B1)

The following result captures firm’s optimal strategies when
w4�5 is concave.

Proposition B1. Under SDU+ and complete information,
when w is concave, then the optimal strategy is the same as in
Proposition 1.

Proof of Proposition B1. When w is concave, it can be
shown that Lemma 1 still applies. Because the proof of this
statement follows similar steps as the proof of Lemma 1, we
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omit it for brevity. Proof is available from the authors upon
request. If the firm stays in the market, every customer ends
up with the product and seeds go to the lowest valuation
customers. Nevertheless, unlike in Lemma 1, depending on
the properties of moderating function w, IR constraint does
not need to be always binding for the highest-type cus-
tomers at adoption time. Similar to the argument in the
proof of Proposition 1, for any paying customer of type �,
at the moment of adoption the installed base is �4�1�5 =
1− �+�. Thus, for any paying customer of type � ∈ 6�117,
the utility at the adoption moment is given by

u4� � �1b1p1�4�1�55= 6b41− �+�5− s�27w4�5− p0 (B2)

Because w is concave, given the boundary conditions
w405= 0 and w415 = 1, then it immediately follows that
w4�5≥ � for all � ∈ 60117. Then,

¡u4� � �1b1p1�4�1�55
¡�

=−bw4�5+ 6b41− �+�5− s�27
¡w4�5

¡�
1

¡2u4� � �1b1p1�4�1�55
¡�2

=−2b
¡w4�5

¡�

+ 6b41− �+�5− s�27
¡2w4�5

¡�2
≤ 00

Thus, perceived utility at adoption time u4� � �1b1p1�4�1�55
is concave in �. Thus, for adoption to start and not stall at
all, it is necessary and sufficient that the IR constraints hold
for the extreme adopting types � = 1 and � = �. These IR
constraints are

u4�= 1 � �1b1p1�411�55= 4b�− s�25− p≥ 01

u4�= � � �1b1p1�4�1�55= 4b− s�25w4�5− p≥ 00

Because w4�5≥ � for all � ∈ 60117 and � ∈ 60117, then it fol-
lows that 4b− s�25w4�5≥ 4b− s�25�≥ b�− s�2. Because the
firm is profit maximizing, the IR constraint will be binding
for the highest type. We retrieve exactly the same solution
as in Proposition 1. �

In Proposition B1, Lemma 1 continues to apply: seeds go
to the lowest end of the valuation spectrum (i.e., � ∈ 601�∗55
and all other customers purchase the product. Proposi-
tion B1 extends our findings under the baseline model
where the utility function was linear in type to more general
nonlinear cases. Proposition B1 shows that under a concave
moderating function w, the optimal strategy is the same as
in the baseline case. Thus, the complementarity interaction
between seeding and increasing the strength of network
effects via social media features characterized in Proposi-
tion 2 extends to this setting as well, and the same insights
apply. Similar to the analysis in §3.1, IR constraint at adop-
tion time will be binding for the highest-type customers.
Also, the majority of customers will be paying customers
(�∗ ≤ 1/2).

B.2. General Distribution Functions
So far we have assumed that customers are uniformly
distributed. In this section we relax this assumption and
consider a general customer type cumulative distribution
function (cdf) F that is continuous, strictly increasing, and
twice differentiable, with boundary conditions F 405= 0 and
F 415 = 1 (i.e., no atom mass concentrated at any customer
types). Similar to the baseline case in §3.1, we consider
w4�5= �.

Although, for the very general case the optimal solution
is not tractable in closed form, we are able to derive firm’s
strategy for certain distribution classes as illustrated in the
following result:

Proposition B2. Suppose F satisfies the following two con-
straints for all � ∈ 60117: 415 2F ′4�5 + �F ′′4�5 ≥ 0, and
(2) F 4�5≤ �. Then the optimal strategy 8�∗1 b∗1 p∗9 is the same
as in Proposition 1, with customers with types � ∈ 601 F −14�∗55
being seeded and all other customers purchasing the product.

Proof of Proposition B2. Again, under the very specific
conditions in this proposition, results similar to the ones
in Lemma 1 hold in the sense that when the firm chooses
to stay in the market, it will choose a strategy such that
all customers get the product (all seeds go to the lowest
end of the type distribution and all other customers end up
purchasing the product). Proof is omitted for brevity but
available from the authors upon request. Because � denotes
the seeding ratio, then under optimal strategy customers in
the interval 601 ��5 are seeded where F 4��5= �.

If a fraction � of the market is seeded, then seeds go to
types 601 ��5 with F 4��5= �. For a paying customer of type
� ∈ 6��117, at adoption time there exists an installed base of
mass �4�1�5 = 1 − F 4�5 + �. Thus, the perceived utility at
adoption time is given by

u4� � �1b1p1�4�1�55= 6b41− F 4�5+�5− s�27�− p0 (B3)

Then, using the first constraint on F , we obtain

¡u4� � �1b1p1�4�1�55
¡�

=−bF ′4�5�+ 6b41− F 4�5+�5− s�271

¡2u4� � �1b1p1�4�1�55
¡�2

=−b62F ′4�5+ �F ′′4�57≤ 00

Thus, perceived utility at adoption time is concave in con-
sumer type and, consequently, in order for paid adoption
to start and not stall, it is necessary and sufficient that the
IR constraint holds for the extreme paying customer types
�= 1 and �= ��:

u4�= 1 � �1b1p1�411�55= 4b�− s�25− p≥ 01

u4�= �� � �1b1p1�4��1�55= 4b− s�25�� − p≥ 00

Using the second constraint on F , we have � = F 4��5 ≤
�� ≤ 1. Then, b� − s�2 ≤ b�� − s�2 ≤ b� − s�2��. Conse-
quently, when the firm maximizes profit, the IR constraint
at adoption time must be binding for the highest type
� = 1. The rest of the proof is identical to the proof of
Proposition 1. �

In general, convex cdf functions F satisfy the required cri-
teria. Such functions describe markets where there are more
high-type customers. Thus, once a few low-type customers
are seeded, paid adoption can sustain momentum at the
high valuation level given the distribution skewness. Also
distribution functions that are sublinear, increasing, and not
extremely concave on any type interval satisfy the criteria.
For all such distributions, the complementarity results in
Proposition 2 continue to hold as well.
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