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Chapter 7 

Engineering Science as Opposed to Natural Science 

and Applied Science 

Eugene Coyle, Mike Murphy, William Grimson 

Abstract: In exploring the epistemology of engineering science, we propose a model of 

engineering. This model incorporates the goals of engineering, the approach to engi

neering (also called the engineering method) and the role of experience in engineering. 

The basis for understanding the nature of engineering science will be explored, and 

will be contrasted with natural science. To begin, a large-scale engineering project that 

was successfully completed in Ireland many years ago is discussed - specifically, the 

development of a megalithic passage tomb as an exemplar of the engineering method 

in structural design, project management and aesthetics. This exemplar firmly demon

strates that engineering method existed before the development and understanding of 

the relevant natural science. We next contrast the nature of engineering or engineer

ing science and natural science. This discussion will further develop the engineering 

model, but will contrast the philosophical differences between engineering and sci

ence. We then return to build upon the 'engineering model' through the modern day 

exemplar of the development of the jet engine, demonstrating that invariably multiple 

factors, including creative design initiatives from different sources, global, political, 

economic and cultural circumstance, and the passage of time contribute to the evolu

tion and success (or failure) of large sustainable scientific and engineering projects. In 

conclusion, the engineering model is mapped to a philosophical model demonstrating 

that philosophy is as relevant to engineering as it is to other fields . 

Introduction 

Engineering has been carried out by mankind over many thousands of years; 

in earlier times, by peoples adapting to their environment and generally pro

viding shelter and means by which food could be grown and stored. In more 

modern times, the concerns are the same basic ones but others have been added. 

It is appropriate therefore that this chapter starts with an example of engineer-
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ing from the Neolithic period. Many wonderful examples of engineering from 

pre-history times, through Minoan, early Greek, the Egyptian and Roman 

periods, up to the Middle Ages, could be recounted. What remains a distin

guishing feature of all the activities is that a definitive purpose and knowledge 

of ' how to' was gained and retained by generations of early engineers, but alas, 

as often as not, the knowledge gained was subsequently lost. It was not until 

much later with increased travel and mobility of craftsmen, such as stone

masons, together with written records that knowledge started to be retained. 

Another feature of the progression of engineering through the centuries was 

that scientific and mathematical knowledge became more important, if not 

however indispensable to engineers. Hence, in time, the engineering profession 

was founded with formal university level education programmes delivering a 

minimum level of knowledge and skill to graduates. Not surprisingly, in all of 

this, the difference between applied scientists, engineering scientists and engi

neers has been clouded and this topic is addressed in the central sections of the 

chapter, where a model of engineering is presented. A 20 th-century engineering 

example follows, before some concluding remarks are made. 

Exemplar - A Successful Large-Scale Engineering Project 

One thousand years prior to the construction of the Pyramids in Egypt, man

kind had demonstrated an ability to solve mathematical problems, design and 

construct robust engineering buildings and monuments, and create items of 

both practical use and artistic beauty. In the latter half of the 20 th and early 

years of the 21 St century, there has been increased academic and public interest 

in post-Ice Age Mesolithic (8000-4000 BC) and Neolithic (4000-2500 BC) 

archaeology and civilisation, in an endeavour to gain a greater understand

ing of ancestry together with an appreciation of mankind's innate survival 

instincts and creative abilities. 

Significant archaeological discoveries of remains across Europe, from Stone

henge and Avebury in England, to Maes Howe in the Scottish Orkney Islands, 

to Gavr'inisin in the Morbihan of Southern Brittany, and to the rich archaeo

logical heritage of the Boyne Valley in Ireland, have revealed that early man

kind had a scientific and observational understanding coupled with advanced 

engineering design capability, which enabled the creation of astronomical 

structures such as those used to mark sun and lunar seasonal annual cyclical 

alignments (Burl 2005). 
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The United Nations Educational, Scientific and Cultural Organisation 

(UNESCO) has designated Bru Na Boinne, an area in Ireland rich in ar

chaeological remains, incorporating passage tombs at Newgrange, Knowth 

and Dowth, situated within a bend of the river Boyne, as a world heritage site. 

Constructed by a thriving farming community using simple tools of wood and 

stone during the Neolithic Age, these buildings are about 5,000 years old. The 

people who constructed them nevertheless had, within their society, expertise 

in architecture, engineering, geology, art and astronomy. So, what is New

grange, and why do we make this claim? 

Newgrange is a large mound or cairn, constructed of stone and covered in 

grass. The internal 19-meter southeast facing passage leads into a chamber 

with three semi-circular recesses. A cleverly designed corbelled roof covers the 

chamber. To construct the roof, the builders overlapped layers of large Bat 

stones until the roof could be sealed with a capstone. The mound, constructed 

over 5,000 years ago, with carbon dating estimates of year of construction at 

3,200 BC, is remarkable in many respects, not least that the passage tomb 

remains completely intact, and, as a result of clever design in drainage and 

construction techniques, rain water has never leaked into the mound and it 

remains dry to this day. The Bat-topped cairn covering the chamber is almost 

0.5 hectares in extent. Materials used in construction of the mound were trans

ported considerable distances from both the Wicklow mountains to the south 

and the Mourne mountains to the north. 

Winter Solstice at Newgrange 

One of the more significant features noted during archaeological excavations 

of the Newgrange Megalith in the nineteen sixties was a small window-box 

shaped opening located above the tomb entrance (O'Kelly 2003). In time it be

came apparent that this opening is exactly positioned so that at dawn on win

ter solstice, December 21st, a shaft of light penetrates the opening and creeps 

along the passageway. For some minutes, as the sun rises in the early morning 

sky, the beam of sunlight entering broadens and moves down the passageway, 

welcoming daylight from darkness into the central chambers for a few short 

minutes, before retreating again leaving the chamber in darkness for another 

year. The alignment is extremely accurate, showing that the architects and en

gineers who constructed the monument had full knowledge and capability in 

achieving their intended objective. 
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To the Neolithic farmers, the. winter solstice marked the start of a new year, 

a sign of rebirth promising renewed life to crops. It is also suggested that it 

served as a powerful symbol of the inevitable victory of life over death, perhaps 

promising new life to the spirits of the dead. A further significant feature of 

the megalith is that of the highly decorative art work to be seen on many of the 

monument stones, with the greatest decoration to be seen on the large stone 

located immediately before the entrance to the chamber. Circles are the most 

common motifs. Spirals and tri-spirals of differing types are also to be seen, 

together with geometrical, curvilinear and rectilinear shapes. Interpretation of 

meaning in the art work is open to question, however it is believed by many 

that the drawings are not for decorative purposes alone, being of symbolic and 

perhaps hieroglyphic importance. 

The Neolithic people who created this and other such monuments had clearly 

not received an education as we would know it, nevertheless they demonstrated 

ingenuity, creativity, and acquired knowledge in the use of tools and in the 

transportation of large and heavy stones over long distances, by sea, river and 

land. They had a philosophical outlook on life, with an innate understanding 

of astronomical phenomena, and in particular they paid homage to the sun 

and celebrated important calendar events such as the winter solstice, with the 

knowledge that from this point the days would now get longer and the seasons 

of spring and summer would again return to replenish, feed and nourish the 

inhabitants of their land. In short, by observation of the relative movements of 

the earth and the sun, followed by carrying out some form of calculation and 

accurately measuring distances, these Neolithic people were able to construct 

this impressive monument. 

The creators of the megaliths were most definitely intuitive engineers. The sheer 

implementation of a project as large as Newgrange demanded great compe

tence in planning, design and management. Materials had to be sourced, per

haps quarried and transported over large distances and challenging terrains. 

Flint and other tools suitable to the task in hand would need to have been 

adapted, and creative and reliable rolling and floating platforms would have 

been conceived and constructed to transport the large stone monoliths. It has 

been calculated that, in addition to the 97 slabs forming the kerb (none weigh

ing less than a tonne) and a further 450 large structural stones used to form the 

passage, chamber and roof, the monument consists of some 200,000 tonnes 

of stone. The correct alignment of the roof-box to achieve the penetration of 

the rising sun at winter solstice and the illumination of the rear of the cham

ber, entailed considerable observational, recording and architectural skills, and 
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was a spectacular feat. How did such a monument come into existence? It has 

been conservatively estimated that the entire monument could have been con

structed by a well organised workforce of some 400 people, abandoning their 

agricultural activities for some months after their spring sowing over a period 

of up to twenty years (Flanagan 2003). 

One could argue that the creators of such monuments were empiricists, their 

knowledge being derived from experience and reflection over several decades, 

if not hundreds of years, and passed from generation to generation. Were they 

pragmatists, demonstrating that a proposition is measured by correspondence 

with experimental results and its practical outcome? They most definitely had 

a philosophical outlook upon life, the hereafter, the forces of nature and the 

mysteries of existence. Indeed, one could readily compare and draw paral

lels between the Neolithic passage tombs and the historically more recent cre

ations of the world's most famous temples, mosques, synagogues, cathedrals, 

and other places of worship, from the Pantheon in Rome to the Blue Mosque 

(Mosque of Sultan Ahmet I) in Istanbul, the Cathedral of Notre Dame in Paris 

to Gaudi's Sagrada Familia in Barcelona. 

In addition to seasonal movements of the sun, early Neolithic people grappled 

with gaining an understanding of the intricate cycles of the moon's move

ments, a field of study which later occupied the mind of the great Sir Isaac 

Newton (1642-1727), albeit with more profound scientific importance to the 

accumulation of humanity's knowledge base, proffering an explanation of and 

describing planetary motion and the complexities of the universe. What we 

note here is that their engineering achievements far outweigh their scientific 

achievements, and indeed that such engineering achievements preceded the 

scientific understanding of the nature and movements of the earth, moon and 

stars. 

As an endnote, and striking a particular resonance with what has just been 

described, it is worth noting, that by the year 1500 AD, builders would still 

construct remarkable structures without what today we would think of as a 

scientific underpinning to their methods. Consider for example the very beau

tiful vaulted roof of King's College chapel in Cambridge, England. The span of 

the roof is approximately 15 meters and the thickness is a remarkable 10 centi

metres only: an amazing eggshell-like tour de force. Even today structural en

gineers are trying to fathom the secrets of the stonemasons who could carry off 

such a feat. John Ochsendorf, a structural engineer at Massachusetts Institute 

of Technology, using computer methods and graphics can now provide the en-
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gineering science justification - but some 500 years after the event (Ouellette 

2006). Another outstanding example would be the creation by Brunelleschi of 

the dome of the Cathedral of Florence (see Chapter 1). 

A Model of Engineering 

Philosophy aims to make sense of the world we live in, whilst engineering aims 

to work with what knowledge is available to achieve society's goals, a point 

stressed in Chapter 4. Good engineering practice is built on the experience of 

applying existing knowledge together with suitable design paradigms or heu

ristics to produce 'outcomes' which in time contribute to 'experience' leading 

to knowledge refinement. This could be called evidence-based engineering. 

The historical approach taken by engineers to arrive at an engineering solution 

to a problem, however large or small, has been to develop a model of the re

quired system. The solution, of course, cannot be divorced from the 'purpose' 

and general objectives of the enterprise. To be equipped with the required skill 

set to solve the problem, or design and implement the system, a knowledge 

base is required. This knowledge base will most likely by necessity be mul

tidisciplinary and, depending on the nature of the problem to be addressed, 

may need to be regularly enhanced and improved upon. Having the required 

body of knowledge, the engineer is equipped to implement or develop the de

sign tools necessary to achieve the required outcomes for the project in hand. 

Through time, experience is gained enabling knowledge to be refined which 

will further enhance system design capabilities (Figure 7.1.) . 

Figure 7.1. A Model of Engineering 
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As is pointed out later, whilst knowledge can be viewed as being central to the 

design process, the context in which that knowledge is selected and used is also 

of necessity a function of many other philosophical aspects including ethical · 

and aesthetical considerations. 

Association of Science and Engineering Science 

The word 'engineer' is derived from the Latin ingeniatorem meaning one who 

is ingenious at devising, whilst the word 'science' is derived from the Latin 

word scire, meaning to know. The term 'science' is of multivaried connotation 

and has universal acceptance in today's world. On the one hand, science refers 

to the system of acquiring knowledge, based on empiricism, experimentation, 

and methodological application. Science further refers to the organized body 

of knowledge humans have gained by applied research. Engineering on the 

other hand is generally concerned with the creation and use of technology to 

the solution of practical problems. An illustrative quotation attributed to Theo

dore Von Karman (1881-1963), the esteemed aerospace engineer, highlighting 

the fundamental difference between the scientist and the engineer, proffers 

that "scientists discover the world that exists, whilst engineers create the world 

that never was." At its core, the scientist asks and answers the question 'why' 

whereas the engineer will ask and answer the question 'how.' Engineers are 

interested in science to the extent that it can illuminate the methods by which 

problems can be analysed or modelled in order to offer an approach to a solu

tion. Engineering science then is that part of science which provides the engi

neer with the physical and mathematical basis to solve engineering problems. 

The pursuit and publication of scientific knowledge has purposely developed 

in such a way that there is little ambiguity in the meaning and verification 

of scientific statements. There is an accepted objective approach to both the 

language of science and its notation. Further, scientific method ensures that 

scientists know the right method or procedure to verify the statement, usually 

by collecting and analysing evidence that either supports or refutes the state

ment (J. Wilson 1968). Hence the development of the "scientific method" to 

elicit scientific knowledge, or truth. According to Einstein, "the development of 

Western Science is based on two great achievements, the invention of the formal 

logical system (in Euclidean geometry) by the Greek philosophers, and the discovery 

of the possibility to find out causal relationship by systematic experiment (Renais

sance)" (Price 1975). 
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Historical Evolution of Engineering 

The evolution and development of engineering has been closely aligned to 

fundamental developments in mathematics, in the first instance by eminent 

scholars such as Jean Baptiste Joseph Fourier (1768-1830), Leonhard Euler 

(1707-1783) and David Hilbert (1862-1943). Ingenious techniques were de

veloped which could be applied to the solution of practical problems, and, in 

so doing, would further explain the underlying nature of natural phenomena. 

These mathematicians developed powerful new analytical tools which were 

applied to elicit scientific truth. 

In the more specific evolution of electrical and mechanical engineering, de

velopments by James Clerk Maxwell (1831-79) and Sir Joseph John (J.].) Thom

son (1856-1940) in the science of electromagnetism and electrodynamics were 

to be of significant importance. These theoretical scientists developed applied 

mathematical concepts and provided the necessary tools to later mathemati

cians, physicists and engineers who would advance conceptual knowledge and 

understanding in electrical and electronic engineering one hundred fold. There 

also developed a need for an important category of electrical engineering sci

entists who 'translated' theory into understandable language that the inventors 

and empiricists could then exploit (E. Weber 1994). 

These engineering scientists, or rather what we call today theoretical engineers, 

were the people who could bridge the gulf between the theoretical scientist and 

the literate, practical engineer. For these theoretical engineers, mathematically 

demonstrated truth takes precedence over practical considerations or experi

ence. They perform a scholarship of integration (Boyer 1990). Examples in

clude Oliver Heaviside (1850-1925), Charles Steinmetz (1865-1923), and Den

nis Gabor (1900-71). 

Last but not least, 'practical' engineers have applied their creative skills, seek

ing to find practical solutions and applications, with inventiveness their driving 

goal. Pioneers such as Thomas Edison (1847-1931), Nikola Tesla (1856-1943), 

Lee de Forest (1873-1961) and Jack Kilby (1926-2005) applied both theoretical 

and exhaustive trial-and-error approaches to the solution of problems, paving 

the way to the advanced technological age we are part of today. 

It would be fair to say that science and engineering have developed as inter

dependent activities and today there is a strong symbiosis between the disci

plines. Beven argues that "science is dependent upon technology to develop, test, 
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experiment, verify, and apply many of its natural laws, theories and principles, 

whilst technology is dependent upon science for an understanding of how the natu

ral world is structured and how it functions" (Beven 1996). Snow, in his classic 

treatise on the different cultures associated with science and literary intellectu

als, suggests that engineering is a 'branch of science' in that "the scientific pro

cess has two motives; one to understand the natural world, the other to control it", 

and he refutes the attempt to draw a line between pure science and technology, 

arguing that an engineer designing an aircraft "goes through the same experience 

- aesthetic, intellectual, moral - as though he were setting up an experiment in 

particle physics" (Snow 2004). Beven on the other hand contends that "tech

nology is much more than applied science and science is quite different to applied 

technology" (Beven 1996). 

The eminent physicist J.]. Thomson made a clear declaration of the indepen

dent importance of scientific research when he declared "by research in pure 

science I mean research made without any idea of application to industrial matters 

but solely with the view of extending our knowledge of the Laws of Nature" (R. 

Weber 1973). 

The term 'applied science' is at times introduced to explain how engineering 

and science are linked. The approach usually taken is to argue that engineer

ing takes the knowledge discovered by science and applies it to solve problems 

for the benefit of society. Snow argues that industrialization, which enabled 

mass job creation, was the result of that 'applied science' of engineering (Snow 

1998). Hendricks on the other hand suggests the engineering science is not 

literally nor solely 'science applied', but constitutes a field of its own, with its 

own methods that produce its own knowledge independent of natural science 

or applied science. Hendricks further suggests that there is a difference in the 

epistemological and ontological assumptions between pure science and engi

neering science, partially based on a difference in cognitive values governing 

their respective enterprises (Hendricks 2000). Chapter 4 also points out the 

'wider than science' characteristic of engineering. 

Snow considers that engineers are applied scientists. He is of the view, however, 

that while pure and applied scientists belong to the same scientific culture, the 

philosophical gaps between them are wide, to the extent that pure scientists and 

engineers often totally misunderstand each other. "We prided ourselves that the 

science we were doing could not, in any conceivable circumstances, have any practi

cal use. The more firmly one could make that claim, the more superior one felt". 
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Science is the discovery of knowledge, a framework to discern the' laws of na

ture,' and there is only one such set of laws to discover. For example, the second 

law of thermodynamics is the second law of thermodynamics independent of 

the discoverer. Had Einstein not developed his theory of relativity, then the 

credit for the same discovery would eventually have rested with another physi

cist. Thus "even ifscience is philosophically a process of generalisation and inven

tion of laws, nature appears very strongly to act as if there were only one world to 

discover" (Price 1975). On the other hand, the engineer, using the engineering 

method, is free to create any solution that meets the design requirements and 

constraints. The output of the engineer is therefore more arbitrary. 

Engineering science is different than science for three principle reasons. Firstly, 

there is a different purpose in what the scientist seeks to do, compared to what 

the engineer seeks to do. For engineering science the only criterion is that it 

be adequate for the underpinning or understanding of the relevant discipline, 

whereas science demands accuracy and precision to determine which of the 

competing theories should be preferred. Secondly, the presuppositions for sci

ence are different than they are for engineering. Science is the discovery of 

knowledge and science presupposes that there is only one such set of laws to 

discover. Engineering presupposes that nature is capable of manipulation and 

modification. Thirdly, economic and social considerations play a much more 

important role in engineering than in science (Rogers 1983). 

From a scientific perspective, engineering certainly stands alone as its own dis

cipline, and may be characterised by an extension of the paradigm concept 

of the influential philosopher Thomas Samuel Kuhn (1922-1996) to that of a 

technical matrix, which sets the standards and authority for legitimate engi

neering work. In development of his paradigm concept, Kuhn points out that 

a mature science experiences alternating phases of 'normal science' and 'revolu

tions'. In normal science the key theories, instruments, values and metaphysi

cal assumptions that comprise the disciplinary matrix, are kept fixed, whereas 

in a scientific revolution the disciplinary matrix undergoes revision, in order to 

permit the solution of the anomalous puzzles that disturbed the preceding pe

riod of 'normal' science (Kuhn 1970). Considering science as an entity, Kuhn 

contends that the engineer is working within a specific technical matrix and is 

practising engineering, subject to engagement in and operation of a defined set 

of conditions, including: 
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1. procedures and methods for delimiting a set of research objects 

2. epistemic and ontological assumptions 

3. theoretical structure 

4. experimental structure (and experimental techniques) 

5. methods 

6. values 

7. exemplars and research competence 

An engineering matrix is substantially 'external is tic' and may stem from either: 

(1) new theoretical discoveries either adopted from pure science or engineering 

science itself, (2) practical challenges while constructing new artefacts (like 

bridges), and (3) possibilities linked to new tools (like powerful computational 

abilities). 

The term engineering embraces a wide church in today's world and each disci

pline of engineering contains an extensive body of knowledge associated with 

that discipline. Some knowledge may be related to an underlying science which 

supports the discipline. Other knowledge may be based solely on theories de

veloped from engineering practice; a good example being control systems engi

neering. In all cases the application of the body of knowledge should enable the 

engineers to design a solution to a problem in their discipline (Rogers 1983). 

One form of knowledge, called the engineering method, relies on heuristics 

(from the Greek word 'to find') to guide in the engineering design process. 

Since the core of engineering is the design process, such heuristics are there

fore of high importance to the engineer. This point is also made in Chapter 5 

where 'design is considered to be the central activity that defines engineering 

and distinguishes it from science.' 

With the development of engineering disciplines, engineers have added many 

important 'heuristic tools' to the engineering toolbox. These tools include: 

• Engineering judgement 

• Failure analysis 

• Risk assessment (see Chapter 12) 

• Impact assessment (not just environmental) 

• Trial and error 

• Standards and Codes and Factors of Safety 

• Rules of Thumb and Orders of Magnitude 
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As with the creative inventions of early Neolithic craftsmen and throughout 

historical time since those eras, engineering science has relied on heuristics to 

both simplify and enhance the engineer's design work. Heuristics used may on 

occasion be in conflict, may lack accuracy and may indeed lack solid underpin

ning of scientific justification. However, the heuristic combined with the engi

neering judgement borne of experience of when that heuristic can be applied 

provides an important tool to the engineer. Here the engineer is supported by 

the collective experience of all the engineers who went before. To quote the 

French author Albert Camus (1913-1960): "You cannot acquire experience by 

making experiments. You cannot create experience. You must undergo it". 

The question is sometimes raised as to whether science and engineering science 

contain the same ethical challenges for scientists and engineers. Ethics, the 

study and philosophy of human conduct, at first consideration might appear 

to pose greater challenges to those who apply scientific knowledge (engineers), 

than to those who seek that knowledge (scientists). Either way, as Chapters 11, 

12 and 13 illustrate, ethics certainly is of huge importance to engineers and 

engineering. 

Technological development has been one of the greatest single engines for change 

and development within society. Technology affects society in two ways: firstly 

through the means of production adopted by that society and secondly through 

the devices that technology puts at the disposal of society (Rogers 1983). An 

example of the former would be clean room technology and an example of the 

latter would be integrated circuits that enable the storage and transmission of 

huge amounts of data. We must distinguish here between the collective ethical 

problems faced by society and the professional ethical problems faced by the in

dividual engineer. Society's use, or non-use, of the devices that technology puts 

at its disposal is part of the set of collective ethical issues. Koen proposes that the 

engineering method, rather than the use of reason, is the universal method, in 

that it is the "strategy for causing the best change in a poorly understood situa

tion within the available resources". Koen goes further and suggests that "to be 

human is to be an engineer" (Koen 2003). The individual engineer however, in 

following the engineering method to solve a problem, has responsibilities to his/ 

her employer, profession and to the public, and must be cognisant of the ethical 

issues attaching to and emerging from the fruits of their endeavours. In short, 

ethical considerations must be added to the list of constraints with which the 

engineer must grapple in arriving at a solution. 
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A Second Exemplar - The Development of the Jet Engine 

As discussed earlier, 'engineering' is a complex set of activities that an indi

vidual, but more often a team, undertakes in order to achieve a goal. To build 

long span bridges, develop and make operational satellite communications 

systems, introduce a new jet aircraft, produce ever more powerful comput

ing resources, design and manufacture controllable artificial limbs, by way of 

example, all require a huge investment of intellectual effort if the objectives 

are to be satisfactorily met. The effort involves the judgement as to what know

ledge is required - the knowledge typically would include, but not exclusively, 

a combination of science, technology, mathematics and what might be termed 

engineering 'know-how'. And in many cases new knowledge must be acquired 

if the 'project' is to proceed. 

This, then, is the start of the process! Within the design phase many other 

factors might have to be taken into account, be they financial, environmental, 

aesthetical, sociological, or the urgency of finding a solution in face of a threat 

or competition. It is here that engineering is akin to a juggling or a balancing 

act requiring a marshalling of knowledge and effort whilst working within a 

set of constraints. Following any implementation evaluations are carried out. 

Even, if and when, there has been a total or partial failure, valuable informa

tion accrues from having performed an evaluation. 

The knowledge so gained might be primary knowledge such as a hitherto un

known behaviour of a material or it might be knowledge as in an improved 

design heuristic or a more refined approach to dealing with constraints. All 

of this might be termed evidence-based engineering: a phrase borrowed from 

medicine which, it may be said, has many of the characteristics of engineering. 

There is, though, another aspect that might be mentioned where a new para

digm is invented or introduced. Thomas Kuhn in 'The Structure of Scientific 

Revolutions' surmised that it was the young or those new to a field who in

troduced new paradigms being either uncommitted or unfamiliar with con

ventional and established views and therefore' free' to make new rules (Kuhn 

2003). Kuhn also stressed that scientific and technological developments had 

impulses that were sociological in nature. One example that briefly illustrates 

all of the above is the invention of the jet engine. 

Frank Whittle and Hans von Ohain are generally acknowledged to be the 

two independent inventors of the jet engine and they came to prominence via 

two very different routes. Frank Whittle was born in Coventry, England, and 
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joined the Royal Air Force, in the UK, as an apprentice in 1923. Apart from 

becoming a good mechanic, he learnt to fly and was rated as an above average 

pilot. Subsequently, he was selected for, and passed with distinction, the Of

ficer's Engineering Course in 1933 and thence to Cambridge University where 

he was awarded a First Class Honours in Mechanical Sciences in 1936. The 

route taken by Whittle was exceptional and indicated that the RAF had spot

ted a special and young talent. Hans von Ohain, on the other hand, was born 

in Dessau, Germany and studied Physics at the University of Gottingen where 

he graduated with a PhD in 1935 and then became a junior member of staff at 

the university. What is of some significance in how events in the development 

of the jet engine would unfurl, particularly from a commercial perspective, was 

that Whittle and von Ohain were on opposite sides during World War II. 

A point that should be stressed is that ideas seldom come out of a vacuum 

- others will generally have made some contributions along the way. Of note is 

the work of Sir Charles Parsons (1854-1931) who revolutionised marine trans

port through his work on steam turbines. His first and influential experimental 

boat, the Turbinia could travel at 34 knots, and this was in 1897. The working 

fluid might have been steam but an important contribution had been made. 

And of course there were others too - the work of the Norwegian Jens William 

lEgidius Elling (1861-1949) being one almost forgotten contribution. 

Types ofJet Engine 

To set the context, a brief description of the main types of jet engines follows. 

The commonly used classification is to consider five engine types: Turbojets, 

Turboprops, Turboshafts, Turbofans and Ramjets (Bellis). Very briefly, the 

Turbojet consists of an opening for the intake of air at the front of the engine, 

the air is then compressed by a vaned rotating compressor, following which 

fuel is added, and the air-fuel mixture ignited in a combustion chamber and 

exhausted at high speed through a nozzle via a turbine which provides the 

power through a shaft to operate the compressor. The thrust or reaction is a 

function of the mass flow and speed of the exhausted hot gas or jet - the un

derlying scientific principle regarding this thrust being Newton's Third Law. 

In the case of Turboprops the turbine is connected by a shaft to a propeller 

which provides the thrust and is used mostly for small aircraft operating at low 

to medium altitudes. 
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Turboshafts are similar to Turboprops but are usually associated with heli

copters where the shaft connects via a gearbox to rotors for propulsion and 

lift. Ramjets are the simplest of all with no moving parts. Air is taken in, thus 

requiring the engine to be already moving at some considerable speed relative 

to the still air, following which, by constriction, the air is compressed, fuel 

added and ignited to produce a hot and fast exhaust stream. The Ramjet is 

largely confined to experimental and military operations. The most important 

jet engine now, commercially, is undoubtedly the Turbofan type. The major 

difference between the Turbojet and the Turbofan is that the latter has an ad

ditional element which is a fan, often very large, at the intake, which facilitates 

improved air intake. The power for the fan is provided through a shaft driven 

by the engine's turbine. So, in summary, with a Turbofan the air is taken in 

with the aid of a fan, compressed, then has fuel added and ignited in a combus

tion chamber. The hot gas is then directed through turbines which power the 

compressor and fan, and is finally exhausted at both a high temperature and 

speed in a jet stream through a nozzle, thus providing the thrust. Of course 

there are variations on the above themes such as adding fuel at the final stage 

- afterburn - to provide additional thrust, and the use of a bypass whereby 

not all of the hot exhausting gas is directed through the turbines. Neverthe

less, what has been described sums up the main features of the operation of 

jet engines. But to produce a working jet engine, and subsequently through

out an extended period of time gradually improve its performance, is a story 

of engineering endeavour laced with politics, commercial cut-and-thrust and 

of course the interactions between a range of influential personalities. Frank 

Whittle was one of the key personalities involved. 

The Engineering Challenge 

The problems in moving from the initial concepts that Whittle had articulated 

to having a useful engine were manifold but they were almost entirely engi

neering rather than scientific. What were these challenges? The key challenges 

were first to build a satisfactory compressor and then a turbine that could 

operate at both high rotational speed and high temperatures. When all the 

engine components were brought together in a logical linear arrangement, the 

earliest designs were considered too long: the problem was that of maintaining 

stability of the shaft linking the turbine to the compressor together with some 

thermal expansion related issues. Whittle's solution was to propose a radial or 

centrifugal rather than an axial compressor which resulted in a shorter engine 

length, but at a cost. The manufacture of a centrifugal compressor including 
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its housing was intrinsically more difficult as the design required forcing the 

air through a number of bends necessitating difficult and hence highly skilled 

metal work. The high temperature problem for the turbine and its blades also 

needed to be addressed both by the use of new materials and through the use 

of holes providing a cooling stream of air. And the high rotational speed of the 

turbine meant that the mechanical design and the subsequent manufactur

ing problems were challenging. Against this background, work in thermodyna

mics, compressibility (of the fluid - air), aerodynamics, suitability of fuel, not 

to mention lobbying to provide the finances and resources to undertake the 

overall project, continued in what was now a country preparing for war. 

Hans von Ohain's solution to the compressor problem was also to adopt a cen

trifugal compressor but he positioned the turbine directly next to the compres

sor. This resulted in an engine that was very large in diameter but short along 

the thrust axis (see Wikipedia, Hans von Ohain). The end result, at that stage, 

for von Ohain was that the engine based on his work powered the Heinkel He 

178 machine and this was the first jet-powered aircraft to fly on August 27, 

1939. 

Returning to Whittle, what was to work to his advantage was that he had 

both a good idea and a personality that helped win over sceptics. As recoun

ted by Nahum, in his book Frank Whittle - invention of the jet, the complex 

discussions that took place between the inventor, the RAF, the Air Ministry, 

the Ministry of Aircraft Production and later with commercial organisations 

that included Rover, Rolls-Royce and de Havilland, would have scuppered 

anything other than a genuinely good potential enterprise (Nahum 2004). 

After much maneuvering Whittle succeeded in establishing a company called 

Power Jets Ltd. However, this company did not have the resources or experi

ence necessary to be able to go into the production of jet engines. Eventually 

the British Government acquired the assets of Power Jets Ltd in 1944. In due 

course, engines based on Whittle's designs powered the Meteor and proved 

more reliable than their German counterparts; additionally the British engine 

had superior maintenance characteristics, as well as markedly better power-to

weight ratio and fuel consumption figures. As a result, Whittle's input turned 

out to be more influential. Subsequently, even though von Ohain could claim 

a 'first', by dint of hard work and powerful lobbying, Whittle's designs and 

their 'children' combined with 'Britain's superior high-temperature alloys and 

engineering expertise resulted in engines that led the world in performance for 

the next decade' (see Wikipedia, Frank Whittle). 
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Continuing the story of the engineering aspect of the 'enterprise', unknown 

to Whittle, the Rover engineers had decided to abandon the concept of the 

centrifugal compressor and instead developed an axial compressor. This work 

involved much ingenuity finding solutions to the very problem that Whittle 

had sought to circumvent, namely the length of the shaft coupling the turbine 

to the compressor. The secrecy in which this work was carried out did not 

help collaboration and the subsequent dispute was settled on the basis that the 

W.2B engine based on Whittle's design and the Rover engine using an axial 

compressor could both be produced. History records that the axial solution 

was the winner. Subsequently, when Rolls Royce became the main producer, 

taking over the Rover Plant, the main effort went into the 'straight-through' 

version. In time, and partly because of the events in the 1940s, Rolls-Royce 

became a key provider of engines and in 2006 is the World's number one sup

plier of large turbofans and the number two engine maker overall. In some 

respect, therefore, they were the main beneficiary of Whittle's invention. But 

companies in the US were also to benefit. 

The Commercialisation of the Jet Engine 

Two factors contributed to a major shift in utilizing the expertise in jet engines 

that had been gained by the end of the war and applying it to civilian use. First, 

the British, as part of the pre-cursor to the Lend-Lease agreement of 1941 by 

which the US provided much needed war material to Great Britain, had shared 

with US engineers the design specifications of their jet engines (essentially the 

Whittle-inspired design). This provided an important impulse to proceedings 

in the US where it was recognized that the quickest way forward was to make 

use of the hard-earned engineering experience gained by Whittle and others 

in England. Great Britain ended the war in an exhausted state whereas the US 

was in a better position to capitalize on technologies developed in the 1940s 

having been in a somewhat dormant state throughout the Depression. Second, 

the lead that Britain had, or could have had, was effectively eliminated due 

to the Comet disaster. The Comet aircraft had Rolls-Royce turbojet engines, 

built by the de Havilland Engine Company, and these engines were based on 

Whittle's designs. The aircraft entered service with BOAC in May 1952 as the 

first commercial jet airliner (see RAF museum 2006). 

Within two years of commencing service, two Comet aircraft disappeared, 

the fleet was grounded and an investigation launched. It transpired, after a 

careful investigation, that the cause was metal fatigue causing a crack that had 
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grown with the repeated cycle of cabin pressurisation and de-pressurisation in 

each flight. There were lessons to be learned and passed on to other aircraft 

manufacturers. Whilst the jet engines were not the cause of the disaster, the 

impact on engine design and the manufacture of jet aircraft in Great Britain 

was profound and leadership passed to the US. With commercial power now 

in the hands of companies in the US, Rolls-Royce found it difficult to sell its 

engines into an American-dominated market. In time, though, and after being 

rescued by direct State intervention, Rolls-Royce Engines survived and grew to 

its present impressive position in modern jet engine design and manufacture. 

Currently, some of the preoccupations of jet-engine design engineers reflect 

environmental and sociological aspects in terms of fuel efficiency and noise re

duction. The direct descendant of Whittle's designs in the form of the turbofan 

jet engine with its large fan, very obvious to all air travellers, and the near 

optimum use of a turbine bypass have certainly made engines more efficient 

and quieter. What is astonishing in many respects is that a systems sketch of a 

modern jet engine is so similar to ones of over sixty years ago. 

Regarding the fuel, to some extent the early jet engines were insensitive to the 

type of fuel, but as time marched on, a number of factors influenced choices. 

Factors that had to be considered included: losses due to evaporation at high al

titudes; risk of fire during handling on the ground; fire risks following a crash. 

Kerosene-type fuels are now the most common types throughout the world, 

though there are some exceptions such as in very cold climates (see Chevron 

2006). This is a typical aspect of engineering where additional constraints have 

to be taken into account, brought about by wider considerations, mostly re

lated to safety in this particular case. 

So whilst the basic idea of the jet engine has stood the test of time, the 'in

vention' and ingenuity of engineering has focused on improving designs, using 

new materials such as ceramics in the hostile turbine environment, adopting 

new manufacturing techniques, reducing the maintenance down-time, and ex

tracting as many benefits as possible from the use of computers in modelling 

the controllability as well as the thermodynamic and aerodynamic behaviour 

of the engine. The story of the development of the jet engine reinforces the 

model of engineering as one in which science, mathematics and technologies 

are brought together with the objective of producing some physical system 

through applying practices that have been proven in the same or other similar 

fields . And improvement comes following careful evaluation of the systems so 

designed and produced to a set of criteria that, as often as not, grow in time. 
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Rolls-Royce inherited a great idea from Whittle and turned it into a commer

cial success. The manufacturers in the US also inherited the same great idea 

and they have always acknowledged the role played by Whittle. Following 

early visits to the US by Whittle, the American engineers expressed their grati

tude for his open and constructive discussions in which a number of technical 

problems were solved or at least progressed. Much later, in recognition of his 

contribution, Whittle was made Professor at the u.s. Naval Academy and von 

Ohain was awarded the Charles Stark Draper Prize of the National Academy 

of Engineering in 1991. In 1977, Whittle had been invested in the Interna

tional Aerospace Hall of Fame, eventually, and was deservedly followed by 

Hans von Ohain in 1982. 

The Engineering Model Re-Visited 

As portrayed in the story of the jet engine, there are many factors that con

tribute to the evolution and development of large-scale engineering design 

projects. Considering again the outline engineering model described in 

Figure 7.1., one may further link this Model of Engineering to one of Philo

sophy. Epistemology, indeed Logic, Ethics and Aesthetics are fundamental to 

the creative design processes essential to good engineering practice. Knowledge 

in engineering, science and technology has grown through the additions of the 

activities of engineers, not alone in the increasingly shared global experience 
. . 

of recent decades, but over hundreds and indeed in some instances thousands 

of years, as with the creative methodologies applied by Neolithic people, out

lined earlier. Logic is a fundamental tenet of engineering subject matter, and of 

mathematics and science, forming the basis of rational calculation and acting 

as a foundation for good design practice. Good ethical practice in the engi

neering and scientific professions is of increasing importance to every aspect of 

modern day living. However it is the design process that most heavily can be 

characterised in terms of Philosophical perspectives. 
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Figure 7.2. A Model of Engineering: Links to Philosophy 
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Sustainability, renewable energies, environmental impact, climate change, wel

fare of the planet, population increase: these are topics which impact at all 

levels on every nation and community in today's world. The engineering and 

scientific professions will be central partners to the core of the debate as to how 

these major humankind issues may be addressed, what solutions can be found 

and how best they may be implemented. Just as for ethical considerations, 

aesthetics is no longer a soft option or lip-service addendum to the engineering 

design portfolio. As with architectural design, aesthetic application and appro

priate use of sustainable materials in the design process are both essential and 

fundamental to the teaching and practice of engineering. 

Conclusion 

Engineering, through its core activity of design, is heterogeneous in nature. 

It benefits from multi-disciplinary skills and yet it can also accommodate dif

ferences in approach to the same issue, such as for example different building 

codes in different countries, what Hendricks has termed poly-paradigmatic, 

whereas science is typically mono-paradigmatic (Hendricks 2000). Over the 

last fifty years, engineering has strongly leveraged the tools of science and 

mathematics as its disciplines have become increasingly specialised. We have 

perhaps reached a nexus where society's problems demand that engineers ex

hibit horizontal multi-disciplinary skills rather than vertical specialist skills. 

Engineering educators respond with the concept of the Renaissance engineer, 

-
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or the entrepreneurial engineer. "In times of social stability, it is the specialist who 

best contributes to society by driving deeper into a given discipline. However, times 

of great flux call for those who can cross disciplines, who can see and understand the 

larger picture" (Akay 2003). 

Modern engineers are educated professionals to whom society entrusts the de

velopment of new technologies for the benefit of that society. Engineers accept 

that trust and conduct their enterprise through a range of ingenious activities, 

called the engineering method, while adhering to a code of ethics to them

selves, their profession and to society. 
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