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When two equal photon-number states are

combined on a balanced beam splitter, both

output ports of the beam splitter contain

only even numbers of photons. Consider the

time-reversal of this interference phenomenon:

the probability that a pair of photon-number-

resolving detectors at the output ports of a

beam splitter both detect the same number

of photons depends on the overlap between

the input state of the beam splitter and a

state containing only even photon numbers.

Here, we propose using this even-parity de-

tection to engineer quantum states contain-

ing only even photon-number terms. As an

example, we demonstrate the ability to pre-

pare superpositions of two coherent states

with opposite amplitudes, i.e. two-component

Schrödinger cat states. Our scheme can pre-

pare cat states of arbitrary size with nearly

perfect fidelity. Moreover, we investigate engi-

neering more complex even-parity states such

as four-component cat states by iteratively ap-

plying our even-parity detector.

1 Introduction

The number of excitations in an optical field deter-
mines a fundamental property known as parity. If
a field has an even (odd) number of photons, it is
said to have even (odd) parity. With the exception of
the vacuum state, fields in classical (e.g. coherent,
thermal) states possess uncertainty in their parity,
i.e. they have a non-zero probability to have both
even and odd photon numbers. Conversely, states
of light with a definite parity have non-classical fea-
tures. For example, squeezed vacuum is a superposi-
tion of only even photon numbers and has reduced
quantum fluctuations in its electric field compared
to classical light [1]. This reduction in noise makes
squeezed vacuum a valuable resource for optical quan-
tum information processing [2, 3] and quantum sens-
ing [4]. Other notable examples of definite parity
states that have found uses in quantum technologies
include Schrödinger cats [5], Holland-Burnett [6], and
Gottesman-Kitaev-Preskill states [7]. The ability to
prepare these and other definite parity optical states

in a scalable and robust manner is highly desirable for
developing quantum technologies.

On-demand manipulation of the parity of an op-
tical field is not an easy task since it requires non-
linearities at the single-photon level. One way to
achieve these non-linearities is to couple the field to
atoms [8–11]. An alternative approach is to perform
a measurement (e.g. photon number, quadrature) on
one subsystem of an entangled state to conditionally
prepare the state of the other subsystem. Because
this approach is easier in practice, there have been
many proposals and experimental demonstrations of
measurement-based state engineering [12–16], includ-
ing those focusing on Schrödinger cat states [17–27].
However, the measurement in most of these schemes
is performed by binary “click” detectors which cannot
distinguish between one and many photons.

Thanks to recent advances in detector technology,
it is now possible to count the number of photons in
an optical field using photon-number-resolving detec-
tors [28]. This advancement enables new state engi-
neering schemes that exploit the number resolution of
such detectors [29–32]. For example, some recent pro-
posals and experiments have employed multi-photon
subtraction [33], addition [34], and catalysis [35–37].

In this paper, we propose a novel scheme to engi-
neer a broad class of even-parity states using photon-
number-resolving detectors. We first construct a de-
vice that measures the overlap of its input with an
even-parity state whose photon-number coefficients
are controlled by an ancilla state. We refer to this
measurement device as an “even-parity detector”.
Then, by measuring one of the modes of a two-mode
squeezed vacuum state with our even-parity detec-
tor, we produce an even-parity state |ψ〉 in the sec-
ond mode. We show that for an ancilla in a coherent
state of amplitude β, the produced even-parity state
is a symmetrized version of the ancilla, i.e. |catβ〉 =
N (|β〉 + |−β〉), where the two phase-conjugated co-
herent states, |β〉 and |−β〉, play the role of the “alive”
and “dead” cats in Schrödinger’s famous Gedanken-
experiment [5]. Cat states have been extensively stud-
ied in quantum physics due to their foundational im-
portance [38–46] and their applications in quantum
information processing [47–53]. In principle, our pro-
cedure can prepare arbitrarily large cat states with
nearly perfect fidelity. Furthermore, we also inves-
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Figure 1: The even-parity detector. (a) Conditioned on ob-
taining the detection outcome (n, n), the composite detector
shown in the grey box performs the projective measurement
|χ〉 〈χ| on the input state ρ̂. The state |χ〉 contains only
even photon-number terms whose amplitudes are controlled
by |φ〉. (b) Example case of n = 20 and |φ〉 = |β〉, a co-
herent state with amplitude β =

√
20. The photon-number

distribution |〈j|χ〉|2 (black line) approximates that of the an-
cilla input |〈j|φ〉|2 (grey area) with the odd photon-number
terms eliminated. The grey line shows the matrix element
|Aj,n|2 (see Eq. (4)) connecting the beam splitter input to
the detected state |n, n〉 at its output. Note that the dis-
tributions are discrete and the lines are merely to guide the
eye.

tigate engineering four-component cat states which
have applications in quantum error correction [52–56]
and quantum sensing [57–60].

2 An even-parity detector

We begin by describing the even-parity detector which
is shown in the grey box of Fig. 1(a). An “input”
state ρ̂ is combined with an ancillary “control” state
|φ〉 on a balanced beam splitter. We assume that ρ̂
is arbitrary. The control state is a general pure state,
which can be written in the photon-number basis as

|φ〉 =

∞
∑

m=0

cm |m〉 (1)

with
∑

m |cm|2 = 1. The outputs of the beam splitter
are then sent to photon-number-resolving detectors
which we assume to have perfect efficiency for now.
The joint probability to measure n photons in both
output ports, i.e. the outcome (n, n), is given by

pr(n, n) =
〈

n, n
∣

∣

∣
Û [ρ̂⊗ |φ〉 〈φ|] Û†

∣

∣

∣
n, n

〉

(2)

where Û is the balanced beam splitter unitary oper-
ator. Re-writing Eq. (2) as pr(n, n) = 〈χ|ρ̂|χ〉, it be-
comes clear that the measurement device is described
by a projector |χ〉 〈χ| acting on the input state ρ̂ when
the detection outcome is (n, n). The unnormalized
projected state |χ〉 is given by

|χ〉 = 〈φ|Û†|n, n〉 =
2n
∑

j=0

c∗
2n−jAj,n |j〉 , (3)

where

Aj,n = 〈j, 2n− j|Û |n, n〉

=

{

(

i
2

)n
√

(2n−j)!(j)!

(j/2)!(n−j/2)! for even j

0 for odd j

(4)

is the matrix element of the beam splitter opera-
tor [61]. As one might expect, |χ〉 depends on the
photon-number coefficients c2n−j of the control state.
Perhaps more surprisingly, |χ〉 consists only of even
photon-numbers. This effect can be understood by
considering our device in reverse. When |n, n〉 im-
pinges on a beam splitter, a pairing interference ef-
fect causes both output ports to only contain even-
photon numbers, much like in Hong-Ou-Mandel inter-
ference [62]. This even-parity state Û |n, n〉 was first
discussed in Ref. [63] but is commonly referred to as
the Holland-Burnett state after the work of Ref. [6].
By post-selecting the detection outcome (n, n) at the
beam splitter output, our even-parity detector de-
structively projects the two-mode input of the beam
splitter onto the Holland-Burnett state with the de-
composition into the photon-number basis given by
Eq. (4).

In our case, one of the inputs of the beam splitter
is the control state |φ〉. As a result, the other input,
ρ̂, is projected onto an even-parity state |χ〉 whose
photon-number coefficients are determined by c2n−j

of the control state as well as Aj,n of the Holland-
Burnett state.
Importantly, the latter coefficients are largely con-

stant for j values near n. This can be seen by applying
Stirling’s approximation to Eq. (4):

Aj,n ≈ in√
π

1

[(j/2)(n− j/2)]1/4

≈
√

2

nπ
in
(

1 +
1

4n2
(j − n)

2

)

+ O(j − n)4,

(5)

where in the second line we Taylor expanded Aj,n to
second order around j = n. In other words, if j−n ∼√
n (which is relevant to the practical case discussed

below), the relative variation of Aj,n is on a scale of
1/4n.
In Fig. 1(b), we plot the photon-number distribu-

tion of the detected state |χ〉 when the control state
is a coherent state |β〉 with |β|2 = n = 20. This
example is of particular interest since |χ〉 is approxi-
mately the symmetrized version of the control state,
i.e. a Schrödinger cat state. This symmetrization
occurs for two reasons. Firstly, the photon-number
distribution of |β〉 is centered and localized on the
flat portion of the photon-number distribution of the
Holland-Burnett state, as shown in Fig. 1(b). Sec-
ondly, the photon-number distribution of |β〉 is ap-
proximately symmetric about the detection outcome
n = 20, i.e. cj ≈ c2n−j . As a result, the state |χ〉

Accepted in Quantum 2020-02-24, click title to verify. Published under CC-BY 4.0. 2



Figure 2: Effect of imperfect detection efficiency. (a) The
photon-number distribution pr(j) of the even-parity detec-
tor when the detectors have an efficiency η, i.e. pr(j) =
〈j|Π̂(η)|j〉. We assume n = 20 and cm ≡ 1. For η < 1,
odd photon-numbers contribute to pr(j). (b) The fidelity
F = 〈χ|Π̂(η)|χ〉 as a function of detection efficiency η for
various values of n.

is given by eliminating the odd photon-number terms
of |β〉 while leaving the even terms approximately un-
changed. This operation results in |χ〉 ≈ |β〉 + |−β〉
since the even (odd) photon-number terms in |β〉 and
|−β〉 have equal (opposite) signs. We discuss the
preparation of cat states using our even-parity detec-
tor in more detail in Sec. 3.1.

2.1 Detection efficiency

We now consider the effects of imperfect detection effi-
ciency on our scheme. Suppose both photon-number-
resolving detectors in Fig. 1(a) have an efficiency η.
Given the outcome (n, n), the even-parity detector
projects the input state ρ̂ no longer onto a single state
|χ〉, but rather onto a statistical mixture of states.
This measurement is described by an element of a pos-
itive operator-valued measure (POVM). We derive an
expression for this element, Π̂(η), in Appendix A.

In Fig. 2(a), we plot the photon-number distribu-
tion of the imperfect even-parity detector, pr(j) =
〈j|Π̂(η)|j〉 when n = 20 and cm = 1 for all m, i.e.
a control state with a flat photon-number distribu-
tion. Odd photon-number terms quickly begin to con-
tribute to pr(j) for η < 1. To further quantify the
effect of loss, we numerically compute1 the fidelity
between Π̂(η) and the desired projector |χ〉 〈χ| using
F = 〈χ|Π̂(η)|χ〉 [Fig. 2(b)].

We see that F depends strongly on detection effi-
ciency, however less so for smaller n values. This is
expected since the probability of the detectors having
under-counted at least one photon scales as (1 − η)n,
and hence the effects of imperfect efficiency begin to
kick in for (1−η)n & 1. As a point of reference, state-
of-the-art transition edge sensor detectors can detect
up to ∼ 20 photons with > 95% efficiency [65].

1For the numerical computation, we used the Python pack-
ages Scipy and Qutip [64]. We generally truncated the Hilbert
space to N = 100.

Figure 3: Even-parity state engineering. The even-parity
detector (shown in grey circle) projects one of the modes
of a two-mode squeezed vacuum state |Ψ〉 onto the state
|ψ〉 = 〈χ|Ψ〉. Just like |χ〉, |ψ〉 is an even-parity state
whose photon-number amplitudes are controlled by |φ〉. This
scheme can be viewed either as remote state preparation of
the state |χ〉 or as partial teleportation of the state |φ〉.

3 Even-parity state engineering

In the form discussed so far, the even-parity detec-
tor cannot be used for state engineering since the de-
tected state |χ〉 is destroyed upon detection. Consider
instead the scheme shown in Fig. 3. The idea is to
use an entangled resource with photon-number cor-
relations to remotely prepare a (possibly imperfect)
copy of the state |χ〉 in a separate mode. We begin
with a two-mode squeezed vacuum state,

|Ψ〉 =
√

1 − λ2

∞
∑

k=0

λj |k, k〉 , (6)

where λ = tanh (r) determines the squeezing parame-
ter r, which we assume to be positive-real without loss
of generality. Such states can be prepared using var-
ious non-linear optical processes such as spontaneous
parametric down-conversion using continuous-wave or
pulsed pump lasers [1].
By sending one of the modes of |Ψ〉 to the even-

parity detector, the second mode is projected onto
the unnormalized state

|ψ〉 = 〈χ|Ψ〉 =
√

1 − λ2

2n
∑

j=0

c2n−jλ
jA∗

j,n |j〉 . (7)

Note that |ψ〉 is the same as |χ〉 except for the factor
of λj inside the summation due to the finite squeezing,
i.e. λ 6= 1. In some cases, it is possible to compen-
sate this effect of finite squeezing when λ is known by
changing the control state coefficients {cm} appropri-
ately. In the next section, we use this idea to prepare
cat states.

3.1 Two-component cat states

Suppose we wish to prepare the even two-component
Schrödinger cat state |catβ〉 = N (|β〉 + |−β〉) , where
N =

[

2(1 + e−2|β|2

)
]−1/2

is the normalization fac-

tor. In Sec. 2 we explained that the detected state
|χ〉 is a symmetrized version of the ancilla when the
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Figure 4: Two-component cat states. (a) The fidelity F of
the cat state prepared by our scheme, |ψcat〉, with respect
to the ideal state |catβ〉. The blue circles are obtained from
Eq. (9) for |β|2 ∈ N. The continuous line is obtained from a
numerical optimization of the parameters α and n used in our
scheme. The red dashed line shows the probability pr(n, n)
of successfully heralding |ψcat〉 using the optimal squeezing
parameter. (b) The fidelity obtained with imperfect detec-
tion efficiency η for various cat sizes when λ = 0.82 (10
dB of squeezing). White contour lines indicate the normal-
ized volume of negativity in the prepared cat state’s Wigner
function.

latter is in a coherent state. Hence, one might think
using |φ〉 = |β〉 would be the optimal choice to pre-
pare |catβ〉. However, while |χ〉 would closely resem-
ble |catβ〉, the remotely prepared state |ψ〉 would not
have the desired photon-number distribution in the
realistic scenario of finite squeezing. As mentioned
earlier, one can generally compensate for this effect by
carefully choosing the control state coefficients. For
cat states this compensation is experimentally easy
since one can simply choose the coherent control state
|φ〉 = |α〉 with the amplitude α = βλ. In this case,
given the detection outcome (n, n), we prepare the
state

|ψcat〉 = N ′
2n
∑

j=0

α2n−jλj

√

(2n− j)!
A∗

j,n |j〉

= N ′λ2n
2n
∑

j=0

β2n−j

√

(2n− j)!
A∗

j,n |j〉 ,
(8)

where N ′ is the new normalization factor. To maxi-
mize the fidelity F = |〈ψcat|catβ〉|2, one should gener-
ally post-select on the detection outcome n to be the
closest integer to |β|2. This condition ensures that
the photon-number distribution of |ψcat〉 is centered
on the flat portion of Aj,n. In the particular case when
the cat size |β|2 is exactly an integer, i.e. |β|2 = n,
the fidelity is given by

F =
22n+1e−n

(1 + e−2n)

(

n
∑

k=0

(

n

k

)2
(2k)!

n2k

)−1

. (9)

This fidelity asymptotically approaches unity with in-
creasing cat size, as shown by blue circles in Fig. 4(a).
For small |β|2 (and hence small n), Aj,n is not flat,
causing the dip in the fidelity.
Further improvement of the fidelity for small |β|2

can be obtained through numerical optimization2 of
the parameters α and n. The optimized fidelity is
shown by the black line in Fig. 4(a). The small os-
cillations are due to discrete nature of the parameter
n.

The effect of imperfect detectors on F can be
numerically calculated using Π̂(η), as discussed in
Sec. 2.1. The result is shown in Fig. 4(b). On the
same plot, white contour lines indicate the volume
of negativity, a well-known measure of nonclassicality
that is obtained by integrating the negative regions
of the cat state’s Wigner function [66]. We normal-
ize the volume of negativity to that of an ideal cat
state of equal size, i.e. 1 is the maximum amount of
negativity for a cat state of that size, while 0 is no
negativity.

Since our scheme requires post-selecting onto a sin-
gle outcome (n, n), it is important to consider the
scaling of the probability of successfully preparing the
cat state, which is given by pr(n, n) = ‖〈χ|Ψ〉‖2

=

|〈ψ|ψ〉|2. This probability depends on both β and
λ since these parameters determine the number of
photons after the beam splitter. In fact, there is an
optimal choice for λ that maximizes pr(n, n) given
a desired cat size |β|2. We numerically determine
this optimal λ by finding where the derivative of
pr(n, n) with respect to λ vanishes [red dashed line in
Fig. 4(a)]. We find that pr(n, n) scales as ∼ |β|−5/2

which sets the fundamental limit on the success rate
of our scheme. Such decrease of the success rate
with the cat size is a typical feature of post-selected
schemes for large cat state preparation [21, 26, 27].
Note the complementarity of our scheme with respect
to Ref. [21]: while the latter scheme requires a non-
Gaussian photon-number input state and Gaussian
homodyne measurement, our scheme requires a Gaus-
sian input state and a non-Gaussian measurement.

3.2 Four-component cat states

It is possible to concatenate even-parity detectors in
order to engineer more complex even-parity states,
as shown in Fig. 5(a). Here, we use such a concate-
nated scheme to prepare a superposition of four co-
herent states with equal amplitudes and equidistant
phases, i.e. a four-component cat state. These pro-
vide the logical states in the fault-tolerant quantum
information “cat code” [54, 55]. Four-component cat
states have also been studied in the context of quan-
tum sensing [58–60] since they can have phase-space
features that are smaller than Planck’s constant [57].
There exist schemes for preparing four-component cat
states in the microwave domain with superconducting
qubits [52, 53] and in the motional state of a mechan-
ical oscillator [67, 68]. To the best of our knowledge,

2The optimization algorithms used Scipy’s function opti-

mize.minimize with the default BFGS method.

Accepted in Quantum 2020-02-24, click title to verify. Published under CC-BY 4.0. 4



Figure 5: Four-component cat states. (a) We concatenate
two instances of the even-parity detector. Between both in-
stances, a displacement operation D̂ is performed. Using
this concatenated scheme, we prepare a four-component cat
state. (b) The Wigner functions of the signal state is dis-
played for different stages of the procedure (here β =

√
10).

(c) Fidelity of the four-component cat state with respect to
the ideal state in Eq. (11), assuming infinite squeezing, i.e.
λ = 1. The blue circles are obtained by setting n = |β|2 ∈ N,
whereas the line is obtained from a numerical optimization of
the post-selected photon numbers at both stages, the ampli-
tude of the initial coherent state and the displacement. (d)
Behavior of the fidelity for finite squeezing, i.e. λ < 1.

there is no preparation scheme in the optical domain3.
We begin by discussing our scheme assuming infi-

nite squeezing, i.e. λ = 1. The finite squeezing case
will be considered later. The first step is to produce
a cat state |β〉 + |−β〉 as described in the previous
section. Next, we displace this cat state by β in the
direction perpendicular to the axis of the cat, i.e. ap-
ply the displacement operator D̂(iβ):

|ψiii〉 = D̂(iβ) (|β〉 + |−β〉)
= ei2|β|2 |β + iβ〉 + e−i2|β|2 |−β + iβ〉 .

(10)

Finally, by measuring one of the modes of a fresh
copy of |Ψ〉 with a second even-parity detector that
uses |ψiii〉 as its control state, we should prepare a
symmetrized version of |ψiii〉. Indeed, post-selecting
on the outcome (2n, 2n), we prepare an approximate
version of the state

|ψiv〉 = |β − iβ〉 + |−β + iβ〉
+ e−i2|β|2

(|β + iβ〉 + |−β − iβ〉) ,
(11)

which is the desired four-component cat state. It
should be noted that the phase term e−i2|β|2

is de-
termined by the size of the cat and cannot be inde-
pendently controlled in our scheme. We numerically

3While preparing this manuscript, we became aware of
Ref. [69] which proposes a deterministic scheme.

simulated this procedure and plot the Wigner func-
tion of the state at each step in Fig. 5(b).

The fidelity of the final state with |ψiv〉 as a function
of its size is shown in Fig. 5(c). The behavior is similar
to that to two-component cats studied above. That
is, the fidelity asymptotically approaches unity with
increasing |β|2, but shows a dip for small |β|2 due
to variation of the Holland-Burnett state coefficients
Aj,n.

We now consider the case of finite squeezing, i.e.
λ < 1. If we were able to prepare a perfect two-
component cat at stage (iii), the effect of finite squeez-
ing on |ψiv〉 could be compensated by appropriately
choosing the amplitude and displacement of that cat.
However, unlike the first control state, this second
control state is imperfect, which prevents the compen-
sation from working properly for the following reason.
When λ < 1, the values of j corresponding to the most
significant coefficients of the heralded state’s photon-
number decomposition (7) are shifted with respect to
the center of the control state’s photon-number de-
composition, towards lower j. In other words, |ψiv〉 is
mainly determined by the photon-number coefficients
c2n−j in the tail of the distribution of |ψiii〉. While
the fidelity of |ψiii〉 is determined by its most signif-
icant photon-number coefficients, and increases with
its size, the errors in the tail region of the distribution
remain roughly constant. As a result, the fidelity of
the final state depends on the squeezing parameter,
as shown in Fig. 5(d). That is, high-fidelity compen-
sation appears to be possible only above a squeezing
level of about 12–13 dB, independent of the cat size.

3.3 Experimental realizations

We briefly discuss our scheme in the context of current
experimental capabilities. The requirements on the
fidelity and size of the cat states ultimately depend
on their desired use. For instance, Fig. 4(b) suggests
that it is possible to prepare large cat states exhibiting
Wigner negativity using transition edge sensors, since
these have > 95% efficiency and can detect up to ∼ 20
photons [65].

Besides the detectors, another important consid-
eration is the two-mode squeezed vacuum source.
Preparing large cats in practice requires significant
squeezing to obtain a reasonable heralding rate. At
most 15 dB of squeezing is required to achieve the
optimal heralding probability for two-component cat
state of sizes up to |β|2 = 50 [see red curve in
Fig. 4(a)]. For example, at the 100 kHz experimental
repetition rate usually used with transition edge sen-
sors, one could herald a cat state of size |β|2 = 20 at a
rate of ∼ 100 Hz using 13 dB of squeezing. Such high
squeezing levels are achievable in a pulsed experiment
using optical waveguides [70, 71] or in a continuous-
wave experiment using an optical parametric oscilla-
tor [72, 73]. If instead only e.g. 5 dB of squeezing
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is available, then one could herald a cat state of size
|β|2 = 5 at a rate of ∼ 1 Hz.

Finally, we remark that imperfections such as ther-
mal noise and modal purity of the two-mode squeezed
vacuum source would also affect the performance of
our scheme. While the former imperfection can be
modelled with optical loss [1] [see Fig. 4(b)], the latter
is more complicated. To minimize its effect, one would
need to ensure that |Ψ〉 occupies a pair of well-defined
spatio-temporal modes, one of which is well-matched
to that of the control state |φ〉.

4 Summary and outlook

To summarize, we devised an even-parity detector by
exploiting the interference phenomenon that leads to
the production of Holland-Burnett states in a time-
reversed fashion. The even-parity detector is con-
trolled by varying the photon-number distribution of
an ancillary control state. When this ancilla is in a
coherent state, we showed that one can prepare two-
and four-component Schrödinger cat states of arbi-
trary size with nearly-perfect fidelity. In practice, the
size of the cats is limited by the dynamic range of
photon-number resolving detectors and the linear op-
tical losses. Since these can detect up to ∼ 20 photons
with up to 95% efficiency [28], we believe our scheme
provides a promising route for preparing larger-scale
cats in an experiment [74].

While this work focused on engineering superposi-
tions of coherent states, our even-parity detector can
prepare a wide range of even-parity states by using
different types of control states. For instance, it is
straightforward to show that squeezed cats can be
produced by using a control state in a squeezed coher-
ent state, which, in turn, can be utilized to prepare
Gottesman-Kitaev-Preskill states [75]. Additionally,
the use of photon subtraction or addition operations
together with our scheme enables the preparation of
odd-parity states. Finally, our scheme to prepare
four-component cat states exemplifies the ability to
prepare states with more general discrete rotational
symmetries in phase-space [67, 76] by concatenating
even-parity detectors.
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A Imperfect detection efficiency

Here, we derive the positive-operator valued measure
element of the even-parity detector with imperfect de-
tection efficiency. That is, we look for Π̂(η) such that

pr(n, n) = Tr
(

Π̂(η)ρ̂
)

. (12)

We model the imperfect detector efficiency by plac-
ing a fictitious beam splitter of transmissivity η be-
fore each detector. We then compute the probability
of there to be n photons in both transmitted modes
when tracing over the reflected modes. This probabil-
ity can be obtained by performing a Bernoulli trans-
formation on Eq. (2) [77]:

pr(n, n) =

∞
∑

x=n

∞
∑

y=n

(

x

n

)(

y

n

)

η2n(1 − η)x−n(1 − η)y−n

× Tr
(

|x, y〉 〈x, y| Û ρ̂⊗ |φ〉 〈φ| Û†
)

.

(13)

Combining Eqs. (12) and (13) and using the cyclical
property of the trace, we find

Π̂(η) =

∞
∑

x=n

∞
∑

y=n

(

x

n

)(

y

n

)

η2n(1 − η)x−n(1 − η)y−n

× |χ(x,y)〉 〈χ(x,y)| ,
(14)

where |χ(x,y)〉 = 〈φ|Û†|x, y〉, which is a generalization
of Eq. (3).
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