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Trustworthy Service Selection
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Abstract— Developing, maintaining, and disseminating trust
in open, dynamic environments is crucial. We propose self-
organizing referral networks as a means for establishing trust in
such environments. A referral network consists of autonomous
agents that model others in terms of their trustworthiness and
disseminate information on others’ trustworthiness. An agent
may request a service from another; a requested agent may
provide the requested service or give a referral to someone
else. Possibly with its user’s help, each agent can judge the
quality of service obtained. Importantly the agents autonomously
and adaptively decide with whom to interact and choose what
referrals to issue, if any. The choices of the agents lead to the
evolution of the referral network, whereby the agents move closer
to those that they trust.

This paper studies the guidelines for engineering self-
organizing referral networks. To do so, it investigates properties
of referral networks via simulation. By controlling the actions
of the agents appropriately, different referral networks can be
generated. This paper first shows how the exchange of referrals
affects service selection. It identifies interesting network topolo-
gies and shows under which conditions these topologies emerge.
Based on the link structure of the network, some agents can be
identified as authorities. Finally, the paper shows how and when
such authorities emerge. The observations of these simulations
are then formulated into design recommendations that can be
used to develop robust, self-organizing referral networks.

Index Terms— Multiagent Systems; Trust; Referrals

I. INTRODUCTION

The Web is moving from a collection of pages to a col-

lection of entities that provide and use services. Each service

can involve tasks that vary from serving information such as

Web pages to performing other complex tasks. The services

are not merely distinguished by their domain or their tasks,

but also in terms of other features of interest, such as the

price, performance (e.g., throughput), or other domain-specific

aspect. Hence, a service is described as aggregating multiple

features.

The entities that provide and use services can be people

or businesses, each potentially supported by an automated

assistant. Because we deal with an open environment, the

participating entities are autonomous and heterogeneous. Ac-

cordingly, we model them as agents in the computational

system. The agents exercise their autonomy to decide the
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actions they perform, with whom they interact, or how they

carry out their tasks.

The agents that provide the same service may differ in the

way they implement their services, and the qualities of the

services they provide. Each service provider can autonomously

decide whom it serves and the quality of service it provides to

each consumer. Likewise, the agents who use or consume the

services vary in their needs and evaluations of services. Each

service consumer can unilaterally set its own standards for

the quality of service it would like to receive and potentially

restrict its interactions to those that meet its standards.

In general, service implementations are not revealed to the

consumers, nor to any other external parties. Not knowing the

service implementation makes it hard to judge the quality of

a service. Mechanisms based on a third-party evaluation of a

service implementation cannot be employed. And, because the

expectations of each consumer are different, a third party can-

not evaluate service outcomes. Consequently, each consumer

must evaluate the service it receives.

A. Trust.

Because the entities are autonomous and heterogeneous,

selecting the right service providers is a significantly greater

challenge in large scale open systems than in traditional

distributed systems. The scale and dynamism of open envi-

ronments imply that a participant would not know and would

not be able to keep up with all potentially relevant participants.

Large, open systems deviate from traditional systems primarily

in the absence of central servers, even directory servers. The

openness of such systems implies that there would be few

regulatory restrictions for ensuring that the services offered

are of a suitable quality; i.e., there are no guarantees about

the quality of service provided by the participants. Hence,

only those servers whose quality of service is acceptable by

the participant will be relevant. Hence, it is crucial to locate

useful participants and recognize them as trustworthy. This

paper studies some key properties of trust.

For our purposes, trust is established between a service

consumer and a service provider with respect to a particular

service. Trust is inherently for a purpose and spans multiple

dimensions. A service provider may be competent in some

services but not in others. Accordingly, a consumer would

(or would not) trust a provider for a particular service. For

example, you may trust a travel agent for your travel needs

but not for your medical needs. That is, trust is not a property

of individual entities, but a property of relationships based on

individual actions. To ascertain the trustworthiness of another
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party, one must clearly formulate the service or individual

actions in question. Even when these are made explicit, two

consumers who interact with the same provider may have

different assessments of the provider’s trustworthiness. This

variance could occur because of different evidence or different

evaluations of the same evidence.

Accordingly, external third parties can neither establish

the trustworthiness of others, nor dictate which individuals

should be interacting with certain others. For this reason,

each individual has to choose whom to interact with, judge

whether they are trustworthy and establish trust in others

based on her own means. Such a process for establishing trust

is precisely based on the idea of self-organization. A self-

organizing system consists of parties who act based on local

interactions (without external control) and adapt to take into

account useful parties [3], [4].

B. Referrals for Self-Organization.

A powerful way of ensuring that service providers and the

information sources that recommend them are trustworthy is

by accessing them through referrals [5], [6]. People commonly

use referrals in real life to find useful providers; conversely,

businesses use referrals from customers to find other potential

customers. Referrals have been used in computational settings,

but their usage has been restricted by rigid exchanges of the

referrals, such as those used in domain name system (DNS).

We claim that flexible referrals are essential for locating

trustworthy services, and we propose that referrals form a key

organizing principle for engineering self-organizing applica-

tions that are targeted for open systems. Consumers can help

each other find desired service providers by giving referrals

to those trustworthy providers that have been useful for them.

A consumer can judge the quality of the services received

as well as the quality of the referrals (if any) that led to that

provider. In other words, each consumer has an empirical basis

for trust. More importantly, the consumers can self-organize by

adapting to one another. For example, based on its interactions

with others, a consumer can autonomously select the parties

with whom to interact further. An agent would link to another

party only if it has been useful in providing good services or in

providing referrals that led to good services. Thus, the agents’

associations with each other yield a self-organizing referral

network.

C. Peer-to-Peer Systems

At an architectural level, consumers and providers of ser-

vices are all peers, interacting without a need for a central

server. Hence, our referrals-based architecture can be thought

of as a peer-to-peer (P2P) architecture, where each peer acts

as a client and a server, by requesting as well as serving

information. Even though P2P architectures have been studied

in the research community for many years, P2P applications

have started to appear only recently. Gnutella [9] and Freenet

[10] are two well-known P2P systems, geared for locating

files. These systems allow peers to search for files in a

network by propagating queries to other peers (i.e., without

a centralized server) and to exchange files. Current studies of

P2P systems focus on lower level properties of the systems,

such as the naming schemes or bandwidth requirements.

Our work emphasizes the higher level interactions. In other

words, even when all architectural constraints are satisfied,

participants still need to identify other useful participants

with whom they can interact. For this reason, P2P systems

must include an approach through which peers can help each

other find trustworthy peers who offer high quality services.

Even if some peers take on specialized functions similar to

directory servers, others must establish that these specialized

peers are indeed trustworthy, e.g., to ensure that their service

recommendations are not based on ulterior motives, such as

for paid-placement search engines, or that any ulterior motives

are factored in to determine a suitable service.

D. Contributions and Organization

We have implemented a distributed platform using which

adaptive referral systems for different applications can be

built. To engineer and manage a referral system presupposes

guidelines to adjust its behavior. This paper investigates some

important guidelines for building such robust self-organizing

referral systems. In order to identify such guidelines, it studies

the behavior of self-organizing referral networks over sim-

ulations. The simulations give us the necessary controls to

tune various policies and parameters. The framework and the

test-bed that simulates the framework are powerful enough to

capture many real-life details (see Section II-C).

This work first shows that referrals can induce a natural

structure on the network of agents. This structure can then

be used to identify different application domains. Using a

particular application domain (i.e., e-commerce domain), the

paper studies properties related to the performance and top-

ology of referral networks. The performance properties study

the efficiency and the effectiveness of referral networks. The

analysis of these properties result in interesting guidelines for

selectivity of referral exchanges.

The topology properties identify interesting network topolo-

gies. In certain contexts, some topologies can be harmful. We

identify when this is the case. These topologies are important

to point out because a network could be checked to see

whether it is evolving into these pathological topologies, and

if so, certain parameters can be adjusted to avoid them.

The rest of the paper is organized as follows. Section II

describes our technical framework, including details of our

model of referrals, the application domain, and our experi-

mental setup. Section III studies effectiveness and efficiency

of referral networks and identifies trade-offs between the two

aspects. Section IV studies structural properties of referral

networks, including undesirable network structures. Section V

summarizes the main simulation results that can be incorpo-

rated as design guidelines to build referral systems. Section VI

discusses the relevant literature and gives directions for further

research.

II. TECHNICAL FRAMEWORK

We consider a multiagent system whose members represent

principals (people or businesses) providing and consuming
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services. Services are understood abstractly, i.e., not limited

to current Web services standards. Specifically, the services

could involve serving static pages, processing queries, or

carrying out e-commerce transactions, but their details are not

represented in this paper. Our study will concentrate on self-

organization of the agents.

The agents may offer diverse levels of trustworthiness and

are interested in finding other trustworthy agents. An agent

begins to look for a trustworthy provider for a desired service

by querying some other agents from among its neighbors.

The neighbors of an agent are a small subset of the agent’s

acquaintances, adaptively selected based on their usefulness.

The agents are autonomous. A queried agent may or may

not respond to another agent by providing a service or a

referral. The querying agent may accept a service offer, if

any, and may pursue referrals, if any. When an agent accepts

a service or follows a referral, there are no guarantees about

the quality of the service or the suitability of a referral. We

do not expect that any agent should necessarily be trusted by

others: an agent decides how to rate another as it sees fit.

Notice that trust applies both to the ultimate service provider

and to the agents whose referrals lead to that provider.

Each agent maintains models of its acquaintances. Each

model describes the expertise (the quality of the services it

provides), and the sociability (the quality of the referrals it

provides) of a given acquaintance. Both of these elements are

adapted based on service ratings from the agent’s principal.

Using these models, an agent applies its neighbor selection

policy to decide which of its acquaintances to keep as neigh-

bors. Key factors include the quality of the service received

from a given provider, and the value that can be placed on a

series of referrals that led to that provider. In other words, the

referring agents are rated as well.

The above framework accommodates the important prop-

erties of open and dynamic systems introduced in Section I.

One, the agents can be heterogeneous. That is, agents can be

of diverse designs and follow policies distinct from all others.

Two, each agent operates autonomously based on its local

policies. Three, each agent can adapt to the referral network

by modifying its offerings and their quality, its policies, and

its choice of neighbors.

A. Application Domains

The above framework enables us to represent different

application domains. Two important domains are e-commerce

and knowledge management, which differ in their notions

of service and how the participants interact. In a typical e-

commerce setting, the service providers are distinct from the

service consumers. The service consumers lack the expertise in

the services that they consume and their expertise does not get

any better over time. However, the consumers are able to judge

the quality of the services provided by others. For example,

you might be a consumer for auto-repair services and never

learn enough to provide such a service yourself, yet you would

be competent to judge if an auto mechanic did his job well.

Similarly, the consumers can generate difficult queries without

having high expertise. For example, a consumer can request

a complicated auto-repair service without having intimate

knowledge of the domain.
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Fig. 1. A schematic configuration for e-commerce
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Fig. 2. A schematic configuration for knowledge management

Figure 1 shows an example configuration of service con-

sumers and providers that corresponds to a commerce setting.

The nodes labeled C denote consumers and the nodes labeled

S denote service providers. The links between the node

denote neighborhood relations. Consumers are connected to

each other as well as to the service providers. These links

form paths that lead to service providers. In this model, the

service providers are dead ends: they do not have outgoing

edges, because they neither initiate queries nor give referrals.

Thus, their sociability stays low. Their concrete and modeled

expertise may of course be high.

Figure 2 shows an example network configuration in a

knowledge management setting. In this setting, the services

are knowledge services, i.e., correspond to giving answers to

queries. The consumers are not necessarily distinct from the

service producers. An agent may be knowledgeable in one

domain and hence respond to queries regarding that domain.

Or, it might be looking for information services in another

domain. Hence, all the nodes are labeled with C and denote

consumers as well as producers. Each agent can generate

and answer queries, as well as give referrals. This implies

that potentially all agents can have nontrivial expertise and

sociability. A consumer might lack the ability to evaluate the

knowledge provided by someone who has greater expertise.

However, agents would improve their knowledge by asking

questions.
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B. Agent Algorithms

Each consumer has varying levels of interest in receiving

services. The interests and expertise of the agents are repre-

sented as term vectors from the vector space model (VSM) [7],

each term corresponding to a different domain. The simulation

uses these term vectors to generate queries and answers for the

various agents.

Algorithm 1 Ask-Query()

1: Generate query

2: Compute a list of matching neighbors

3: Send query to matching neighbors

4: while (!timeout) do

5: Receive message

6: if (message.type == referral) then

7: Send query to referred agent

8: else

9: Add answer to answerset

10: end if

11: end while

12: for i = 1 to |answerset| do

13: Evaluate answer(i)

14: Update agent models

15: end for

Each agent is initialized with the same model for each

neighbor. If the initial model of a neighbor corresponds to

low expertise and low sociability values, the agent does not

trust its neighbors enough to query them. For this reason, the

initial neighbor model contains a high expertise value and a

high sociability value. Thus, the initial model encourages the

agents to query their neighbors.

An agent that is looking for an answer to a query follows

Algorithm 1. An agent generates a query by slightly perturbing

its interest vector, which denotes that the agent asks a question

similar to its interests (line 1). More specifically, a simulation

parameter p is set for the ratio of perturbation of the interest

vector. The querying agent takes its interest vector and for

each dimension ik randomly generates a new value qk from

a range that is adjusted by the perturbation ratio p. Thus, for

all dimensions of the query qk, a random number is assigned

between (1 − p) × ik and (1 + p) × ik.

In applications that involve users, such as MARS [8], the

first line of Algorithm 1 would correspond to a user request

or an agent’s anticipation of such a request. Next, the agent

computes the list of neighbors that are likely to answer this

query (line 2). We determine this through the capability metric.

Then, the agent sends the query to the agents on the matching

list (line 3).

The capability of an agent for a query measures how similar

and how strong the expertise of the agent is for the query

[6]. Capability resembles cosine similarity but also takes into

account the magnitude of the expertise vector. What this

means is that vectors with greater magnitude are regarded as

indicating a higher capability for the given query vector. In

Equation 1, Q (〈q1 . . . qn〉) is a query vector, E (〈e1 . . . en〉)
is an expertise vector and n is the number of dimensions

these vectors have. This capability metric can also be used

to measure how good an answer is for a given query.

Q ⊗ E =

∑n

t=1 (qtet)
√

n
∑n

t=1 qt
2

(1)

An agent that receives a query provides an answer only if

its expertise matches the query. If it does, then the answer

is the perturbed expertise vector of the agent. When an agent

does not answer a question, it uses its referral policy to choose

some of its neighbors to refer.

Back in Algorithm 1, an agent can receive messages from

other agents. These messages can either be referral messages

or answer messages. If an agent receives a referral to another

agent, it sends its query to the referred agent (line 7). After an

agent receives an answer, it evaluates the answer by computing

how much the answer matches the query (line 13). If the

answer matches the query more than a certain threshold,

then the answer is considered good, otherwise bad. Since the

answers are generated based on the expertise values of the

agents, implicitly, the agents with high expertise end up giving

the good answers. After the answers are evaluated, the agent

updates the models of its neighbors (line 14). Whereas in the

simulations the evaluations are performed with the capability

metric, in real life applications, the agent would directly or

indirectly evaluate the answer based on user feedback. When a

good answer comes in, the modeled expertise of the answering

agent and the sociability of the agents that helped locate the

answerer (through referrals) are increased. Similarly, when a

bad answer comes in, these values are decreased. At certain

intervals during the simulation, each agent has a chance to

choose new neighbors from among its acquaintances based

on its neighbor selection policy. The number of neighbors is

limited, so if an agent adds some neighbors it drops some

neighbors as well. The underlying intuition is that an agent

may interact with many other agents, but would only trust a

small subset of these acquaintances.
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Fig. 3. An example search through referrals

Example 1: Figure 3 shows an example referral network,

where the nodes denote agents. Agent 1’s neighbors are agents

2 and 3, agent 2’s neighbors are agents 4 and 5, and agent 3’s
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neighbors are agents 5 and 6. Agent 1 poses its query to its

neighbors, agents 2 and 3. Agent 2 provides an answer, while

agent 3 gives a referral to one of its own neighbors, agent 5.

Agent 1 then sends its query to agent 5.

Together, the neighborhood edges among the agents induce

the structure of the given society. In general, as described

above, the structure is adapted through the decisions of the

different agents. Although the decisions are autonomous, they

are influenced by various policies.

C. Experimental Setup

This paper investigates the properties of the e-commerce

domain via simulation. Studying the system through simula-

tions enables us to study the mechanisms of the agent societies

by giving us the necessary controls to adjust various policies

and parameters. The findings of the simulation can be used to

suggest certain kinds of mechanisms and representations for

the agents themselves in real applications.

The simulations contain 400 agents, between 5% and 25%

of which are service providers, and the remaining agents

are consumers. The reported simulations contain interest and

expertise vectors with 4 dimensions, where each dimension

maps to one domain. Consumers have low expertise, since

they do not offer any services themselves. The expertise of

the providers and the interests of the consumers are distributed

evenly over the domains. Each provider has expertise in just

one domain whereas a consumer may have interests in multiple

domains. The explained description of the population is fed

into the simulator (Figure 4, Population Description Box).

Consumers have high interest in getting different services,

but they have low expertise, since they do not offer services

themselves. Providers have high expertise but low sociability.

Since there are no humans to generate and evaluate queries, the

interest vectors are used to generate queries and the expertise

vectors are used to generate answers. Answers are evaluated

using the capability metric on the query and answer vectors.

A chain of referrals is followed for up to a given number of

hops, and then dropped. Intuitively, longer chains make smaller

contributions to trust. For the simulations reported here, the

chain length is limited to 3.

Each agent has a fixed number of neighbors (4 to 8) and

the same initial model for each acquaintance. In the beginning

of the simulation runs, each agent is assigned neighbors

randomly. During the course of the simulation, each agent

interacts with other agents (i.e., acquaintances) and updates

the models of its acquaintances (both expertise and sociability)

based on the answers from the providers. After every two

queries, agents can change their neighbors as they see fit. The

simulations are run for 4 to 20 neighbor selections as specified

below for each experiment. The details of the simulation,

such as the number of neighbor selections, number of hops,

and so on are provided to the simulator through a simulation

description file as shown in Figure 4.

The simulation testbed is implemented in Java. Agents

exchange messages using JBoss, a Java Message Service

(JMS) implementation. The simulations reported here were

performed on a PC with dual Pentium-3 500MHz processors

and 1GB RAM, and running Linux. Each simulation was run

with three different random seeds; averages of the three runs

are reported.

Population Description
(Number of agents,
their policies,
number of neighbors,
initial vector values)

Simulation Description
(Number of neighbor
selections, number of
allowed hops)

S
im

u
la

to
r

Create agents and message queues
Assign initial neighbors

for i = 1 to number of
neighbor {

for j = 1 to

for k = 1 to number of agents
Execute Algorithm 1

}

selections
2

//Two queries in each cycle

for c = 1 to number of agents
Change neighbors

Save agent states (their neighbors
and the models of the neighbors)

Compute metrics (such as quality)

Fig. 4. A detailed architectural diagram

The simulator starts by creating agents and message queues

based on the specifications in the the population descriptions.

Next, each agent is randomly assigned neighbors. After this

step, the simulator has a network of agents. The next step of

the simulator is the main loop. This loop can be considered

as the main simulation cycle and is repeated once for every

neighbor selection. In each cycle, all agents generate two

queries and follow Algorithm 1. At the end of the cycle,

each agent considers its set of acquaintances and selects its

set of neighbors using its neighbor selection policy. After the

main loop of the simulation, the current state of the agents

(their current neighbors and their models of acquaintances)

are written to a file. Metrics necessary to analyze the network

can be computed after the simulation ends.

III. EFFECTIVENESS AND EFFICIENCY

Effectiveness and efficiency of a referral network are key

performance indicators. The effectiveness of a network mea-

sures how easily agents find useful providers. The efficiency

of a network measures the ratio of good answers to number

of agents contacted.

A. Effectiveness

We measure the effectiveness of the system using the direct

quality metric and the nth best quality metric. Both metrics

are defined as obtained by an agent and then averaged over

all agents.

The direct quality viewed by an agent reflects, via Equation

(1), the usefulness of the neighbors of the agent, given its

interest and their expertise. That is, it estimates the likelihood

of the neighbors themselves providing good service.

Next, we take into account all other agents, not just the

neighbors. Here, we measure how well the agent’s interest

matches the expertise of all other agents in the system, scaled

down with the number of agents it has to pass to get to the
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agent. That is, the farther away the good agents are from the

given agent, the less is their contribution to the quality seen

by the agent. Let Ii denote the interest vector of agent i and

Ej denote the expertise vector of agent j. The contribution of

agent j to agent i’s quality is given by:

Ii ⊗ Ej

path(i, j)
(2)

where the shortest path length is used in the denominator.

For a small population, it is reasonable to assume that each

agent can potentially reach all other agents to which it is

connected. But in a large population, an agent will be able to

reach only a small fraction of the population. For this reason,

instead of averaging over all agents, we take the nth best

measure. That is, we measure the quality obtained by an agent

by its nth best connection in the network. The choice for n is

nontrivial. If n is too big, each agent’s quality would appear

to be equally bad. However, if n is too small, the quality will

reflect the neighbors quality as in the direct quality metric.

For the results reported below, we use the nth best metric to

measure an agent’s quality and take n to be twice the number

of neighbors that the given agent has.

A referral policy specifies which agents will be referred to a

querying agent. We consider some important referral policies.

We set the simulation variables appropriately so that an agent

answers a query only when it is sure of the answer. This

ensures that only the providers answer any questions, and the

consumers generate referrals to find the providers.

1) Refer all matching neighbors. The referring agent calcu-

lates how capable each neighbor will be in answering

the given query (based on the neighbor’s modeled ex-

pertise). Only neighbors scoring above a given capability

threshold are referred.

2) Refer all neighbors. Agents refer all of their neighbors.

This is a special case of the matching policy with the

capability threshold set extremely low (e.g., 0.1). This

resembles Gnutella’s search process where each node

forwards an incoming query to all of its neighbors if it

does not already have the requested file [9].

3) Refer the best neighbor: Refer the best matching neigh-

bor. This is similar to Freenet’s routing of request mes-

sages, where each Freenet client forwards the request

to an agent that is the likeliest to have the requested

information [10].

We study the effectiveness of different policies by varying

the capability threshold. Figure 5 plots this threshold versus

the quality of the network for different policies. In Figure 5,

the lines marked All Matching show the Refer all matching

policy for varying thresholds on the X axis. The case where

the referral threshold is set to 0.1 denotes Refer all. The

lines marked Best Neighbor plot Refer best neighbor, which

is independent of the threshold.

Among the three policies, Refer all performs the worst

for all three populations. As seen in Figure 5, when agents

use this policy, the quality never exceeds 0.085. Refer best

neighbor performs better than Refer all matching for small

values of the capability threshold (e.g., 0.2). Compared to

small thresholds, Refer best neighbor ensures a certain level of
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Fig. 5. Effectiveness of referral policies

selectiveness. Thus, it performs better than Refer all matching

with small thresholds. For thresholds greater than 0.2, Refer

all matching performs better than Refer best neighbor, where

the best threshold increases with the percentage of providers in

the society. Refer all matching with high thresholds are more

selective than Refer best neighbor. Thus, higher thresholds

generate better effectiveness than Refer best neighbor.

Observation 1: Exchanging more referrals does not guaran-

tee that the quality of the network will be high. The topology

of the network can prevent consumers from locating some of

the service providers.

When agents are less selective in their referral policies, they

exchange more referrals. However, sometimes even though

referrals are exchanged, some agents may never be located,

because they is no path to the provider from the requesting

agent. When this is the case, exchanging more referrals does

not help agents. A detailed analysis of this is presented in

Section III-C.

B. Efficiency

Each agent in the referral network is autonomous and may

well have different policies to take care of different operations

such as answering a question or referring a neighbor. Thus,

getting at a node closer to a target provider does not guarantee

that the search is progressing. For example, in Figure 1 C2

may ask C3 but if C3 is not responsive, then the search path

becomes a dead-end. Hence, the quality metrics introduced

above are optimistic; in actual usage, a provider may not

respond and other agents may not produce helpful referrals.

Hence, a high quality network does not necessarily mean that

the agents will reach the services they are close to. To illustrate

this point, we measure the efficiency of finding answers.

Efficiency is defined as the ratio of the good answers received

to the number of agents contacted. Figure 6 plots the capability

threshold versus the efficiency for different referral policies.

Refer all matching with high thresholds (e.g., 0.4, 0.5) yields

the least efficiency. Since these policies are the most selective,

few referrals are given. Hence, most of the time, the agents

cannot find good answers, reducing the overall efficiency.

However, an approximately equal number of good answers

are found with both Refer all and Refer all matching with

smaller thresholds, but because Refer all matching is more
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Fig. 6. Effect of selectivity on efficiency

selective, fewer referrals are generated, resulting in fewer

agents being contacted. For this reason, Refer all matching

with small thresholds produces higher efficiency than Refer

all. Refer best neighbor is less selective than Refer all matching

with high thresholds (e.g., 0.4, 0.5). With such high thresholds,

Refer all matching may not yield a referral to any neighbor.

However, with Refer best neighbor, one neighbor is always

being referred to. Hence, Refer best neighbor is more efficient

than Refer all matching with higher thresholds.

Observation 2: When few referrals are exchanged, good

answers are not found. When more referrals are exchanged,

good answers are found at the expense of contacting too many

agents. Hence, it is better to be less selective in exchanging

referrals to increase chances of finding good answers.

C. Analysis

We analyze the combined results on effectiveness and

efficiency in three cases. First, with higher thresholds of Refer

all matching, the agents can potentially reach the providers, but

since referrals are given highly selectively, most of the time

they cannot get referrals to locate the providers and pose their

queries. Second, with smaller thresholds of Refer all matching,

not only can the agents reach the providers, but since the

referrals are less selective, they can locate the providers and

get good answers. This is also the case for Refer best neighbor,

although with this policy the number of good answers received

is smaller. The third case is the most interesting one. With

Refer all, agents get good answers although the quality of the

network is poor.

When the agents exchange more referrals (using Refer all or

for a lower threshold for Refer all matching), we would expect

agents to be able to locate providers better and get closer to

them. If the agents get good answers, then they are finding the

providers, yet their ability to reach the providers (measured in

quality) is still lower than with the other policies. The reason

for this is that whereas the agents are close to a few providers

(which ensures that they get good answers) they are isolated

from many other useful providers. That is, the topology of the

referral network may evolve in a way that isolates some of the

providers from the consumers. The next section studies these

possible undesirable topologies in greater depth.

IV. NETWORK TOPOLOGY

Recall that each agent chooses its neighbors based on local

information only, without knowing which neighbors other

agents are choosing. Even though each agent is doing the best

for itself, the resulting graph may be undesirable.

At certain intervals during the simulation, each agent gets an

opportunity to modify its selection of neighbors based on its

acquaintance models. A neighbor selection policy governs how

neighbors are added and dropped. Such policies can strongly

influence the structure of the resulting graph.

What would happen if each agent chose the best service

providers as neighbors? Or is it better to choose agents with

higher sociability rather than higher expertise? To evaluate

how the neighbor selection policies affect the structure, we

compare three policies using which an agent selects the best

m of its acquaintances to become its neighbors. Below, W

denotes the weight assigned to sociability.

• Weighted average. Sort acquaintances in terms of a

weighted average of sociability and how their expertise

matches the agent’s interests. (W is set between 0.1 and

0.9.)

• Providers. Sort acquaintances by how their expertise

matches the agent’s interests. (W is set between 0 and

0.1.)

• Sociables. Sort acquaintances in terms of sociability. (W

is set between 0.9 and 1.)

The neighbor selection policies shape the topology of the

network. That is, the network topology evolves differently

based on how agents choose their neighbors. An obvious

question is whether any one of these topologies are better than

others or undesirable in certain settings. To answer these ques-

tions, we study well-known graph types from graph theory,

namely bipartite graphs and graphs with weakly-connected

components. We first study whether these topologies have any

advantages or disadvantages over other topologies. Next, we

study whether any one of the neighbor selection policies lead

to such a topology.

A. Bipartite Graphs

A graph G is bipartite if it consists of two independent

sets, i.e., two sets of pairwise nonadjacent vertices. When the

simulation is started, we know that there is one independent

set, the group of service providers. Since these do not have

outgoing edges, no two service providers can have an edge

between them. Thus the providers form an independent set.

Now, if the consumers also form an independent set, then the

graph will be bipartite. Essentially, the consumers’ forming

an independent set means that all the neighbors of all the

consumers are service providers. Notice that if this is the case,

then the consumers will not be able exchange referrals. If the

graph becomes bipartite, the system loses all the power of

referrals and all consumers begin operating solely on the basis

of their local knowledge. For example, in Figure 7, the network

that contains the nodes and the dotted and dashed lines form

a bipartite graph. The consumers can reach the providers but

not each other.
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Since the service providers do not have outgoing edges, they

will not refer to any new agents. Thus, the consumers will not

get to know new agents, and will not be able to change their

neighbors, making the graph stable. However, for each agent

there will be many agents that it cannot reach. Networks that

allow reachability to these agents will have better quality and

will thus be more desired than a bipartite graph. That is, the

quality of the bipartite graph is not optimal. If the nodes of

the network were rearranged into a topology other than that of

a bipartite graph, the quality of the network could be higher.

Even if the graph is not bipartite, it could be extremely close

to a bipartite graph. Let’s say that the graph would be bipartite

if a large subgraph is bipartite. In other words, removing a

few edges from the graph would make the graph bipartite.

This is still dangerous, since the graph might quickly evolve

into a bipartite graph. Accordingly, we study the neighbor

selection policies to see if they can cause the graph to turn

into a bipartite graph. We use the number of edges needed to

be removed as a metric for determining how close the graph

is to becoming bipartite. We observe that when each agent

exercises the Providers policy, if there are more providers

than the number of neighbors an agent can have, then the

graph converges to a bipartite graph. While this is the case for

Providers, the same effect does not hold for Weighted Average

or Sociables, since with these policies consumers may choose

some other highly sociable consumers as neighbors.

Whereas detecting if a graph is bipartite is easy, determining

the number of edges by which it differs from a bipartite graph

is in general NP-complete [11]. Here, however, the semantics

of the nodes serves to ease this problem. More specifically,

one of the independent sets is already known, i.e., the set

of providers. Let η denote the number of edges between the

consumers. When η is smaller, the graph is closer to a bipartite

graph. If there are no edges between consumers (η = 0), then

the graph is bipartite.

Observation 3: When choosing neighbors, if agents prefer

only expertise (i.e., use Providers), then the network can evolve

into a bipartite graph, which prevents the consumers from

exchanging referrals.

B. Weakly-Connected Components

A weakly-connected component of a graph is a maxi-

mal subgraph that would be connected when the edges are

treated as undirected [12]. Thus, different components have

disjoint vertices and are mutually disconnected. Consequently,

consumers can at best find service providers in their own

components. This means that if there is more than one weakly-

connected component in a graph, then there is at least one

consumer that will not be able to find at least one service

provider. Consider again the network in Figure 7. If the

network contains all the nodes and edges except the edge

between C4 and S1 (shown with a dotted line), then the

network will have two weakly-connected components. When

that is the case, consumers C1 and C2 cannot locate service

providers S3 and S4, since neither C1 nor C2 can receive

referrals from the consumers that know S3 or S4.

We observe that in a population where each agent exercises

Sociables, the graph ends up with more than one weakly-

connected component. When agents follow Sociables, con-

sumers link up with other consumers only since the consumers

are the only sociable parties. This decreases the number

of edges from consumers to providers. For example, again

consider the same subset of the network in Figure 7, where

the network contains all the nodes and edges except the edge

between C4 and S1. After several iterations, if consumer

C5 were following Sociables, it could modify its choice of

neighbors by linking to C3 and removing its link to S3. C5

would do this because C3 being a consumer would be more

sociable than S3, a service provider that does not provide

any referrals. When all consumers act in accordance with

Sociables, the providers could be totally isolated from the

consumers.

Observation 4: When agents use Sociables, the network

can become disconnected. This may prevent the consumers

from locating some of the service providers.

C. Clustering

Watts defines the cliquishness of a graph as the likelihood

of the neighbors of an agent being neighbors with each other

[13]. The cliquishness coefficient for each agent i measures the

ratio of actual edges among its neighbors to all the possible

edges among the neighbors, as shown in Equation 3. Below, Ni

denotes the set consisting of node i’s neighbors. Mi denotes

all the edges between the nodes in Ni.

ν(i) =
|Mi|

|Ni|(|Ni| − 1)
(3)

The cliquishness of a graph is then defined as the average ν(·)
of all the nodes in the graph.

Interest clustering denotes how similar the neighbors of an

agent are in terms of their interests. Equation 4 captures the

similarity between the interests of two agents, with the Eu-

clidean distance between two interest vectors and normalizes

it to get a result between 0 and 1. (Ii and Ij are of length n.)

Ii ⊕ Ij =
e−‖Ii−Ij‖

2

− e−n

1 − e−n
(4)

We measure interest clustering by a coefficient (Equation 5),

similar in motivation to Watts’ cliquishness coefficient. The

interest clustering γ(i) measures how similar the interest
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vectors of an agent i’s neighbors (including i itself) are to

each other. The average of all the agents’ interest clustering

coefficients constitutes the interest clustering of the graph. γ(i)
is high if the neighbors of i are neighbors with each other

and even higher if they have similar interests. In Equation 5,

Vi denotes the set consisting of agent i and all of agent i’s

neighbors, and Mi denotes edges between the agents in Vi.

γ(i) =

∑

(u,v)∈Mi
Iu ⊕ Iv

|Vi|(|Vi| − 1)
(5)
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Fig. 8. Increase in interest clustering over neighbor changes

Figure 8 plots the interest clustering after every two neigh-

bor changes for different neighbor selection policies. The

interest clustering of the graph increases when the agents put

greater emphasis on sociability when choosing neighbors.

Observation 5: When agents value sociability more (follow

Sociables), agents with similar interests are more likely to

become neighbors. The agents with similar interests may have

located useful providers that match their own interests. These

providers may also be useful for the given agent. Thus, the

agents with similar interests can give well-targeted referrals

and be considered sociable.
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Next, we study the correlation between interest clustering

and quality. Figure 9 plots the quality of the network for

different values of interest clustering (after every second neigh-

bor change). Each plot corresponds to a different neighbor

selection policy.

We observe that interest clustering decreases with an in-

crease in quality. A decrease in quality indicates that some

consumers are getting farther away from the capable service

providers. Meanwhile, if the interest clustering is increasing,

then the agents are preferring to be neighbors with agents that

are similar to themselves rather than with the service providers.

Since the number of neighbors is limited, choosing agents with

similar interests over those with high capabilities decreases the

quality.

Observation 6: Becoming neighbors with agents with sim-

ilar interests does not guarantee finding useful service

providers.

D. Authoritativeness

The PageRank of a Web page measures its authoritativeness

[14]. Informally, an authoritative Web page is one that is

acknowledged to be highly accurate or reliable. A Web page

has a high PageRank only if it is pointed to by Web pages

with high PageRanks, i.e., if other authoritative pages view

this page as authoritative.

Intuitively, the same metric can be applied to referral net-

works to measure the authoritativeness of agents. In the case of

referral networks, an agent would be considered authoritative if

it has been pointed to by other authoritative agents. Recall that

an agent is pointed to by other agents if it is providing useful

answers or referrals. Hence, if an authority finds another agent

useful and points at it, then it is reasonable that this agent be

considered an authority as well. That is, the agents decide on

who is authoritative in the referral network.

The PageRank of an agent is calculated using Equation 6,

where P (i) denotes the PageRank of agent i, Ki denotes

agents that have i as a neighbor, and Nj denotes the agents

that are neighbors of j. In addition to accumulating PageRanks

from incoming edges, each agent is assumed to get a minimum

PageRank of (1 − d). Initially, each agent is assumed to be

equally authoritative. Iterative computations of Equation 6

eventually stabilizes, yielding final authoritativeness values for

each agent.

P (i) = d
∑

j∈Ki

P (j)

|Nj |
+ (1 − d) (6)

For our calculations, we pick d to be 0.85 as is suggested

in [14]; other values may also be reasonable. The calculated

PageRanks are not normalized to demonstrate the variance in

maximum PageRanks in different setups. The PageRanks of

the agents are calculated centrally by building a graph from the

neighborhood relations after the simulations. We study how the

percentage of actual providers in the network and the policies

that the agents follow affect the emergence of authorities.

1) Percentage of Providers: Intuitively, the percentage of

agents with high expertise plays a crucial role in the distri-

bution of PageRanks. For example, when there are too many

service providers in the system, we expect that the PageRanks

will tend to be shared among them. Having a small number of

service providers may ensure that service providers with high

authoritativeness will emerge. To study this point, we vary
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the percentage of the providers in the system. We study three

populations with 5%, 10%, and 20% providers in them.

The histogram in Figure 10 depicts the PageRank distribu-

tion of three populations for PageRank values 2.5 and higher.

The solid lines denote the population with 5% providers,

the dashed lines denote the population with 10% percent

providers, and the dotted lines denote the population with 20%

providers.

Observation 7: When the percentage of providers is high,

the PageRanks are clustered for small PageRank values. For

example, when the population has 20% providers, the number

of agents having PageRank higher than 2.5 is more than the

cases for the other two populations. For the higher values

of PageRank, the converse holds. For example, the only

population that allows PageRanks higher than 25 is the 5%

provider population. There is an implicit competition among

the providers. When there are too many providers, they end

up sharing the incoming edges. Therefore, only a few receive

a relatively high PageRank. When there are a few providers,

those providers tend to dominate more clearly.
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2) Referral Policies: Next we study the effect of referral

policies in the emergence of authorities. Since the population

with 5% percent providers allows the emergence of authorities

more, we continue with this population. After each simulation

run, the agents are ranked based on their PageRank. Figure 11

shows the PageRank distribution of the top 50 agents (out of

a total of 400). If the agents use the Refer all policy, a few

authorities with high PageRanks emerge. For example, the first

10 agents in the Refer all plot receive PageRanks greater than

the first 10 agents in two instances of the Refer all matching

plot (with thresholds 0.3 and 0.5).

Further, Refer all creates a large variance among the Page-

Ranks. For example, whereas the first agent gets a PageRank

of 54, the 50th agent gets a PageRank of only 0.23. Contrast

this with Refer all matching with a threshold of 0.5, where the

first agent gets a PageRank of 3.68 and the 50th agent gets a

PageRank of 1.58. The distribution of PageRanks using Refer

best neighbor falls between the distributions for Refer all and

Refer all matching with high thresholds. In other words, when

agents use Refer best neighbor, the highest PageRank is not

as high as for Refer all (36) but the difference in PageRanks

of the first and the 50th agents is still quite large.

Observation 8: Whereas more authorities emerge through

Refer all matching (with different thresholds), Refer all causes

the emergence of authorities whose level of authoritativeness

is higher.

Intuitively, the explanation for the above is that Refer

all is highly effective in disseminating information about

the providers. Agents are thus more likely to encounter the

providers and more likely to recognize their authoritativeness,

thereby yielding high PageRanks for some of them.

3) Neighbor Selection Policies: Figure 12 plots the distri-

bution of PageRanks with respect to some neighbor selection

policies. The X axis shows PageRanks and the Y axis denotes

the number of agents that get a PageRank greater than the

PageRank shown on the X axis. W denotes the weight of the

sociability in choosing a neighbor. The five plots correspond

to Providers (W = 0), Sociables (W = 1), and three Weighted

average neighbor selection policies with different weights.
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All curves, except the one for Sociables, are similar to each

other. In all four cases, only a few authorities emerge. But,

the level of their authoritativeness is high. For example, for

Providers, while only 26 agents get a PageRank above 1, five

of them get a PageRank above 20. Increasing the effect of

the sociability slightly increases the number of agents with

medium authority but slightly decreases the number of agents

with high authority. For example, under Weighted Average,

when the sociability and the expertise are weighted equally,

the number of agents that get a PageRank above 1 is 44, while
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four of them get a PageRank above 20.

Sociables does not follow this distribution. Initially, when

not too many providers have been discovered, choosing neigh-

bors only based on sociability does not help the agents find

service providers. Hence, when agents follow Sociables in

the beginning, most agents get average PageRanks (e.g., 158
agents get a PageRank around 1).

Observation 9: For strong authorities to emerge, it is im-

portant that the agents put a high value on the ability to

produce high quality of service.

If the agents prefer sociables, there is little grounding

in quality, and it is difficult to find good providers. Thus,

strong authorities do not emerge. However, once the network

has stabilized, sociability helps as there is a basis for good

referrals, and thus there is value in those who can give good

referrals.

V. DESIGN GUIDELINES

Building applications of referral systems requires many

design decisions. The above results yield design guidelines

for real-life applications of referral systems. Here, we outline

some possible applications of the properties observed in this

paper.

Neither too many referrals nor too few referrals create high

quality referral networks (Observations 1 and 2). Hence, in a

referral system, it would be intuitive to encourage referrals but

ensure that not an excessive number of referrals is exchanged.

Similarly, some network topologies have been identified to be

potentially undesirable in some settings such as e-commerce

(Observations 3 and 4). A referral system could monitor

if the network is evolving into these topologies and take

further steps to prevent the network from exhibiting these

properties. Observation 6 shows that becoming neighbors with

similar interests does not guarantee quality. Accordingly, a

referral system could also check whether agents are becoming

clustered in small groups. When this is the case, the referral

system can start functioning poorly.

As shown by Observations 7 and 8, having few providers

in the system and exchanging referrals both help identify

authorities. As shown in Observation 9, choosing neighbors

only based on sociability discourages the emergence of author-

ities. Depending on the application, the emergence of strong

authorities could be desired. Such an emergence shows that

useful agents are identified and used by the others to find

information. This is certainly important and could be enforced

in a referral system. Even though the referral system cannot

decide on the policies of its users, it can advise the users to

adjust their policies appropriately. Conversely, for example, for

a knowledge management domain, strong authorities would

indicate that some agents answer substantially more queries

than others. This overloading may not be desirable in such a

setting. A referral system can then apply checks or use caching

mechanisms to redistribute the expertise more evenly. When

such caching mechanisms are used, agents can cache infor-

mation that they have obtained from others and serve them as

best suits them [15]. The identification of such properties of

referral networks brings us closer to enabling self-organizing

referral systems that can efficiently and effectively operate in

open and dynamic environments.

VI. DISCUSSION

We discuss some related approaches and point directions

for further research.

Multiple Intelligent Node Document Servers (MINDS) was

the earliest agent-based referral system [5]. Each node in the

MINDS system is allocated a set of documents. Nodes help

each other find documents in the network. Gradually, nodes

learn how the documents are distributed in the network as

well as the relevance preferences of individual users. Kautz

et al. model social networks statically as graphs and study

various aspects of their performance, such as the accuracy

of the referrals, or the distance between a referrer and a

questioner [16]. Our work, by contrast, seeks to uncover the

structural properties of the network to design mechanisms that

will improve the quality of the network.

Yu and Singh study referral networks in the context of

scientific collaborations [17]. They show how the neighbor set

size and referral graph depth affect locating agents accurately.

Yu and Singh represent the referral process through weighted

graphs, where weights are attached to both agents and refer-

rals. They develop a method to minimize referral graphs so

that agents only follow most promising referrals, i.e., referrals

with high weights.

Kumar et al. develop an approach to infer web communities

from the link structure of the Web [18]. Kumar et al. propose

that any community structure should contain a bipartite core

where the fans and centers make up the independent sets. Fans

and centers are defined recursively, such that fans are pages

that point at good centers and centers are pages that are pointed

to by good fans. Kumar et al.’s approach assumes that if many

fans point to the same set of centers, then they are likely to be

on the same topic, and hence form a community. Our previous

work on communities compared referral networks to that of

Kumar et al. in depth [19].

Wang develops an approach for organizing agents into

communities based on the similarity of their interests and

expertise [20]. Initially, each agent registers with a middle

agent randomly. Based on the queries received from the agents,

the middle agents exchange agents to ensure that agents that

have the same interests and expertise are handled by the same

middle agent. This approach uses clustering to improve the

efficiency of locating agents. When the agents’ interests and

expertise are more diverse, we believe that our Observation 6,

i.e., clustering does not favor quality, will dominate.

Sabater and Sierra [21] develop a system for reputation

management where reputations are derived based both on

direct interactions and the social relations of the agents. They

use the number of interactions and the variance in ratings

to derive the the trustworthiness of the agent through direct

interactions. To assess the trustworthiness through indirect

interactions, Sabater and Sierra use fuzzy inference to combine

evidence from multiple witnesses.

Buskens studies the effects of network structure on building

trust [22]. Buskens simulates the interactions of buyers and
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sellers that participate in iterated heterogeneous trust games

that encourage the cooperation and discourage the cheating of

participants. The buyers interact to exchange information on

the trustworthiness of the sellers. The buyers themselves are

assumed to be trustworthy. In our model, we do not assume

that the consumers are trustworthy. Hence, we also take into

account that some of the consumers may not give accurate

referrals. Thus, each consumer also models the trustworthiness

of other consumers. These models are then used to choose

neighbors for future interactions. Buskens does not consider

evolving network topologies, as we have done.

Shehory develops a decentralized approach for locating

agents [23]. Rather than returning referrals as here, the neigh-

bors themselves look for the desired agent. Shehory shows how

increasing the average path length can increase the efficiency

of agent location. In our approach, by choosing neighbors that

are most suitable for itself, each agent increases its chance

of getting good answers. By giving well-targeted referrals,

each agent increases others’ chances of finding good answers.

These self-organizations aspects are not directly addressed in

Shehory’s approach.

Pujol et al. use the positions of agents in a social network

to compute their reputation [24]. An agent receives a high

reputation only if the agents that point to it also have high

reputation, similar to the notion of authority exploited in

PageRank. Pujol et al. calculate the reputations of authors

where the reputation of an author is defined as the number of

citations received. However, Pujol et al. do not study different

network topologies as we have done here.

Our framework provides opportunities for further research.

The above results here report the simulations performed in

the e-commerce domain. One direction of research it to

extend these results to other application domains, especially

to knowledge management. Another direction of research is

to incorporate other characteristics of applications, such as

incentives for participation, into the framework.
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