
Engineering Self-Adaptive Systems

through Feedback Loops

Yuriy Brun1, Giovanna Di Marzo Serugendo2, Cristina Gacek3, Holger Giese4,
Holger Kienle5, Marin Litoiu6, Hausi Müller5, Mauro Pezzè7, and Mary Shaw8

1 University of Southern California, Los Angeles, CA, USA
ybrun@usc.edu

2 Birkbeck, University of London, London, UK
dimarzo@dcs.bbk.ac.uk

3 University of Newcastle upon Tyne, Newcastle upon Tyne, UK
cristina.gacek@ncl.ac.uk

4 Hasso Plattner Institute at the University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

5 University of Victoria, British Columbia, Canada
{kienle,hausi}@cs.uvic.ca

6 York University and IBM Canada Ltd., Canada
marin@ca.ibm.com

7 University of Milano Bicocca, Italy and University of Lugano, Switzerland
mauro.pezze@unisi.ch

8 Carnegie Mellon University, Pittsburgh, PA, USA
mary.shaw@cs.cmu.edu

Abstract. To deal with the increasing complexity of software systems
and uncertainty of their environments, software engineers have turned to
self-adaptivity. Self-adaptive systems are capable of dealing with a con-
tinuously changing environment and emerging requirements that may be
unknown at design-time. However, building such systems cost-effectively
and in a predictable manner is a major engineering challenge. In this pa-
per, we explore the state-of-the-art in engineering self-adaptive systems
and identify potential improvements in the design process.

Our most important finding is that in designing self-adaptive systems,
the feedback loops that control self-adaptation must become first-class
entities. We explore feedback loops from the perspective of control engi-
neering and within existing self-adaptive systems in nature and biology.
Finally, we identify the critical challenges our community must address
to enable systematic and well-organized engineering of self-adaptive and
self-managing software systems.

1 Introduction

The complexity of current software systems and uncertainty in their environ-
ments has led the software engineering community to look for inspiration in
diverse related fields (e.g., robotics, artificial intelligence, control theory, and
biology) for new ways to design and manage systems and services [1,2,3,4]. In

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 48–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Engineering Self-Adaptive Systems through Feedback Loops 49

this endeavor, the capability of the system to adjust its behavior in response
to the environment in the form of self-adaptation has become one of the most
promising research directions. The “self” prefix indicates that the systems decide
autonomously (i.e., without or with minimal interference) how to adapt or orga-
nize to accommodate changes in their contexts and environments. While some
self-adaptive system may be able to function without any human intervention,
guidance in the form of higher-level objectives (e.g., through policies) is useful
and realized in many systems.

The landscapes of software engineering domains and computing environments
are constantly evolving. In particular, software has become the bricks and mortar
of many complex systems (i.e., a system composed of interconnected parts that
as a whole exhibits one or more properties (behaviors among the possible prop-
erties) not obvious from the properties of the individual parts). The hallmarks
of such complex or ultra-large-scale (ULS) systems [5] are self-adaptation, self-
organization, and emergence [6]. Engineers in general, and software engineers in
particular, design systems according to requirements and specifications and are
not accustomed to regulating requirements and orchestrating emergent proper-
ties. Ottino argues that the landscape is bubbling with activity and engineers
should be at the center of these developments and contribute new theories and
tools [6].

In order for the evolution of software engineering techniques to keep up with
these ever-changing landscapes, software engineers must innovate in the realm of
building, running, and managing software systems. Software-intensive systems
must be able to adapt more easily to their ever-changing surroundings and be
flexible, fault-tolerant, robust, resilient, available, configurable, secure, and self-
healing. Ideally, and necessarily for sufficiently large systems, these adaptations
must happen autonomously. The research community that has formed around
self-adaptive systems has already generated many encouraging results, helping
to establish self-adaptive systems as a significant, interdisciplinary, and active
research field.

Self-adaptive systems have been studied within the different research areas
of software engineering, including requirements engineering [7], software archi-
tecture [8,9], middleware [10], and component-based development [11]; however,
most of these initiatives have been isolated. Other research communities that
have also investigated self-adaptation and feedback from their own perspec-
tives are even more diverse: control theory, control engineering, artificial in-
telligence, mobile and autonomous robots, multi-agent systems, fault-tolerant
computing, dependable computing, distributed systems, autonomic computing,
self-managing systems, autonomic communications, adaptable user interfaces, bi-
ology, distributed artificial intelligence, machine learning, economic and financial
systems, business and military strategic planning, sensor networks, or pervasive
and ubiquitous computing. Over the past decade several self-adaptation-related
application areas and technologies have grown in importance. It is important to
emphasize that in all these initiatives software has become the common element



50 Y. Brun et al.

that enables the provision of self-adaptability. Thus, it is imperative to inves-
tigate systematic software engineering approaches for developing self-adaptive
systems, which are—ideally—applicable across multiple domains.

Self-adaptive systems can be characterized by how they operate or how they
are analyzed, and by multiple dimensions of properties including centralized and
decentralized, top-down and bottom-up, feedback latency (slow vs. fast), or envi-
ronment uncertainty (low vs. high). A top-down self-adaptive system is often cen-
tralized and operates with the guidance of a central controller or policy, assesses
its own behavior in the current surroundings, and adapts itself if the monitoring
and analysis warrants it. Such a system often operates with an explicit internal
representation of itself and its global goals. By analyzing the components of a
top-down self-adaptive system, one can compose and deduce the behavior of the
whole system. In contrast, a cooperative self-adaptive system or self-organizing
system is often decentralized, operates without a central authority, and is typi-
cally composed bottom-up of a large number of components that interact locally
according to simple rules. The global behavior of the system emerges from these
local interactions. It is difficult to deduce properties of the global system by
analyzing only the local properties of its parts. Such systems do not necessarily
use internal representations of global properties or goals; they are often inspired
by biological or sociological phenomena.

Most engineered and nature-inspired self-adaptive systems fall somewhere be-
tween these two extreme poles of self-adaptive system types. In practice, the line
between these types is rather blurred and compromises will often lead to an engi-
neering approach incorporating techniques from both of these two extreme poles.
For example, ULS systems embody both top-down and bottom-up self-adaptive
characteristics (e.g., the Web is basically decentralized as a global system, but
local sub-webs are highly centralized or server farms are both centralized and
decentralized) [5].

Building self-adaptive software systems cost-effectively and in a predictable
manner is a major engineering challenge. New theories are needed to accommo-
date, in a systematic engineering manner, traditional top-down approaches and
bottom-up approaches. A promising starting point to meet these challenges is
to mine suitable theories and techniques from control engineering and nature
and to apply those when designing and reasoning about self-adaptive software
systems. Control engineering emphasizes feedback loops, elevating them to first-
class entities [12,13]. In this paper we argue that feedback loops are also essential
for understanding all types of self-adaptive systems.

Over the years, the discipline of software engineering strongly emphasized the
static architecture of a system and, to a certain extent, neglected the dynamic
aspects. In contrast, control engineering emphasized the dynamic feedback loops
embedded in a system and its environment and neglected the static architecture.
A notable exception is the seminal paper by Magee and Kramer on dynamic
structure in software architecture [14], which formed the foundation for many
subsequent research projects [9,15,16,17]. However, while these research projects
realized feedback systems, the actual feedback loops were hidden or abstracted.



Engineering Self-Adaptive Systems through Feedback Loops 51

Feedback loops have been recognized as important factors in software process
management and improvement or software evolution. For example, the feedback
loops at every stage in Royce’s waterfall model [18] or the risk feedback loop in
Boehm’s spiral model [19] are well known. Lehman’s work on software evolution
showed that “the software process constitutes a multilevel, multiloop feedback
system and must be treated as such if major progress in its planning, control,
and improvement is to be achieved.” Therefore, any attempt to make parts of
this “multiloop feedback system” self-adaptive necessarily also has to consider
feedback loops [20].

With the proliferation of self-adaptive software systems, it is imperative to
develop theories, methods and tools around feedback loops. Mining the rich
experiences and theories from control engineering as well as taking inspiration
from nature and biology where we can find systems that adapt in rather complex
ways, and then adapting and applying the findings to software-intensive self-
adaptive systems is a most worthwhile and promising avenue of research.

In the remainder of this paper, we therefore investigate feedback loops as a key
aspect of engineering self-adaptive systems. Section 2 outlines basic principles of
feedback loops and demonstrates their importance and potential benefits for un-
derstanding self-adaptive systems. Sections 3 and 4 describe control engineering
and biologically inspired approaches for self-adaptation. In Section 5, we present
selected challenges for the software engineering community in general and the
SEAMS community in particular for engineering self-adaptive computing systems.

2 The Role of Feedback Loops

Self-adaptation in software-intensive systems comes in many different guises.
What self-adaptive systems have in common is that design decisions are moved
towards runtime to control dynamic behavior and that an individual system
reasons about its state and environment. For example, keeping web services up
and running for a long time requires collecting information that reflects the
current state of the system, analyzing that information to diagnose performance
problems or to detect failures, deciding on how to resolve the problem (e.g., via
dynamic load-balancing or healing), and acting to effect the planning decisions
made.

Feedback loops provide the generic mechanism for self-adaptation. Positive
feedback occurs when an initial change in a system is reinforced, which leads
toward an amplification of the change. In contrast, negative feedback triggers
a response that counteracts a perturbation. Further, natural environments with
synergistic and antagonistic relationships between components sometimes pro-
duce more complex forms of feedback loops that can neither be classified as
positive nor negative feedback.

2.1 Generic Feedback Loop

A feedback loop typically involves four key activities: collect, analyze, decide, and
act. Sensors or probes collect data from the executing system and its context



52 Y. Brun et al.

 

 

 

Fig. 1. Autonomic control loop [21]

about its current state. The accumulated data are then cleaned, filtered, and
pruned and, finally, stored for future reference to portray an accurate model of
past and current states. The diagnosis then analyzes the data to infer trends and
identify symptoms. Subsequently, the planning attempts to predict the future to
decide on how to act on the executing system and its context through actuators
or effectors.

This generic model of a feedback loop, often referred to as the autonomic
control loop as depicted in Figure 1 [21], focuses on the activities that realize
feedback. This model is a refinement of the AI community’s sense-plan-act ap-
proach of the early 1980s to control autonomous mobile robots [22,23]. While
this model provides a good starting point for our discussion of feedback loops, it
does not detail the flow of data and control around the loop. However, the flow
of control among these components is unidirectional. Moreover, while the figure
shows a single control loop, multiple separate loops are typically involved in a
practical system.

When engineering a self-adaptive system, questions about these properties
become important. The feedback cycle starts with the collection of relevant data
from environmental sensors and other sources that reflect the current state of the
system. Some of the engineering questions that need be answered here are: What
is the required sample rate? How reliable is the sensor data? Is there a common
event format across sensors? Do the sensors provide sufficient information for
system identification?

Next, the system analyzes the collected data. There are many approaches to
structuring and reasoning about the raw data (e.g., using models, theories, and
rules). Some of the applicable questions here are: How is the current state of the
system inferred? How much past state may be needed in the future? What data
need to be archived for validation and verification? How faithful will the model
be to the real world and whether an adequate model can be obtained from the
available sensor data? How stable will the model be over time?



Engineering Self-Adaptive Systems through Feedback Loops 53

Next, a decision must be made about how to adapt the system in order to
reach a desirable state. Approaches such as risk analysis help in choosing among
various alternatives. Here, the important questions are: How is the future state
of the system inferred? How is a decision reached (e.g., with off-line simula-
tion, utility/goal functions, or system identification)? What are the priorities for
self-adaptation across multiple feedback loops and within a single feedback loop?

Finally, to implement the decision, the system must act via available actua-
tors or effectors. Important questions that arise here are: When should and can
the adaptation be safely performed? How do adjustments of different feedback
loops interfere with each other? Do centralized or decentralized feedback help
achieve the global goal? An important additional applicable question is whether
the control system has sufficient command authority over the process—that is,
whether the available actuators or effectors are sufficient to drive the system into
the desired directions.

The above questions—and many others—regarding the feedback loops should
be explicitly identified, recorded, and resolved during the development of a
self-adaptive system.

2.2 Feedback Loops in Control Engineering

An obvious way to address some of the questions raised above is to draw on
control theory. Feedback control is a central element of control theory, which
provides well-established mathematical models, tools, and techniques for analy-
sis of system performance, stability, sensitivity, or correctness [24,25]. The soft-
ware engineering community in general and the SEAMS community in particular
are exploring the extent to which general principles of control theory (i.e., feed-
forward and feedback control, observability, controllability, stability, hysteresis,
and specific control strategies) are applicable when reasoning about self-adaptive
software systems.

Control engineers have invented many variations of control and adaptive con-
trol. For many engineering disciplines, these types of control systems have been
the bread and butter of their designs. While the amount of software in these con-
trol systems has increased steadily over the years, the field of software engineer-
ing has not embraced feedback loops as a core design element. If the computing
pioneers and programming language designers were control engineers—instead
of mathematicians—by training, modern programming paradigms might feature
process control elements [26].

We now turn our attention to the generic data and control flow of a feedback
loop. Figure 2 depicts the classical feedback control loop featured in numerous
control engineering books [24,25]. Due to the interdisciplinary nature of control
theory and its applications (e.g., robotics, power control, autopilots, electronics,
communication, or cruise control), many diagrams and variable naming conven-
tions are in use. The system’s goal is to maintain specified properties of the
output, yp, of the process (also referred to as the plant or the system) at or suf-
ficiently close to given reference inputs up (often called set points). The process
output yp may vary naturally; in addition external perturbations d may disturb



54 Y. Brun et al.

Fig. 2. Feedback control loop

the process. The process output yp is fed back by means of sensors—and often
through additional filters (not shown in Figure 2)—as yb to compute the differ-
ence with the reference inputs up. The controller implements a particular control
algorithm or strategy, which takes into account the difference between up and
yb to decide upon a suitable correction u to drive yp closer to up using process-
specific actuators. Often the sensors and actuators are omitted in diagrams of
the control loops for the sake of brevity.

The key reason for using feedback is to reduce the effects of uncertainty which
appear in different forms as disturbances or noise in variables or imperfections
in the models of the environment used to design the controller [27]. For example,
feedback systems are used to manage QoS in web server farms. Internet load,
which is difficult to model due to its unpredictability, is one of the key variables
in such a system fraught with uncertainty.

It seems prudent for the SEAMS community to investigate how different ap-
plication areas realize this generic feedback loop, point out commonalities, and
evaluate the applicability of theories and concepts in order to compare and lever-
age self-adaptive software-intensive systems research. To facilitate this compari-
son, we now introduce the organization of two classic feedback control systems,
which are long established in control engineering and also have wide applicability.

Adaptive control in control theory involves modifying the model or the control
law of the controller to be able to cope with slowly occurring changes of the
controlled process. Therefore, a second control loop is installed on top of the
main controller. This second control loop adjusts the controller’s model and
operates much slower than the underlying feedback control loop. For example,
the main feedback loop, which controls a web server farm, reacts rapidly to
bursts of Internet load to manage QoS. A second slow-reacting feedback loop

(a) Model Identification Adaptive Control
(MIAC)

(b) Model Reference Adaptive Control
(MRAC)

Fig. 3. Two standard schemes for adaptive feedback control loops



Engineering Self-Adaptive Systems through Feedback Loops 55

may adjust the control law in the controller to accommodate or take advantage
of anomalies emerging over time.

Model Identification Adaptive Control (MIAC) [28] and Model Reference Ad-
aptive Control (MRAC) [27], depicted in Figures 3(a) and 3(b), are two impor-
tant manifestations of adaptive control. Both approaches use a reference model
to decide whether the current controller model needs adjustment. The MIAC
strategy builds a dynamical reference model by simply observing the process
without taking reference inputs into account. The MRAC strategy relies on a
predefined reference model (e.g., equations or simulation model) which includes
reference inputs.

This MIAC system identification element takes the control input u and the
process output yp to infer the model of the current running process (e.g., its
unobservable state). Then, the element provides the system characteristics it
has identified to the adjustment mechanism which then adjusts the controller
accordingly by setting the controller parameters. This adaptation scheme has to
take also into account that a disturbances d might affect the process behavior
and, thus, usually has to observe the process for multiple control cycles before
initiating an adjustment of the controller.

The MRAC solution, originally proposed for the flight-control problem [27,29],
is suitable for situations in which the controlled process has to follow an elaborate
prescribed behavior described by the model reference. The adaptive algorithm
compares the outputs of the process yp which results from the control value u
of the Controller to the desired responses from a reference model ym for the
goal up, and then adjusts the controller model by setting controller parameters
to improve the fit in the future. The goal of the scheme is to find controller
parameters that cause the combined response of the controller and process to
match the response of the reference model despite present disturbances d.

The MIAC control scheme observes only the process to identify its specific
characteristics using its input u and output yp. This information is used to
adjust the controller model accordingly. The MRAC control scheme in contrast
provides the desired behavior of the controller and process together using a
model reference and the input up. The adjustment mechanism compares this
to yp. The MRAC scheme is appropriate for achieving robust control if a solid
and trustworthy reference model is available and the controller model does not
change significantly over time. The MIAC scheme is appropriate when there is no
established reference model but enough knowledge about the process to identify
the relevant characteristics. The MIAC approach can potentially accommodate
more substantial variations in the controller model.

Feedback loops of this sort are used in many engineered devices to bring about
desired behavior despite undesired disturbances [24,27,28,29]. Hellerstein et al.
provide a more detailed treatment of the analysis capabilities offered by control
theory and their application to computing systems [2,13]. As pointed out by
Kokar et al. [30], rather different forms of control loops may be employed for self-
adaptive software and we may even go beyond classical or even adaptive control
and use reconfigurable control for the software where besides the parameters also
structural changes are considered (cf. compositional adaptation [31]).



56 Y. Brun et al.

2.3 Feedback Loops in Natural Systems

In contrast to self-adaptive systems built using control engineering concepts,
self-adaptive systems in nature do not often have a single clearly visible control
loop. Often, there is no clear separation between the controller, the process, and
the other elements present in advanced control schemes. Further, the systems
are often highly decentralized in such a way that the entities have no sense of
the global goal but rather it is the interaction of their local behavior that yields
the global goal as an emergent property.

Nature provides plenty of examples of cooperative self-adaptive and self-
organizing systems: social insect behaviors (e.g., ants, termites, bees, wasps,
or spiders), schools of fish, flocks of birds, immune systems, and social human
behavior. Many cooperative self-adaptive systems in nature are far more com-
plex than the systems we design and build today. The human body alone is
orders of magnitude more complex than our most intricate designed systems.
Further, biological systems are decentralized in such a way that allows them to
benefit from built-in error correction, fault tolerance, and scalability. When en-
countering malicious intruders, biological systems typically continue to execute,
often reducing performance as some resources are rerouted towards handling
those intruders (e.g., when the flu virus infects a human, the immune system
uses energy to attack the virus while the human continues to function). De-
spite added complexity, human beings are more resilient to failures of individual
components and injections of malicious bacteria and viruses than engineered
software systems are to component failure and computer virus infection. Other
biological systems, for example worms and sea stars, are capable of recovering
from such serious hardware failures as being cut in half (both worms and sea
stars regenerate the missing pieces to form two nearly identical organisms), yet
we envision neither a functioning laptop computer, half of which was crushed by
a car, nor a machine that can recover from being installed with only half of an
operating system. It follows that if we can extract certain properties of biologi-
cal systems and inject them into our software design process, we may be able to
build complex and dependable self-adaptive software systems. Thus, identifying
and understanding the feedback loops within natural systems is critical to being
able to design nature-mimicking self-adaptive software systems.

Two types of feedback in nature are positive and negative feedback. Positive
feedback reinforces a perturbation in systems in nature and leads to an amplifica-
tion of that perturbation. For example, ants lay down a pheromone that attracts
other ants. When an ant travels down a path and finds food, the pheromone at-
tracts other ants to the path. The more ants use the path, the more positive
feedback the path receives, encouraging more and more ants to follow the path
to the food. Negative feedback triggers a response that counteracts a perturba-
tion. For example, when the human body experiences a high concentration of
blood sugar, it releases insulin, resulting in glucose absorption, and bringing the
blood sugar back to the normal concentration.

Negative and positive feedback combine to ensure system stability: positive
feedback alone would push the system beyond its limits and ultimately out of



Engineering Self-Adaptive Systems through Feedback Loops 57

control, whereas negative feedback alone prevents the system from searching for
optimal behavior.

Decentralized self-organizing systems are generally composed of a large num-
ber of simple components that interact locally — either directly or indirectly.
An individual component’s behavior follows internal rules based only on local
information. These rules can support positive and negative feedback at the level
of individual components. The numerous interactions among the components
then lead to global control loops.

2.4 Feedback Loops in Software Engineering

For software engineering we have observed that feedback loops are often hid-
den, abstracted, dispersed, or internalized when the architecture of an adaptive
system is documented or presented [26]. Certainly, common software design no-
tations (e.g., UML) do not routinely provide views that lend themselves to de-
scribing and analyzing control and reason about uncertainty. Further, we suspect
that the lack of a notation leads to the absence of an explicit task to document
the control, which leads in turn in failure to explicitly designing, analyzing, and
validating the feedback loops.

However, the feedback behavior of a self-adaptive system, which is realized
with its control loops, is a crucial feature and, hence, should be elevated to a
first-class entity in its modeling, design, implementation, validation, and oper-
ation. When engineering a self-adaptive system, the properties of the control
loops affect the system’s design, architecture, and capabilities. Therefore, be-
sides making the control loops explicit, the control loops’ properties have to be
made explicit as well. Garlan et al. also advocate to make self-adaptation ex-
ternal, as opposed to internal or hard-wired, to separate the concerns of system
functionality from the concerns of self-adaptation [9,16].

Explicit feedback loops are common in software process improvement mod-
els [19] and industrial IT service management [32], where the system manage-
ment activities and products are decoupled by the software development cycle.
A major breakthrough in making feedback loops explicit came with IBM‘s auto-
nomic computing initiative [33] with its emphasis on engineering self-managing
systems. One of the key findings of this research initiative is the blueprint for
building autonomic systems using MAPE-K (monitor-analyze-plan-execute over
a knowledge base) feedback loops [34] as depicted in Figure 4. The phases of
the MAPE-K loop or autonomic element map readily to the generic autonomic
control loop as depicted in Figure 1. Both diagrams highlight the main activities
of the feedback loop while abstracting away characteristics of the control and
data flow around the loop. However, the blueprint provides extensive instruc-
tions on how to architect and implement the four phases, the knowledge bases,
sensors, and actuators. It also outlines how to compose autonomic elements to
orchestrate self-management.

Software engineering for self-adaptive systems has recently received consid-
erable attention with a proliferation of journals, conferences, workshops (e.g.,
TASS, SASO, ICAC, or SEAMS). Many of the papers published in these venues



58 Y. Brun et al.

dealing with the development, analysis and validation methods for self-adaptive
systems do not yet provide sufficient explicit focus on the feedback loops, and
their associated properties, that almost inevitably control the self-adaptations.

The idea of increasing the visibility of control loops in software architectures
and software methods is not new. Over a decade ago, Shaw compared a software
design method based on process control to an object-oriented design method [35].
She introduced a new software organization paradigm based on control loops
with an architecture that is dominated by feedback loops and their analysis
rather than by the identification of discrete stateful objects. Hellerstein et al.
in their ground-breaking book provide a first practical treatment of the design
and application of feedback control of computing systems [13]. Recently, Shaw,
together with Müller and Pezzè, advocated the usefulness of a design paradigm
based on explicit control loops for the design of ULS systems [26]. The prelimi-
nary ideas presented in this position paper contributed to ignite the discussion
that led to the contribution of this paper.

To manage uncertainty in computing systems and their environments, we need
to introduce feedback loops to control the uncertainty. To reason about uncer-
tainty effectively, we need to elevate feedback loops to be visible and first class.
If we do not make the feedback loops visible, we also will not be able to identify
which feedback loops may have major impact on the overall system behavior
and apply techniques to predict their possible severe effects. More seriously, we
will neglect the proof obligations associated with the feedback, such as validat-
ing that yb (i.e., the estimate of yp derived from the sensors) is sufficiently good,
that the control strategy is appropriate to the problem, that all necessary correc-
tions can be achieved with the available actuators, that corrections will preserve
global properties such as stability, and that time constraints will be satisfied.
Therefore, if feedback loops are not visible we will not only fail to understand
these systems but also fail to build them in such a manner that crucial properties
for the adaptation behavior can be guaranteed.

ULS systems may include many self-adaptive mechanisms developed indepen-
dently by different working teams to solve several classes of problems at differ-
ent abstraction levels. The complexity of both the systems and the development
processes may result in the impossibility of coordinating the many self-adaptive
mechanisms by design, and may result in unexpected interactions with negative
effects on the overall system behavior. Making feedback loops visible is an es-
sential step toward the design of distributed coordination mechanisms that can
prevent undesirable system characteristics—such as various forms of instability
and divergence—due to interactions of competing self-adaptive systems.

3 Solutions Inspired by Explicit Control

The autonomic element—introduced by Kephart and Chess [33] and popular-
ized with IBM’s architectural blueprint for autonomic computing [34]—is the
first architecture for self-adaptive systems that explicitly exposes the feedback
control loop depicted in Figure 2 and the steps indicated in Figure 1, identifying



Engineering Self-Adaptive Systems through Feedback Loops 59

Fig. 4. IBM’s autonomic element [34]

functional components and interfaces for decomposing and managing the feed-
back loop. To realize an autonomic system, designers compose arrangements of
collaborating autonomic elements working towards common goals. In particular,
IBM uses the autonomic element as a fundamental building block for realizing
self-configuring, self-healing, self-protecting and self-optimizing systems [33,34].

An autonomic element, as depicted in Figure 4, consists of a managed element
and an autonomic manager with a feedback control loop at its core. Thus, the
autonomic manager and the managed element correspond to the controller and
the process, respectively, in the generic feedback loop. The manager or controller
is composed of two manageability interfaces, the sensor and the effector, and the
monitor-analyze-plan-execute (MAPE-K) engine consisting of a monitor, an an-
alyzer, a planner, and an executor which share a common knowledge base. The
monitor senses the managed process and its context, filters the accumulated sen-
sor data, and stores relevant events in the knowledge base for future reference.
The analyzer compares event data against patterns in the knowledge base to di-
agnose symptoms and stores the symptoms for future reference in the knowledge
base. The planner interprets the symptoms and devises a plan to execute the
change in the managed process through its effectors. The manageability inter-
faces, each of which consists of a set of sensors and effectors, are standardized
across managed elements and autonomic building blocks, to facilitate collabora-
tion and data and control integration among autonomic elements. The autonomic
manager gathers measurements from the managed element as well as informa-
tion from the current and past states from various knowledge sources and then
adjusts the managed element if necessary through its manageability interface
according to its control objective.

An autonomic element itself can be a managed element [34,36]. In this case
additional sensors and effectors at the top of the autonomic manager are used
to manage the element (i.e., provide measurements through its sensors and re-
ceive control input—rules or policies—through its effectors). If there are no such
effectors, then the rules or policies are hard-wired into the control loop. Even



60 Y. Brun et al.

if there are no effectors at the top of the element, the state of the autonomic
element is typically still exposed through its top sensors. Thus, an autonomic
element constitutes a self-adaptive system because it alters the behavior of an
underlying subsystem—the managed element—to achieve the overall objectives
of the system.

While the autonomic element, as depicted in Figure 4, was originally pro-
posed as a solution for architecting self-managing systems for autonomic com-
puting [33], conceptually, it is in fact a feedback control loop from classic control
theory.

Garlan et al. have developed a technique for using feedback for self-repair
of systems [9]. Figure 5(a) shows their system. They add an external controller
(top box) to the underlying system (bottom box), which is augmented with suit-
able actuators. Their architecture maps quite naturally to the generic feedback
control loop (cf. Figure 2).

To see this, Figure 5(b) introduces two elaborations to the generic control
loop. First, we separate the controller into three parts (compare, plan correc-
tion, and effect correction). Second, we elaborate the value of yb, showing that
sensors can sense both the executing system and its operating environment and
by explicitly adding a component to convert observations to modeled value. In
redrawing the diagram, we have arranged the components so that they overlay
the corresponding components of the Rainbow architecture diagram. To show
that the feedback loop is clearly visible in the Rainbow architecture, we provide
the mapping between both architectures in Table 1.

An example for a self-adaptive system following the MIAC scheme applied
to software is the robust feedback loop used in self-optimization that is be-
coming prevalent in performance-tuning and resource-provisioning scenarios (cf.
Figure 6(a)) [37,38]. Robust feedback control tolerates incomplete knowledge
about the system model and assumes that the system model has to be fre-
quently rebuilt. To accomplish this, the feedback control includes an Estimator

3

45

1

2

6

(a) Rainbow system’s archi-
tecture [9]

(b) Shaw’s elaborated feedback control architec-
ture [26]

Fig. 5. The Rainbow system and Shaw’s feedback control loop



Engineering Self-Adaptive Systems through Feedback Loops 61

Table 1. Mapping showing the correspondence between the elements of the Rainbow
system’s architecture and Shaw’s architecture

Rainbow system (cf. Figure 5(a)) Model (cf. Figure 5(b))

(1) Executing sys. with runtime manager Executing sys. in its operating environment
(2) Monitoring mechanisms Probes
(–) (Rainbow is not predictive) Predictions
(3) Architectural model Objective, model of current state
(4) Analyzer Compare
(5) Repair handler Plan correction
(6) Translator, runtime manager Effect correction, commands

that estimates state variables (x) that cannot be directly observed. The variables
x are then used to tune a performance model (i.e., queuing network model) on-
line, allowing that model to provide a quantitative dependency law between the
performance outputs and inputs (yu) of the system around an operational point.
This dependence is dynamic and captures the influence of perturbations w, as
well as time variations of different parameters in the system (e.g., due to software
aging, caching, or optimizations). A Controller uses the yu dependency to decide
when and what resources to tune or provision. The Controller uses online opti-
mization algorithms to decide what adaptation to perform. Since performance is
affected by many parameters, the Controller chooses to change only those param-
eters that achieve the performance goals with minimum resource consumption.
Since the system changes in time, so does the performance dependence between
the outputs and inputs. However, the scheme still works because the Estimator
and the Performance Model provide the Controller with an accurate reflection
of the system.

Another example of an MIAC scheme is a mechatronics system consisting of
a system of autonomous shuttles that operate on demand and in a decentral-
ized manner using a wireless network [39]. Realizing such a mechatronics system
makes it necessary to draw from techniques offered by the domains of control
engineering as well as software engineering. Each shuttle that travels along a spe-
cific track section approaches the responsible local section control to obtain data
about the track characteristics. The shuttle optimizes the control behavior for
passing that track section based on that data and the specific characteristics of
the shuttle. The new experiences are then propagated back to the section control

Performance
Model

SystemController

Estimator

y

yu

Performance
Goals

u

d

e
x

+

(a) Self-optimization via feedback loop

ProcessProcess

Adjustment
Mechanism

Adjustment
Mechanism

System
Identification

ControllerController

System
Identification

Adjustment
Mechanism

System
Identification

Controller Processu
up yp

Controller
Parameters

Process Characteristics

d

(b) Multiple intertwined MIAC schemes

Fig. 6. Applications of adaptive control schemes for self-adaptive systems



62 Y. Brun et al.

such that other shuttles may benefit from them (i.e., improve their model). The
shuttles implement the MIAC control loop as a group as depicted in Figure 6(b).
Each shuttle traveling along a track only realizes the Adjustment Mechanism
and Controller while the shuttles, which have reported on the track characteris-
tics before, and the section control collectively realize the System Identification.
Note that this constitutes a form of cooperative self-adaptation where multiple
elements are involved in a single adaptive control loop.

4 Solutions Inspired by Natural Systems

Because nature-inspired engineering is a younger area of research than con-
trol theory, emerging nature-inspired solutions for self-adaptive software have
not yet been classified and contrasted against one another. In this section,
we present some of the existing nature-inspired solutions for self-adaptive soft-
ware systems. While some current work deals with building biologically inspired
self-adapting software systems [40,41], even more work has gone into studying
biological systems to inspire the design of software and hardware systems in
robotics [1,42,43,44]. It remains a challenge to employ biological knowledge to
develop an understanding of how to build software systems that function the
way biological systems do, and to design appropriate architectures, design tools,
and programming tools to create such systems.

In nature, the process of crystal growth can result in well-formed regular crys-
tals or high-error irregular crystals. The key aspect that determines which type
of crystal will form is the speed at which the crystal grows. If the crystal grows
slowly, then badly and weakly attached molecules detach from the crystal and
the final result has very few, if any, errors. However, if the crystal grows quickly,
badly attached molecules are locked in by other attachments before they can
detach, and the final result has many errors. The tile architectural style [40], a
software architectural style inspired by crystal growth, leverages the feedback
exhibited by crystal growth to allow fault and adversary tolerance [4]. The tile
style allows distributing computation of NP-complete problems on a large net-
work in a secure, dependable, and scalable manner [40]. The control loops within
tile-style systems are difficult to classify as positive or negative; however, they
do fit nicely into the feedback loop described in Figure 2. The individual compo-
nents attach to one another, collecting information on what other components
may attach. After a faulty or malicious agent attaches an illegal component, fu-
ture attachment cannot happen, and analysis reveals that the assembly became
locally “stuck.” (Since the system is only affected locally, the computational re-
sources are rerouted and the system as a whole makes progress, incurring only
negligible reduction in computation speed.) The surrounding components decide
to detach a few most-recently attached neighbors, and resume attaching new
components. As this action selects prospective components at random, faulty or
malicious agents are unlikely to be able to penetrate the assembly two or more
times, thus resulting in a fault- and adversary-tolerant software system.

Schools of fish and flocks of birds adapt their behavior by using direct com-
munication. They follow a set of attraction and repulsion rules: maintaining a



Engineering Self-Adaptive Systems through Feedback Loops 63

minimum distance from other objects in the environment, matching own velocity
with that of neighbors, and moving toward the perceived center of mass in one’s
neighborhood. These rules provoke a wave of reactions that are communicated
progressively to all components of the school or flock. Certain software systems
use similar mechanisms—for example, process schedulers and network routing
protocols.

In contrast, ants and wasps use stigmergy as an indirect communication mech-
anism by leaving clues in the environment for the others. Ants add pheromone
to their environments to denote paths to food and wasp-nest construction fol-
lows a work-in-progress mechanism (each cell added to the nest creates a new
nest configuration and each configuration triggers a particular response in the
wasps). Research in swarm robotics has used stigmergy extensively to solve static
and dynamic optimization problems. More generally, stigmergy as an indirect
communication medium is being used for coordinating unmanned vehicles [45].

Mammalian immune systems provide a defense mechanism by detecting
antigens (intruders) and by coordinating a collective decentralized response to
destroy them. These distributed, decentralized systems balance detection and re-
moval of malicious agents against interference with normal cell processes and em-
ploy learning techniques. Software intrusion detection research already leverages
some immune-system ideas [46], but understanding these intricate self-organizing
defenses can offer much more insight into engineering self-adaptive systems.

More generally, current practice in engineering self-organizing systems en-
compass the use of autonomous components (agents), establishment of behav-
ior interactions rules following adaptive mechanisms inspired by nature or use
of middleware with built-in features supporting adaptive mechanisms (such as
digital pheromone propagation).

5 Challenges Ahead

We have argued that the feedback loop should be a first-class entity when think-
ing about engineering of self-adaptive systems. We believe that understanding
and reasoning about the control loop is key for advancing the construction of
self-adaptive systems from an ad-hoc, trial-and-error endeavor towards a more
disciplined approach. To achieve this goal, the following issues, possibly among
others, have to be addressed.

Modeling: There should be modeling support to make the control loop explicit
and to expose self-adaptive properties so that the designer can reason about the
system. The models have to capture what can be observed and what can be
influenced. It would be desirable to have a widely agreed upon standard (e.g.,
in the form of reference models with domain-specific notations) for self-adaptive
systems including the control loop. Highly decentralized self-organizing systems,
such as swarms, need to have proper models of control loops, even though today,
that control loop is only implicitly present in the models.

The nature of a self-adaptive system requires to reify properties that would
otherwise be encoded implicitly. These reified properties need to be modeled



64 Y. Brun et al.

appropriately so that they can be queried and modified during runtime. Exam-
ples of such properties are system state that is used to reason about the system’s
behavior, and policies and business goals that govern and constrain how the
system can and will adapt.

Control Loops: We have described a number of types of control loops found
in control-engineering, natural, robotics, and software systems. Our list is by no
means comprehensive and other types of control loops, and self-adaption tech-
niques that leverage control loops and interactions between control loops, exist.
One challenge to advancing the engineering of self-adaptive software systems is
creating a reference library of control-loop types and mechanisms of control-loop
interactions. To create this library, we must mine, understand, and leverage ex-
isting systems and then classify and catalog their self-adaptation mechanisms.
In particular, natural systems are rich sources of distinct and novel control loops
and control-loop interactions.

Architecture and Design: Decisions concerning feedback loops in the archi-
tecture and design of self-adaptive systems can leverage past experience. Con-
trol theory research found that systems with a single control loop are easier
to reason about than systems with multiple loops, although the latter are far
more common. Since good engineering practice calls for simple design, engineers
should consider minimizing the number of control loops or decoupling control
loops from each other. Such a decoupling can happen with respect to time,
ensuring that the loops operate at different time scales, or with respect to space,
weakening the dependencies between variables. When complete decoupling is
not possible, the design must make the control-loop interactions, and their han-
dling, explicit. Thus, designs containing multiple control loops must be care-
fully considered and analyzed, as in, for example, the MIAC or MRAC designs
(cf. Figures 3(b) and 3(b)).

Control engineering research has also identified that hierarchical organiza-
tion of control loops reduces the design complexity. In this scheme, the loops
influence each other top-down and operate at different time scales, avoiding un-
expected interference between the hierarchy levels. Hierarchical organization is
of particular interest if it is possible to distinguish different time scales and dif-
ferent controlled variables [37] or different adaptation domains within a software
system, such as change management and goal management [17].

Reference architectures for adaptive systems should therefore highlight key
aspects of feedback loops, including their number, structural arrangements (e.g.,
sequential, parallel, hierarchical, decentralized), interactions, data flow, toler-
ances, trade-offs, sampling rates, stability and convergence conditions, hystere-
sis specifications, and context uncertainty [36]. It is highly desirable that such
architectures can be used to reason about the properties of the system and
its control loop. In other words, we must determine whether it is possible to
build Attribute-Based Architectural Styles for control loops in self-adaptive
systems [47].



Engineering Self-Adaptive Systems through Feedback Loops 65

Unintended-Interaction Detection: For some systems (e.g., ULS systems),
their complexity may limit the possibility of hierarchical organization of control
loops or other methods of control-loop decoupling. Control loops developed in-
dependently to cope with different problems at various abstraction levels may
result in unexpected interactions with negative effects on the system behavior.

Combining distinct subsystems with seemingly independent goals can often
result in emergent behaviors, some of which can be desirable, while others are
undesirable. Nature suggests two avenues of research toward potential solutions
to detecting and avoiding unintended interactions between control loops: (1)
mining the abundant systems from nature with control loops that do not in-
teract in undesirable ways to understand how to develop such control loops in
engineered systems; and (2) understanding the process that has arrived at sys-
tems with only desirably interacting control loops (e.g., evolution) and applying
a similar process to select or decouple control loops automatically in engineered
systems.

Maintenance: Since maintenance constitutes a significant portion of a soft-
ware system’s life cycle, understanding maintainability concerns specific to self-
adaptive systems poses an important challenge. Examples of issues that should
be tackled are how the maintainability concerns of self-adaptive systems and tra-
ditional systems compare and whether a system designed for dynamic variability
or adaptation is easier to maintain than a static system [36,48]. It is reasonable
to expect differences in maintenance of the two kinds of systems because some
self-adaptive systems add a reflective layer that enables runtime analysis and
adaptation. Consequently, a maintenance activity may involve changes to either,
or both, the system’s meta level or base level [49].

Middleware Support: Currently, the building of self-adaptive systems is te-
dious because of the lack of a reusable code base. A dedicated development and
execution environment (e.g., in the form of a framework or library) for build-
ing systems with self-adaptive features would go a long way in resolving this
challenge. As a vision, good middleware support should “allow researchers with
different motivations and experiences to put their ideas into practice, free from
the painful details of low-level system implementation” [50]. Such an infrastruc-
ture should define standardized interfaces and services, support different het-
erogeneous platforms, allow for the rapid prototyping of self-adaptive features,
and involve hybrid architectures (e.g., combining top-down and bottom-up or
centralized and decentralized approaches).

Verification and Validation: Development of self-adaptive systems requires
techniques to validate the effects of feedback loops. Classical control engineering
provides sophisticated solutions for the analysis of continuous-feedback control
loops [2,13]. However, some phenomena relevant to software and self-adaptation
have a discrete or hybrid nature (e.g., architectural changes). In addition to con-
trol engineering, discrete event systems [51], switched systems [52], and hybrid
systems [53] may provide mechanisms relevant to self-adaptive systems.



66 Y. Brun et al.

Reengineering: Today, most engineering issues for self-adaptive systems are ap-
proached from the perspective of greenfield development. However, many legacy
applications can benefit from self-adaptive features. Reengineering of existing
systems with the goal of making them more self-adaptive in a cost-effective and
principled manner poses an important challenge. Of particular concern is the
question of how to inject a control loop into an existing system. Technologies
and tools that allow an engineer to (semi-)automatically augment an existing
system with sensors and effectors can begin to answer this challenge. Further,
existing systems should be gradually migrated towards self-adaptive capabilities
(a.k.a. the chicken little approach), for example, by increasing the scope of self-
adaptive control from subcomponents towards the entire business infrastructure
or by increasing self-adaptive functionality in a single component by substituting
high-level-goal-based self-adaptive behavior for manual configuration.

Human-Computer Interaction: Even though self-adaptive systems act au-
tonomously in many respects, they have to keep the user in the loop. Providing
the user with feedback about the system state is crucial to establish and keep
users’ trust. To that effect, a self-adaptive system needs to expose aspects of
its control loop to the user. For example, if a web server is reconfigured in re-
sponse to a load change, the human administrator needs (visual) feedback that
the performed adaptation has a positive effect.

Also, users should be given the option to disable self-adaptive features and
the system should take care not to contradict explicit choices made by users [54].
Furthermore, users might want feedback from the system about the information
collected by sensors and how this information is used to adapt the system. In
fact, if the collected information is personal data there might be even a legal
obligation to do so [55].

6 Conclusions

We have outlined in this paper that feedback loops are a key factor in software
engineering of self-adaptive systems. In the case of top-down self-adaptive archi-
tectures employing explicitly-engineered feedback control loops, these loops are
of paramount importance to guide engineering of the self-adaptive part of those
systems. In case of systems inspired by biological and natural systems, iden-
tifying the feedback loops and understanding their impact is essential. While
notions of the feedback loop that can be found in the areas of control theory
and natural systems can provide valuable insight, software engineering needs to
develop its own unique notion of feedback loop that is suitably aligned with
its own problem domain. Therefore, we argue for the necessity of well-founded
approaches for the models, architectures, design, implementation, maintenance,
and verification techniques of self-adaptation, while taking into account the no-
tion of reengineering existing systems to contain self-adaptation. We think that
aligning our efforts with the key concept of feedback loops, which has been some-
what ignored in software engineering, will bring our community closer to the goal



Engineering Self-Adaptive Systems through Feedback Loops 67

of building complex self-adapting systems. Satisfying the challenges we outlined
above is the first step toward this endeavor.

Acknowledgments

This paper is the result of stimulating discussions among the authors and other
participants during the seminar on Software Engineering for Self-Adaptive Sys-
tems at Schloss Dagstuhl in January 2008. Some of the ideas developed in this
paper have initially been presented elsewhere [26,36,56].

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas, F., Knight, J.,
Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commu-
nications of the ACM 43(5), 74–82 (2000)

2. Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser, G., Phung, D.: Control
theory foundation for self-managing computing systems. IEEE Journal on Selected
Areas in Communications 23(12), 2213–2222 (2005)

3. Di Marzo-Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation in MAS.
Knowledge Engineering Review 20(2), 165–189 (2005)

4. Brun, Y., Medvidovic, N.: Fault and adversary tolerance as an emergent property of
distributed systems’ software architectures. In: 2nd ACM International Workshop
on Engineering Fault Tolerant Systems (EFTS 2007), Dubrovnik, Croatia, pp. 38–
43 (2007)

5. Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-large-scale
systems: The software challenge of the future. Technical report, Software Engineer-
ing Institute (2006), http://www.sei.cmu.edu/uls/

6. Ottino, J.M.: Engineering complex systems. Nature 427(6973), 399–400 (2004)
7. Brown, G., Cheng, B.H., Goldsby, H., Zhang, J.: Goal-oriented specification of

adaptation requirements engineering in adaptive systems. In: ACM 2006 Interna-
tional Workshop on Self-Adaptation and Self-Managing Systems (SEAMS 2006),
Shanghai, China, pp. 23–29 (2006)

8. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for organic computing. In: Hochberger, C.,
Liskowsky, R. (eds.) INFORMATIK 2006: Informatik für Menschen. GI-Edition –
Lecture Notes in Informatics, vol. P-93, pp. 112–119. Gesellschaft für Informatik
(2006)

9. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system dependability through
architecture-based self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677. Springer, Heidelberg (2003)

10. Liu, H., Parashar, M.: Accord: a programming framework for autonomic applica-
tions. IEEE Transactions on Systems, Man, and Cybernetics 36(3), 341–352 (2006)

11. Peper, C., Schneider, D.: Component engineering for adaptive ad-hoc systems.
In: ACM 2008 International Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2008), Leipzig, Germany, pp. 49–56 (2008)

12. Tanner, J.A.: Feedback control in living prototypes: A new vista in control engi-
neering. Medical and Biological Engineering and Computing 1(3), 333–351 (1963),
http://www.springerlink.com/content/rh7wx0675k5mx544/

http://www.sei.cmu.edu/uls/
http://www.springerlink.com/content/rh7wx0675k5mx544/


68 Y. Brun et al.

13. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons, Chichester (2004)

14. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: 4th ACM
SIGSOFT Symposium on Foundations of Software Engineering (FSE 1996), San
Francisco, CA, USA, pp. 3–14. ACM Press, New York (1996)

15. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14(3), 54–62 (1999)

16. Cheng, S.W., Garlan, D., Schmerl, B.: Making self-adaptation an engineering re-
ality. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van
Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 158–173.
Springer, Heidelberg (2005)

17. Kramer, J., Magee, J.: Self-managed systems: An architectural challenge. In: Future
of Software Engineering (FOSE 2007), Minneapolis, MN, USA, pp. 259–268. IEEE
Computer Society, Los Alamitos (2007)

18. Royce, W.W.: Managing the development of large software systems. In: 9th
ACM/IEEE International Conference on Software Engineering (ICSE 1970), pp.
328–338 (1970)

19. Boehm, B.W.: A spiral model of software development and enhancement. IEEE
Computer 21(5), 61–72 (1988)

20. Lehman, M.M.: Software’s future: Managing evolution. IEEE Software 15(1), 40–44
(1998)

21. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions Autonomous Adaptive Systems (TAAS) 1(2), 223–259 (2006)

22. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Press, Palo Alto (1980)
23. Gat, E.: Three-layer Architectures, pp. 195–210. MIT/AAAI Press, Cambridge

(1997)
24. Burns, R.: Advanced Control Engineering. Butterworth-Heinemann (2001)
25. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 10th edn. Prentice-Hall, En-

glewood Cliffs (2005)
26. Müller, H.A., Pezzè, M., Shaw, M.: Visibility of control in adaptive systems. In:

Second International Workshop on Ultra-Large-Scale Software-Intensive Systems
(ULSSIS 2008), Workshop at 30th IEEE/ACM International Conference on Soft-
ware Engineering (ICSE 2008), Leipzig, Germany (May 2008)

27. Astrom, K., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley, Reading
(1995)

28. Söderström, T., Stoica, P.: System Identification. Prentice-Hall, Englewood Cliffs
(1988)

29. Dumont, G., Huzmezan, M.: Concepts, methods and techniques in adaptive control.
In: 2002 IEEE American Control Conference (ACC 2002), Anchorage, AK, USA,
vol. 2, pp. 1137–1150 (2002)

30. Kokar, M.M., Baclawski, K., Eracar, Y.A.: Control theory-based foundations of
self-controlling software. IEEE Intelligent Systems 14(3), 37–45 (1999)

31. McKinley, P.K., Sadjadi, M., Kasten, E.P., Cheng, B.H.: Composing adaptive soft-
ware. IEEE Computer 37(7), 56–64 (2004)

32. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo,
M.: IT service management architecture and autonomic computing. IBM Systems
Journal 46(3), 565–581 (2007)

33. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)



Engineering Self-Adaptive Systems through Feedback Loops 69

34. IBM Corporation: An architectural blueprint for autonomic computing. White Pa-
per, 4th edn., IBM Corporation,
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

35. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

36. Müller, H.A., Kienle, H.M., Stege, U.: Autonomic computing: Now you see it,
now you don’t. In: Lucia, A.D., Ferrucci, F. (eds.) Software Engineering: Interna-
tional Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures.
LNCS, vol. 5413, pp. 32–54. Springer, Heidelberg (2009)

37. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic con-
trol of software systems. In: ACM ICSE Workshop on Design and Evolution of
Autonomic Software, St. Louis, MO, USA, pp. 1–7 (2005)

38. Litoiu, M., Mihaescu, M., Ionescu, D., Solomon, B.: Scalable adaptive web services.
In: Development for Service Oriented Architectures (SD-SOA 2008), Workshop at
30th IEEE/ACM International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany (2008)

39. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool support for the design of self-optimizing mechatronic multi-agent systems.
International Journal on Software Tools for Technology Transfer (STTT) 10(3)
(2008)

40. Brun, Y., Medvidovic, N.: An architectural style for solving computationally in-
tensive problems on large networks. In: Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2007), Workshop at 29th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA
(2007)

41. Di Marzo-Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A generic
framework for the engineering of self-adaptive and self-organising systems. Tech-
nical report, School of Computer Science, University of Newcastle, Newcastle, UK
(2007)

42. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using
Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA (2001)

43. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Workshop
on Adaptability in Multi-Agent Systems, First RoboCup Australian Open (AORC
2003), Sydney, Australia (2003)

44. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh,
J.: Multimode locomotion via superbot reconfigurable robots. Autonomous
Robots 20(2), 165–177 (2006)

45. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.A.: Performance of digi-
tal pheromones for swarming vehicle control. In: 4th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), The Netherlands,
pp. 903–910. ACM, New York (2005)

46. Hofmeyr, S., Forrest, S.: Immunity by design: An artificial immune system. In:
Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando,
Florida, USA, pp. 1289–1296. Morgan-Kaufmann, San Francisco (1999)

47. Klein, M., Kazman, R.: Attribute-based architectural styles. Technical Report
CMU/SEI-99-TR-022, Software Engineering Institute (SEI) (1999),
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr022.pdf

48. Zhu, Q., Lin, L., Kienle, H.M., Müller, H.A.: Characterizing maintainability con-
cerns in autonomic element design. In: 24th IEEE International Conference on
Software Maintenance (ICSM 2008), Beijing, China, pp. 197–206 (2008)

http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr022.pdf


70 Y. Brun et al.

49. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: 2009 International Workshop on Self-Adaptation and Self-
Managing Systems (SEAMS 2009), Vancouver, BC, Canada (to be published, 2009)

50. Babaoglu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel,
A.P.A.: The self-star vision. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer,
C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS,
vol. 3460, pp. 1–20. Springer, Heidelberg (2005)

51. Passino, K.M., Burgess, K.L.: Stability analysis of discrete event systems. Adaptive
and Learning Systems for Signal Processing Communications, and Control. John
Wiley & Sons, Inc., New York (1998)

52. Liberzon, D., Morse, A.: Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine 19(5), 59–70 (1999)

53. Decarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and
Results on the Stability and Stabilizability of Hybrid Systems. Proceedings of the
IEEE 88(7), 1069–1082 (2000)

54. Lightstone, S.: Seven software engineering principles for autonomic computing de-
velopment. Innovations in Systems and Software Engineering 3(1), 71–74 (2007)

55. Sackmann, S., Strüker, J., Accorsi, R.: Personalization in privacy-aware highly
dynamic systems. Communications of the ACM 49(9), 32–38 (2006)

56. Cheng, B.H., de Lemos, R., Giese, H., et al.: Software engineering for self-adaptive
systems: A research roadmap. In: Cheng, B.H., de Lemos, R., Giese, H., Inver-
ardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS,
vol. 5525. Springer, Heidelberg (2009)


	Engineering Self-Adaptive Systemsthrough Feedback Loops
	Introduction
	The Role of Feedback Loops
	Generic Feedback Loop
	Feedback Loops in Control Engineering
	Feedback Loops in Natural Systems
	Feedback Loops in Software Engineering

	Solutions Inspired by Explicit Control
	Solutions Inspired by Natural Systems
	Challenges Ahead
	Conclusions


