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The main objective of this paper is to propose a framework for modelling, analysing

and synthesizing system safety of engineering systems or projects on the basis of a

generic rule-based inference methodology using the evidential reasoning (RIMER)
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rule-based safety estimation, referred to as a fuzzy rule-based evidential reasoning

(FURBER) approach. The second one is for safety synthesis using the evidential

reasoning approach. In the FURBER framework, parameters used to define the safety

level, including failure rate, failure consequence severity and failure consequence

probability are described using fuzzy linguistic variables; a fuzzy rule base designed

on the basis of a belief structure is used to capture uncertainty and nonlinear
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of the rule-based system is implemented using the evidential reasoning algorithm.
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synthesized safety of a system. The above framework has been applied to modelling
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1. INTRODUCTION

he growing technical complexity of large engineering systems such as offshore platforms and support
vessels, together with the intense public concern over their safety, has stimulated the research and
development of novel safety analysis methods and safety assessment procedures.

Many typical safety assessment approaches such as the probabilistic risk assessment approach have been
widely used, but may be difficult to use in situations where there is a lack of information and past experience,
or in ill-defined situations in risk analysis'. In certain circumstances, probability theory can be a powerful tool.
Under prevailing circumstances, only limited data are available on system failures, for which the statistical
accuracy is poor, e.g. at initial design stages or for a system with a high level of innovation, and often data are
inadequate or information imprecise when carrying out safety estimates for a novel system.

In engineering safety analysis, fuzziness is caused due to ill-defined concepts in observation, or the inaccuracy
and poor reliability of instruments used to make observations. Incompleteness or ignorance is caused due to
weak implication which occurs when an expert is unable to establish a strong correlation between premise and
conclusion. This means that intrinsically vague information may coexist with conditions of ‘lack of specificity’
originating from evidence not strong enough to completely support a hypothesis but only with degrees of belief
or credibility?.

In addition, it is difficult to generate a mathematical model to represent and describe the safety discipline
of an engineering system (e.g. a maritime engineering system), as safety is a multiple-level and multiple-
variable optimization problem’. There are many instances where causes of an accident involve operational
procedures, human errors and decisions taken by designers and management. In other words, the safety of a
system is affected by various factors such as design, manufacturing, installation, commissioning, operations and
maintenance. The safety of a structure is often determined by all the associated failure events of each individual
component that makes up the structure. A component usually has several failure events. The problem may then
arise as to how the uncertain evaluations of safety analyses for all the failure events of a component may be
synthesized in a rational way so as to attain an evaluation of the safety of the component. The problem may
be ultimately generalized to estimate the safety of a system with a hierarchy of components.

The aim of our work is to establish a framework that provides a basis for safety analysis and synthesis in
engineering systems, in particular to deal with information that may be un-quantifiable due to its nature and
that may be imprecise, ill-defined, and incomplete, for which traditional quantitative approaches (e.g. statistical
approaches) cannot provide an adequate answer.

A more realistic approach to express fuzziness is to use linguistic assessments instead of numerical values.
Such an approach allows the representation of information in a more natural and adequate form if it is difficult to
express the information with precision. Fuzzy logic* provides a systematic way to represent linguistic variables
in a natural decision-making procedure. It does not require an expert to provide a precise point at which a
risk factor exists. So it can be used as a powerful tool complementary to traditional methods to deal with
imprecise information, especially linguistic information™° which is commonly used to represent risk factors in
risk analysis>’7.

Dempster—Shafer (DS) theory of evidence'®!” based on the concept of belief function is well suited to
modelling subjective credibility induced by partial evidence’’. DS theory enlarges the scope of traditional
probability theory, describes and handles uncertainties using the concept of the degrees of belief, which can
model incompleteness and ignorance explicitly. It also provides appropriate methods for computing belief
functions for combination of evidence’!. The DS theory has been particularly useful in domains in which
a hierarchical structure can be imposed on the hypotheses so that groups of hypotheses form classes in the
hierarchy®?. In addition, the DS theory also shows great potential in multiple attribute decision analysis (MADA)
under uncertainty, where the rigorous yet pragmatic evidential reasoning (ER) approach for MADA under
uncertainty has been developed on the basis of a distributed assessment framework and the evidence combination
rule of the DS theory?*%.

Fuzzy set theory is actually well suited to dealing with fuzziness and DS theory of evidence provides an
ideal framework for handling incompleteness. It seems reasonable to extend the fuzzy logic framework to cover
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credibility uncertainty as well. The benefit of combining fuzzy logic and belief models may become substantial
when a lack of specificity in data is prevalent®”. Several researchers have investigated the relationships between
fuzzy sets and DS theory and suggested different ways of integrating them>*>>. A belief rule-base inference
methodology using the evidential reasoning approach—RIMER has recently been proposed®® on the ER
approach, decision theory and fuzzy set theory.

In this paper, we propose a framework for modelling safety of engineering systems based on fuzzy logic and
the ER approach. The framework is divided into two parts.

(1) Rule-based safety estimation, referred to as a fuzzy rule-based evidential reasoning (FURBER) approach,
which is based on the RIMER approach. In this framework, safety-related parameters are described
using fuzzy linguistic variables, and a fuzzy rule base with a belief structure, i.e. fuzzy rules with
belief degrees for all possible safety output terms in the consequent, is used to capture uncertain causal
relationships between these parameters and the safety level. Moreover, the antecedent of each IF-THEN
rule is considered as an overall attribute, called a global attribute, which is assessed to an output term
in the consequent of a rule with a degree of belief. Actual input can be transformed into a distributed
representation for a linguistic term of an individual antecedent attribute. Finally, the inference of the rule
base is implemented using the ER algorithm, where a global activation degree is used as the weight of a
global attribute.

(2) Safety synthesis using the ER approach. Based on (1), in this framework, the modelling framework of
multi-attributes or multi-experts or a combination of both based on the evidential reasoning approach is
used to deal with problems having a hierarchy with uncertainty, i.e. safety synthesis, and the final step
describes the calculation of the overall risk level ranking index. The identified potential causes are ranked
on the basis of their ranking index values.

A case study of collision risk between a floating production storage and offloading (FPSO) system and a
shuttle tanker due to technical failure during tandem offloading operations is used to illustrate the application of
the proposed approach.

2. A FRAMEWORK FOR MODELLING SYSTEM SAFETY

A generic framework for a modelling system safety estimate using the FURBER approach and for safety
synthesis using the ER approaches is depicted in Figure A1 in Appendix A. The issue of knowledge acquisition
and representation for system safety modelling is outlined in Section 2.1. The framework for modelling system
safety for risk analysis consists of five major steps, which include all the necessary steps required for safety
analysis at the bottom level of a hierarchical system (i.e. each cause to technical failure) using the FURBER
approach, which is based on RIMER proposed in Yang e al.>®. The steps used are outlined in Section 2.2.
In addition, an ER approach is used in the later stage of the framework to deal with safety synthesis at higher
levels of the engineering system with complexity involving multi-experts, or multi-attributes, or a combination
of both (this is to integrate all the possible causes to a specific technical failure, or estimates made by a panel
of experts), which are outlined in Section 2.3; the ranking and interpretation of the final safety synthesis of a
system are also given in Section 2.3.

2.1. Knowledge acquisition and representation

This component consists of the following steps for knowledge acquisition and representation.

2.1.1. Identification of causes/factors

In this step, all anticipated causes/factors to technical failures of an engineering system are identified. This can
be done by a panel of experts during a brainstorming session at the early conceptual design stages of the system.
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2.1.2. Identify and characterize fuzzy input and output variables

The three fundamental parameters used to assess the safety level of an engineering system on a subjective
basis are failure rate (FR), consequence severity (CS) and failure consequence probability (FCP).
Subjective assessments (using linguistic variables instead of ultimate numbers in probabilistic terms) are more
appropriate for analysis using these three parameters as they are always associated with uncertainty, especially
for a novel system with a high level of innovation. These linguistic assessments can become the criteria for
measuring attributes of objects, in this case, safety levels.

The typical linguistic variables used to describe FR, CS and FCP of a particular element may be defined and
characterized as follows>’.

FR describes failure frequencies in a certain period, which directly represents the number of failures
anticipated during the design life span of a particular system or an item. To estimate FR, one may choose
to use such linguistic terms as ‘very low (VL)’, ‘low (Lo)’, ‘reasonably low (RLo)’, ‘average (A)’, ‘reasonably
frequent (RF)’, ‘frequent (F)’, and ‘highly frequent (HF)’. Table Al in Appendix A describes the possible range
of the frequencies of failure occurrence and defines the linguistic terms of FR. In that table, some numerical
values for FR are given. Such values may vary with different engineering systems. If such numerical values are
not available at all, then the modelling of FRs can be carried out using subjective judgements.

CS describes the magnitude of possible consequences, which is ranked according to the severity of failure
effects. One may choose to use such linguistic terms as ‘negligible (N)’, ‘marginal (Ma)’, ‘moderate (Mo)’,
‘critical (Cr)’ and ‘catastrophic (Ca)’. Table AlIl in Appendix A shows the possible criteria used to define the
linguistics terms for describing and ranking the CS of failure effects.

FCP defines the probability that consequences happened gives the occurrence of the event. One may choose
to use such linguistic terms as ‘highly unlikely (HU)’, ‘unlikely (U)’, ‘reasonably unlikely (RU)’, ‘likely (Li)’,
‘reasonably likely (RLi)’, and ‘definite (D)’. Table AIIl in Appendix A describes the FCP.

The following step is to select the types of fuzzy membership functions used to delineate each input variable,
and provide interpretation for each fuzzy set of each variable. Note that fuzzy membership functions are not
compulsory to be constructed in our approach. Due to lack of information, it may be difficult to get fuzzy
membership functions. The belief distribution assessment scheme proposed in Yang et al.>® provides other
alternative ways for inference while no membership function is available.

It is possible to have some flexibility in the definition of membership functions to suit different situations.
Fuzzy membership functions are generated using linguistic categories identified in knowledge acquisition and
consist of a set of overlapping curves. The application of categorical judgments has been quite positive in
several practical situations®. It is also common and convenient for safety analysts to use categories to articulate
safety information. Figure A2 in Appendix A shows the fuzzy FR set definition. The fuzzy CS set definition is
shown in Figure A3 in Appendix A, and the fuzzy FCP set definition is shown in Figure A4 in Appendix A.
They are the triangular membership function and trapezoidal membership function. Both of these memberships
are commonly used to describe risk in safety assessment'?.

It is worth noting that qualitative parameters, e.g. CS and safety estimates, are associated with concepts—
a subjective (if not quite arbitrary) scale against which the range of the parameters is mapped. A subjective
scale is called a psychometric scale, since it comes from the designer’s mind>’. The range of the psychometric
scale is determined by the level of granularity and fine detail in the model. The fuzzy CS set definition
shown in Figure A3 in Appendix A is just an example of this kind of psychometric scale (the domain
runs from O to 10 indicating the degree to which the concept CS is negligible, marginal, ..., or
catastrophic).

The above definition and identification are used in our case study in Section 3. It is noted that they can be
modified according to different requirements in codes and standards (e.g. safety/risk guidelines, regulations,
laws, etc.) and different aspects of engineering systems such as fire, explosions, structure, safety system, etc.

Safety estimate is the only output fuzzy variable used in this study to produce safety evaluation for a particular
cause to technical failure. This variable is also described linguistically, which is described and determined by
the above parameters. In safety assessment, it is common to express a safety level by degrees to which it belongs
to such linguistic variables as ‘Poor’, ‘Fair’, ‘Average’, and ‘Good’ which are referred to as safety expressions.
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2.1.3.  Construct a fuzzy rule base with the belief structure
Fuzzy logic systems are knowledge-based or rule-based systems constructed using human knowledge in the
form of fuzzy IF-THEN rules*’. An important contribution of fuzzy system theory is that it provides a
systematic procedure for transforming a knowledge base into nonlinear mapping. For example, the following is
a fuzzy IF-THEN rule for safety analysis:
IF FR of a hazard is frequent AND CS is catastrophic AND FCP is likely, THEN safety estimate is Poor:
In view of the increasing complexity of many knowledge-based systems, the knowledge representation power
of fuzzy rule-based systems will be severely limited if only fuzziness is used to represent uncertain knowledge.
As mentioned in the first section, there is another kind of uncertainty caused because an expert is unable
to establish a strong correlation between premise and conclusion. In other words, evidence available is not
sufficient or experts do not believe 100% in a hypothesis but only to a degree of belief. For example, we may
only get the following rule with certain degrees of belief:

Ry: IF FR is frequent AND CS is critical AND FCP is unlikely THEN safety estimate is Fair with a belief
degree of 0.7.

More generally, we may have fuzzy rules with belief degrees for multiple possible consequent terms, for
example,

Ri: IF FR is frequent AND CS is critical AND FCP is unlikely THEN safety estimate is {(Good, 0),
(Average, 0), (Fair, 0.7), (Poor, 0.3)}

where {(Good, 0), (Average, 0), (Fair, 0.7), (Poor, 0.3)} is a belief distribution representation for safety
consequent, indicating that we are 70% sure that the safety level is Fair, and 30% sure that the safety level
is Poor.

In order to model more general and complex decision-making problems under uncertainty, other important
information such as weighting factors may also need to be considered, such as the relative weight of a rule (rule
weight) used to represent the relative importance of the rule’s contribution to reach the final conclusion, and the
relative weight of an antecedent attribute (attribute weight).

Considering the above parameters, a normal fuzzy rule can be extended for safety estimates by assigning the
rule a degree of belief, a rule weight, and an attribute weight.

In general, assume that the three antecedent attributes, Uy = FR, Uy = CS and Uz = FCP can be described by
Ji linguistic terms {A;;, j =1, ..., J;i}, i =1, 2, 3, respectively, and one consequent variable safety estimate
can be described by N linguistic terms, i.e. Dy, D3, ..., Dy. Let Af be a linguistic term corresponding to the
ith attribute in the kth rule, with i = 1, 2, 3. Thus the kth rule in a rule base can be written as follows:

Ri: IFFRis Af AND CSis A5 AND FCP is A% THEN safety estimate is

N
(D1, Bix), (D2, Bov), - -, (DN, Bvi)}, (Zﬂik < 1>,
i=1
with the rule weight 6, and the attribute weights 51, &2, 83 (1)

where Bik (e{l,...,N}; ke{l,..., L}, with L being the total number of the rules in the rule base) is
a belief degree measuring the subjective uncertainty of the consequent ‘safety estimate is D;’ drawn due to
the antecedent ‘FR is AX AND CS is A5 AND FCP is A%’ in the kth rule. {A¥, A%, A%} is called the packet
of antecedents in the kth rule, for convenience, denoted as Ak ke {1,...,L}. If Z,Nzl ,B-ik =1, the output
assessment or the kth rule is said to be complete; if ZINZI ,B_ik =1 forall k=1, ..., L, then the rule base is
a complete rule base; otherwise, it is incomplete. Note that ( ZlNzl Bix = O) denotes total ignorance about the
output given the input. The rule-base with the rules given in form (1) is referred to as a fuzzy rule-base with
the belief structure. Note that a common fuzzy rule is the special cases of rule (1) with { Blk, ng, e, BNk}
being given special values. In fact, if we assign ,B_ik =1, Bjk =0,j#i,j=1,..., Ninrule (1), we will geta
normal fuzzy rule.
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Note that parameters such as the belief degree distribution of a rule, rule weight, and attribute weight
are usually assigned at the knowledge acquisition phase before a fuzzy rule base with the belief structure is
established.

2.2.  Fuzzy rule-base inference mechanism based on the ER approach

Once a rule base is established, the knowledge contained can be used to perform inference for given input.
The inference procedure is basically composed of the following five steps.

2.2.1. Input transformation

This is to transform the input into the distributed representation of linguistic values in antecedents using belief
degrees. In general, we may consider a linguistic term in the antecedent as an evaluation grade, the input for
an antecedent attribute U; can be assessed to a distribution representation of the linguistic terms using belief
degrees>? as follows:

SUi) ={(Ajj,eij); j=1,..., Ji}, i=1,2,3 2

where A;; (j €{l,..., Ji})is the jth linguistic term of the ith attribute, «;; the likelihood to which the input
for U; belongs to the linguistic term A;; with ;; > 0 and Z}J’ a;j < 1( =1, 2, 3), referred to as the individual
matching degree. o;; in Equation (2) could be generated using various ways depending on the nature of an
antecedent attribute and the available data, as described in the following three cases:

(1) The matching function method while the input is in numerical form and the linguistic value is
characterized using fuzzy membership functions (suitable for both quantitative and qualitative attributes).

(2) Rule-based or utility-based transformation methods while the input is in numerical forms but the fuzzy
membership function is not available (only suitable for the quantitative attribute)>%3. The basic idea is
that numerical data can be expressed as belief distributions using equivalence transformation techniques.

(3) The subjective assessment method (for quantitative and qualitative attributes). In this case the subjective
judgments «;; in Equation (2) can be assessed based on the historical data, statistical distributions or
expert experience. This subjective assessment can be taken as an alternative solution due to lack of
information, e.g. when neither the membership function of each linguistic term nor numerical forms of the
input are available at all, and is especially useful for qualitative attribute assessment, which sometimes
is totally subjective. In assessment of qualitative parameter CS, for example, an expert may provide the
following assessment: 30% sure that CS is at a moderate level and 70% sure that it is critical.

For more details about the above three cases, we refer to Yang et al.*°. Here we only consider case (1). For the
purpose of safety modelling, it is assumed that each input parameter may be fed to the proposed safety model

in any one of the following forms based on history data and expert experiences>’.

e A single deterministic value with 100% certainty.

e A closed interval defined by an equally likely range.

e A triangular distribution defined by a most likely value, with lower and upper least likely values.
e A trapezoidal distribution defined by a most likely range, with lower and upper least likely values.

Corresponding to the rule base (1), the general input form corresponding to the antecedent attribute in the kth
rule is given as follows:

(A7, €1) AND (A3, &2) AND (A3, €3) 3)

where ¢; (€ [0, 1]) expresses the degree of belief assigned by an expert to the association of A* (i =1, ..., 3),
which reflects the uncertainty of the input data.
Finally, o;; in Equation (2) could be formulated in the following way:

T(A}, Aij) - &
Y (AL, Aip]

ojj = i=1,2,3; j=1,...,J; “4)
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where (A;“, &;) is the actual input corresponding to the ith antecedent, t is a matching function, T (A;.k, Ajj) =1ij
is a matching degree to which A7 belongs to A;;. One possible matching function 7 is given as follows, as used
in our case study in Section 3:

T(A}, A;j) = max[min(A] (x), A;j (x))] ®)

7 could be generated using other matching functions®*!.

2.2.2.  Activation weight for a packet antecedent
Considering an input given by Equation (3) corresponding to the kth rule defined as in (1),

FR s (AX, of) AND CSis (AY, a%) AND FCP is (A%, of) (©6)

where oz,’.‘ is the individual matching belief degree that the input belongs to Af.‘ of the individual antecedent U;
appearing in the kth rule.

The global matching weight wy of the packet antecedent AX in the kth rule is generated by weighting and
normalizing the a; given by Equation (6) as follows:

L
wi = (6 w)/( > 9,«1,-) @
Jj=1

where 6; (eRT, k=1,...,L) is the relative weight of the kth rule, o = ]_[?=1 (al’.‘)‘si, 8 =
8; /(max;=123{d;}), so 5 €0, 1], here 8; (e RT, i =1, 2, 3) is the weight of the ith antecedent attribute, and
L is the number of rules in the rule base. Here 6 and §; can be any value in RT depending on the application
context because finally wy € [0, 1] by Equation (7). Moreover, note that ‘AND’ connective is used for three
antecedents in a rule. In other words, the consequent of a rule is not believed to be true unless all the antecedents
of the rule are activated. In such cases, the simple multiplicative aggregation function is used here to calculate

. Note that 0 <wg <1 (k=1,..., L)yand Y5, w; =1.

2.2.3.  Update the degree of belief in the consequent of a rule based on the actual input

An incomplete input for an attribute will lead to an incomplete output in each of the rules in which the attribute
is used. In the inference procedure, such incompleteness should be considered. The original belief degree in the
ith consequent term of the kth rule in (1) is updated based on the actual input information as follows:

3 J; 3
Bik = Bix [Z T(t, k) * Zarij}/[ > e, k)} ®)
t=1 j=1 t=1

where

c k) = :1 if Uy is used in defining Ry (=123

0 otherwise

a,;j is given in Equation (2) with e;; > 0 and Z{.f aj < 1. By is given in (1) with 0 < 3N | Bix < 1. Note that
0< ZZN=1 Bik <1 forall k and 1 — ZIN=1 Bir denotes both the ignorance incurred in establishing Ry and the
incompleteness that may exist in the input information.

2.2.4.  Rule expression matrix for a fuzzy rule base with belief structure
Suppose a fuzzy rule base with the belief structure is given by R = {Ry, ..., Rp}. The kth rule in (1) can be
represented as follows:

Ry: IF U is A¥ THEN safety estimate is D with belief degree Si )
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Table I. Rule expression matrix for a fuzzy rule base
with the belief structure

Output
Input Dy Dy R D; . Dy
Alw) B B . B . Bmi
AF o B B oo Bk - BNk
AL wp) B P oo BiL .- BwL

where U represents the antecedent attribute vector (FR, CS, FCP), A¥ the packet antecedents {AII, Aé, Aé}, D
the consequent vector (D1, ..., Dy), Bx the vector of the belief degrees (81, - .., Byk) and k € {1, ..., L}.
Each fuzzy rule with belief structure can be explained in the following way.

The packet antecedent AX of an IF-THEN rule can be considered as a global attribute, which is considered
as being assessed to a linguistic term D; (the ith possible consequent term in the kth rule) with a belief degree
of Bir (i € {1, ..., N}). This assessment can be represented by

S(AY ={((D;, Bu); i=1,..., N} (10)

which is obviously a distributed assessment and is referred to as a belief structure, where (;; measures the
degree to which D; is the consequent if the input activates the antecedent A* in the kth rule, which is given
using (8) with 0 < ZIN=1 Bik <1forallk.Herei=1,..., N, k=1, ..., L. L is the number of rules in the
rule base and N is the number of the possible consequent terms in the kth rule.

A fuzzy rule base with the belief structure established using the rules given in Equation (10) can be
summarized using the rule expression matrix shown in Table I. In the matrix, wy is the global actuation weight
of A¥, which measures the degree to which the kth rule is weighted and activated.

In this rule-base representation framework, rules represent functional mappings for imprecise information
with uncertainty. Belief degrees together with fuzzy linguistic variables provide a flexible approach to represent
both uncertain evidence and uncertain knowledge. Using such uncertain rules, a more informative representation
of knowledge becomes possible. The uncertainties are considered and handled in the following inference
procedure, which is implemented to combine all rules to generate the final belief degrees of safety level for
Dy, ..., Dy using the rule expression matrix.

2.2.5.  Rule combination using the ER approach

Having represented each rule using the rule expression matrix, the ER approac can be used to combine
rules and generate final conclusions, which can be directly implemented as follows. First, transform the
degrees of belief Bj; forall j=1,..., N, k=1,..., L into basic probability masses using the following
equations’©28:

h2(r28

mjr=wiBjkx, j=1,...,N

N N
mpi=1- ij,kZ 1 - wkZ,Bj,k
j=1 J

N
mpr=1—w; and n~1D,k = wk<1 - Z,Bj,k)

j=1

Forallk=1,..., L, withmpi=mpyi+mpy forallk=1,..., L and Zj‘ w; = 1. The probability mass
assigned to the consequent D, which is unassigned to any individual output term D;, is split into two parts,
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one caused by the relative importance of the kth packet antecedent A* or D.k, the other by the incompleteness
of the kth packet antecedent AX or 7 p 1.

Then, aggregate all the packet antecedents of the L rules to generate the combined degree of belief in each
possible consequent term D in D. Suppose m ;) is the combined degree of belief in D; by aggregating the
first k packet antecedents (Al, ..., A and m D,1(k) is the remaining degree of belief unassigned to any output
term. Letm  j(1y =mj 1 and mp j(1) = mp,1. Then the overall combined degree of belief 8; in D; is generated
as follows:

{(Dj}: mj e = Kigenlmjiaymjxer +mjrgmp it +mp rgymj il
Mp. k) =Mp,1k)y +Mp, 1y, k=1,...,L

{D}: mp.14+1) = Kig+)lmp,10yMD.k+1 + 7D 1M D k+1 + MD 1k)MD k+1]

{D}: mp 14+1) = Kig+)lmp,1gomp k+11

N N -1
K1<k+1)=[1—szj,l(k)mz,kﬂ] , o k=1,...,L—1
==
1#]
{Du}: Bj=(mjy)/(d—mprry, j=1,...,N

{D}: Bp=(mp, )/l —mp 1))

Bp represents the remaining belief degrees unassigned to any D). It has been proved that Z;V:] Bji+Bp=1
(see Yang and Xu?’).
The final conclusion generated by aggregating the L rules, which are activated by the actual input A* for

U = (FR, CS, FCP), can be represented as follows:
S(A")={(Dj, Bj), j=1,..., N} (1D

The inference procedure is based on the FURBER approach. The logic behind the approach is that if the
output in the kth rule is D;, then the overall output must be D; to a certain degree. The degree is measured by
both the degree to which the kth rule is important to the overall output and the degree to which the antecedents
of the kth rule are activated by the actual input. The final result is still a belief distribution of safety expressions,
which gives a panoramic view about the safety level for a given input.

2.3.  Safety synthesis framework using the ER approach

2.3.1.  Multi-attribute and multi-expert safety synthesis

It is worth noting that in this section, in order to achieve a more effective and logical evaluation process, it is
necessary to break down a complex system into simpler sub-systems. The hierarchical framework of attributes
and experts is used to guide the overall evaluation of multi-attributes or multi-experts or a combination of multi-
attribute—multi-expert decision problems. The first four components of the framework mainly focus on safety
assessment of a single cause of a technical failure carried out by an expert. This component is concerned with
safety synthesis of a system at various levels, such as:

(a) the synthesis of safety estimates of a specific cause of a technical failure done by a panel of experts; or
(b) the synthesis of safety estimates of various causes of a technical failure done by an expert; or
(c) a combination of the above two forms, i.e. a multi-attribute—multi-expert safety synthesis.

We consider two ways to generate final safety assessment, i.e. multi-expert—multi-attribute ((a) and (c)) and
multi-attribute—multi-expert ((b) and (c)). In the former case, a panel of experts are the evaluators, not the final
decision-makers; in the latter case, a panel of experts are the final decision-makers. We only discuss (a) and (c)
in detail; (b) and (c) can be treated in a similar way. Normally the results generated for the two ways would be
different.
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We consider several particular causes C = {C1, ..., C4} of a technical failure. For each particular cause C;
(jef{l,...,d}),the description or the input of its antecedent attribute (FR, CS, FCP) in the safety rule can be
derived from different sources or evaluated by different experts. Assume that there are several sources or experts
ei i=1,..., K). Without lost of generality, suppose input comes from different experts.

Note that it is likely for selected experts to be of different importance, so the weights of experts need to
be taken into account. The assessment of weight for each expert is an important decision for the analyst to
make in view of the safety of a system under scrutiny. Each expert is assigned a weight to indicate the relative
importance of his or her judgment in contributing towards the overall safety evaluation. The analyst must decide
which experts have higher authority and then assign weights accordingly. Weights also need to be taken into
account for different sources, while the weights of a source reflect its reliability.

We assume that different experts/different sources have different reliability weights, wg; (i =1, ..., K).
Suppose Aei = (Aci 1, Aci2, Aei 3) 1s an input vector derived from ¢; for an antecedent attribute. For each input,
we may get a corresponding safety estimate D,; using the above FURBER approach, which can be formulated
as follows:

IF U is Ae1 THEN D,y is {(D1, n11), (D2, n21), - - ., (DN, nn1)}
IF U is Aez THEN Dy is {(D1, m2), (D2, m22), . ... (DN, 1N2)}
IF U is Aes THEN Dyt is {(D1, n1¢), (D2, m2¢), - .., (DN, Nt)}
IF U is Acx THEN D,k is {(D1, n1k), (D2, mk), . .., (Dn, nnk)}
where {(D1, n1i), (D2, n2i), - . ., (DN, nyi)} resulting from Equation (11) are obtained using the FURBER
approach. Then the actual safety estimates D. of a specific cause C; (i =1, ..., d) can be generated by
synthesizing multi-expert assessments, i.e. by aggregating { D1, D2, . . ., Dok } using the ER algorithm, which
is represented as
S(Cj))={(Dj,n}); i=1,...,N}, j=1,....d (12)
When there are several particular causes of a technical failure, the final safety estimate of a technical failure
D is the synthesis of all the assessments S(C;) (j =1, ..., d) for each particular cause using the ER algorithm
again.

The ER algorithm is now used to perform safety synthesis at different levels of an engineering system with a
structure that is capable of being decomposed into a hierarchy. The number of levels required in safety synthesis
is solely decided by the degree of complexity of the system under scrutiny or by the number of experts taking
part in assessment.

2.3.2.  Ranking and interpretation of results
This section describes the calculation of the overall risk level ranking index associated with various causes of a
technical failure. Then the identified potential causes are ranked on the basis of their ranking index values.

To calculate risk ranking index values associated with various causes of a technical failure, it is required to
describe the safety expressions { D1, D», ..., Dy}, for example, {Good, Average, Fair, Poor} using numerical
values, i.e. the utility of each linguistic safety expression. The utility values associated with the defined safety
expressions can be designated by experts. Suppose u(D;) (i =1, ..., N) represents the utility of a safety
expression D;, and C; (j =1, ..., d) is the anticipated cause of a technical failure. Then the risk ranking
index value R; associated with the cause C; of the technical failure can be defined as follows:

N
Rjzznl!xu(D,-), j=1,....d (13)
i=1

where nl.j (i=1,..., N)isobtained from Equation (12), and d is the number of causes of the technical failure.
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Obviously, the R; values obtained using the above expression can only show the relative risk level among all
potential causes identified. The smallest R; is ranked first as it deserves more attention to reduce its potential risk
to as low as reasonably practical (ALARP). The largest R; is ranked last to draw least attention and minimum
effort for risk reduction measure consideration. A small R; means that cause i has a relatively higher risk level
and deserves more attention at the early design stages or the early stages of designing operational strategies.

Complementary to the distribution assessment (Equation (12)), a utility interval approach®® can be used if the
assessment is incomplete or imprecise, where maximum, minimum and average risk ranking index values are
calculated as follows and used to rank the alternatives:

N-1 . .
Rnax(Cj) =Y nu(Di) + (1, + njp)u(Dy) (14)
i=1
. . N .
Runin(Cj) = (n{ + n)u(D1) + Y nfu(D;) (15)

i=1
Rmax(Cj) + Rmin(cj)
2

Raver(cj) = (16)

It is obvious that if all original assessments S(C) in the distribution assessment are complete, then n’D(C i)=0
and Rj = Rmin(Cj) = Rmax(Cj) = Raver(Cj)'

According to the maximum, minimum utilities and corresponding index value interval, the ranking of two
causes may be made as follows. If Ryin(Cy) > Rmax(Cr), C; is ranked first then Cy; if Rpnin(Cr) = Rmin(Ck)
and Rmax (C1) = Rmax(Ck), C; is said to be independent of Cy. In other cases, average rank index may be used to
generate an average ranking, but this kind of ranking may be inconclusive and unreliable. To produce a reliable
ranking, the quality of original assessments must be improved by reducing imprecision and/or incompleteness
present in the original information only associated with C; and Cy.

The ranking results for risk due to various potential causes may help designers understand the anticipated
technical problem in question so that an improved risk reduction measure can be incorporated in the new design
or a more innovative design can be carried out to reduce the potential estimated risk.

3. CASE STUDY IN MARINE AND OFFSHORE ENGINEERING

3.1. Problem description

FPSO vessels are by far the most popular platform for floating production systems in offshore oil and gas fields
worldwide. According to a report by McCaul*?, almost 60% of the floating production systems now on order
have ship-shape hulls. Subsequently, this is of growing importance in shuttle tankers, since they are often used
to offload hydrocarbons directly from FPSOs. The tandem offloading concept is generally being adopted for
offloading operations. Alongside offloading is a less-adopted concept.

FPSO systems combine traditional process technology with marine technology, and thus are quite dependent
on technical design and operational safety control*>. Since the tandem configuration is dominant in the North
Sea, collision between a FPSO and a shuttle tanker during tandem offloading operation has caused a growing
concern in the North Sea. Several recent contact incidents between FPSOs/FSUs (floating storage units) and
shuttle tankers have clearly demonstrated a high possibility or likelihood of contact between vessels during tan-
dem offloading. The large masses involved between a FPSO and a tanker significantly intensify the collision risk.

It is essential that anticipated hazards due to technical factors be identified, risk control options proposed,
and risk reduction or control measures taken to reduce the risk to ALARP. Scenarios involving potential major
hazards which might threaten an FPSO or loss of operational control are assessed at an early stage in the design
of new facilities, in order to optimize technical and operational solutions’. A traditional ship/platform collision
risk model may not be effective for tandem offloading operation.
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This study concentrates on the risk evaluation of the major hazards threatening the FPSO overall rather
than focusing on specific areas of design. The FPSO investigated is a turret-moored system connected through
flexible risers to remote subsea wells. The safety assessment provides a means for screening the safety
implications which would influence the development of the concept. This permits these safety and economic
consequences of the concept to be considered in the early design processes and also highlights areas where little
guidance or part experience is available, especially with these types of innovative developments.

In this section, safety assessment is carried out on the risk introduced by the collision of a FPSO and a shuttle
tanker during a tandem offloading operation. Only technical failures causing risk are assessed here, though the
operational failure has also been recognized as one of the major causes of collision.

According to the literature, the technical failure that might cause collisions between a FPSO and a shuttle
tanker during tandem offloading operations is malfunction of propulsion systems**. The four major causes of
technical failures are:

(1) controllable pitch propeller (CPP) failure;
(2) thruster failure;

(3) position reference system (PRS) failure;
(4) dynamics positioning system failure (DP).

For safety modelling purposes it is assumed that each input parameter (i.e. FR, CS, and FCP) will be fed
to the proposed safety model in terms of any one of the four input forms described in Section 2.1.1 to address
different levels of uncertainty.

In this case study, seven linguistic variables may be used for FR, five for CS, and seven for FCP. Definition
of the linguistic variables and the corresponding membership functions are given in Tables AI-AIIl and
Figures A2—-A4 in Appendix A.

A panel of five experts from different disciplines participated in risk analyses of the above four identified
causes of technical failures, which may result in collision between a FPSO and a shuttle tanker.

The safety estimate of each technical failure is assessed by five experts separately. The assessment made by
the five experts in terms of FR, CS, and FCP is depicted in Table II(a) for collision between a FPSO and a
shuttle tanker during a tandem offloading operation due to a technical failure caused by CPP. The other three
kinds of assessments are depicted in Table I1(b)—(d), respectively. Note that the experts’ assessments of the three
input parameters in different input forms are used to address different levels of uncertainty.

3.2.  Safety estimate of each technical failure by each expert on collision risk

In the following sections, the evaluations made by expert #1 on collision risk caused by the CPP failure are
discussed in more detail to demonstrate the procedure involved in the proposed FURBER scheme for the safety
model. For other cases we only provide the results generated using similar computation procedures.

3.2.1.  Rule base with the belief structure

According to the number of linguistic variables used for describing antecedents, a rule base having a total
number of 245 fuzzy rules with the belief structure are used in the case study. The weights of the rules and the
attributes are all assumed to be equal. This fuzzy rule base with the belief structure is constructed on the basis
of the original rule base given by Sii and Wang?’. For instance, three original fuzzy rules are listed as follows:

Riog: IF FR is frequent AND CS is critical AND FCP is unlikely THEN safety estimate is Fair
Rio9: IF FR is frequent AND CS is critical AND FCP is reasonably unlikely THEN safety estimate is Fair
R200: IF FR is frequent AND CS is critical AND FCP is likely THEN safety estimate is Fair

These rules are reconstructed using the belief structure as follows:

Riog: IF FRis frequent AND CS is critical AND FCP is unlikely THEN safety estimate is {(Good, 0), (Average,
0.2), (Fair, 0.7), (Poor, 0.1)}
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Table II. Expert assessments of the three input parameters using different forms to
address uncertainty for technical failure caused by malfunction of (a) the CPP, (b) the
thruster, (c) the PRS and (d) the DP

Expert Shape of input form FR CS FCP
(a) CPP

E#1 Triangular (6.5, 8,9.5) (7.5,8.5,9.5) (5.5,7,8.5)
E#2 Triangular (5.5,7.5,9) (7, 8.5, 10) (5,7.5,9.5)
E#3 Closed interval [6, 8] [7,9] [6.5,9]
E#4 Trapezoidal {5.5,6.5,9,10}  {5.5,7,8, 10} {5,7,8, 8.5}
E#5 Single deterministic 7.75 8.25 7.6

(b) Thruster

E#1 Triangular 6,7,7.5) 6.5,7,8) 4.5,5.5,6)
E#2 Triangular (6, 6.5, 8) (7,8,9) 6,7.5,8)
E#3 Closed interval [5.5,7.5] [6, 8] [6, 8]
E#4 Trapezoidal {5,6,7, 8} {5,7,8,9} {5,6,7,9}
E#5 Single deterministic 7.15 7.95 7.25

(c) PRS

E#1 Triangular (6.5,7,7.5) (8,8.5,9) (5.5,7,8)
E#2 Triangular 6,7.5,8) (7.5, 8,9.5) (5,6,7)
E#3 Closed interval [6.5, 8] [7,7.5] [6.5,7.5]
E#4 Trapezoidal {6,7, 8,9} {5,7,8,8.5} {6,7,8,9}
E#5 Single deterministic 7.5 7.2 7.1

(d) DP

E#1 Triangular (7,75, 8) (7.5,8.5,9) 6,7,7.5)
E#2 Triangular 6.5,7,8) (6.5,7,8.5) (5.5,6,7)
E#3 Closed interval [7, 9] [7.5,9.5] [7, 8]
E#4 Trapezoidal {6.5,7,7.5, 8} {6,6.5,7, 8} {6.5,7,7.5, 9}
E#5 Single deterministic 7.95 8.25 7.9
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R¥yo: IF FR is frequent AND CS is critical AND FCP is reasonably unlikely THEN safety estimate is {(Good,
0), (Average, 0), (Fair, 0.8), (Poor, 0.2)}
R3yo: IF FR is frequent AND CS is critical AND FCP is likely THEN safety estimate is {(Good, 0), (Average,
0), (Fair, 0.5), (Poor, 0.5)}

199~

In the original rules, the different input linguistic terms lead to the same output term ‘Fair’, which does not

seem entirely convincing. In the reconstructed rules, one may see the difference of the rules from their belief
variations. It is argued that rules with the belief structure provide a more flexible and rational way to construct
fuzzy rule bases. Note that the belief degrees of the rules in the rule base given in Table AIV in Appendix A are
provided for illustration purposes. The actual degrees of belief depend on the context of applications.

3.2.2.  Transformation of the input and the fuzzy rule expression matrix

Expert #1 used the triangular distribution input form to address the inherent uncertainty associated with the
data and information available while assessing the three input parameters. The FR is described triangularly
as (6.5, 8.0, 9.5), the CS as (7.5, 8.5, 9.5), and the FCP as (5.5, 7.0, 8.5). As shown in Table III, these
input values are transformed into the distributed representation on the linguistic terms in the antecedent using
Equations (4) and (5), where ¢; is assumed to be 1 in Equation (4), based on the membership function defined
in Figures A2—-A4 in Appendix A.

7 is calculated using Equation (5) and «;; using Equation (4). We have not listed the corresponding linguistic
term with T = 0 for each input parameter.

Similar transformation procedures are performed for the other four experts for CPP, and for the other three
potential causes (the thruster, PRS, and DP) of technical failure, which are summarized in Table IV(a)-(d),
where the numerical values associated with each linguistic term are the individual matching belief degrees,
ieajj 1=1,2,3, j=1,..., JiwithJi =7, /,=5,and J3 =17).
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Table III. Transformation of the input for CPP assessed by expert #1 into
the distributed representation of linguistic terms in the antecedent

Input parameter Linguistic term T ajj
Failure rate Average 0.2 0.108
Reasonably frequent  0.70 0.378
Frequent 0.70 0.378
Highly frequent 0.25 0.135
Failure consequence probability  Likely 0.2 0.1
Reasonably likely 1.0 0.5
Highly likely 0.6 0.3
Definite 0.2 0.1
Consequence severity Critical 0.75  0.49(0.2)
Catastrophic 0.78  0.51(0.6)

Table IV. Transformation of the input for (a) the CPP, (b) the thruster, (c) the PRS and (d) the DP assessed by five
experts into the distributed representation of linguistic terms in the antecedent

Expert FR CS FCP
(a) CPP
#1 {(A, 0.108), (RF, 0.378), (F, 0.378),  {(Cr, 0.49), (Ca, 0.51)} {(L,0.1), (RL, 0.5), (HL, 0.3),
(HF, 0.135)} (D, 0.1)}
#2 {(RL, 0.081), (A, 0.238), {(Cr, 0.5), (Ca, 0.5)} {(L, 0.112), (RL, 0.345),
(RF, 0.405), (F, 0.276)} (HL, 0.0.341), (D, 0.201)}
#3 {(A, 0.364), (RF, 0.364), (F, 0.273)}  {(Cr, 0.5), (Ca, 0.5)} {(RL, 0.333), (HL, 0.333), (D, 0.333)}
#4 {(RL, 0.088), (A, 0.221), {(M, 0.263), (Cr, 0.439), (Ca, 0.298)} {(L,0.129), (RL, 0.379), (HL, 0.379),
(RF, 0.294), (F, 0.294), (HF, 0.103)} (D, 0.114)}
#5 {(RF, 0.626), (F, 0.374)} {(Cr, 0.75), (C, 0.25)} {(RL, 0.429), (HL, 0.571)}
(b) Thruster
#1 {(A, 0.294), (RF, 0.588), (F, 0.118)}  {(M, 0.259), (Cr, 0.741)} {(RL, 0.152), (HL, 0.455), (D, 0.394)}
#2 {(A, 0.4), (RF, 0.429), (F, 0.171)} {(Cr, 0.667), (Ca, 0.333)} {(RL, 0.533), (HL, 0.467)}
#3 {(RL, 0.182), (A, 0.364), {(M, 0.5), (Cr, 0.5)} {(RL, 0.5), (HL, 0.5)}
(RF, 0.364), (F, 0.091)}
#4 {(RL, 0.175), (A, 0.351), {(M, 0.0.302), (Cr, 0.465), (Ca, 0.233)}  {(L, 0.202), (RL, 0.405), (HL, 0.263),
(RF, 0.351), (F, 0.123)} (D, 0.13)}
#5 {(RF, 0.95), (F, 0.05)} {(Cr, 1)} {(RL, 0.429), (HL, 0.571)}
(c) PRS
#1 {(A, 0.226), (RF, 0.645), (F, 0.129)}  {(M, 0.259), (Cr, 0.741)} {(L,0.118) (RL, 0.588), (HL, 0.294)}
#2 {(A, 0.242), (RF, 0.515), (F, 0.242)}  {(Cr, 0.667), (Ca, 0.333)} {(L, 0.333), (HL, 0.667)}
#3 {(A, 0.25), (RF, 0.5), (F, 0.25)} {(Cr, 1.0)} {(RL, 0.667), (HL, 0.333)}
#4 {(A, 0.233), (RF, 0.465), (F, 0.302)}  {(M, 0.302), (Cr, 0.465), (Ca, 0.233)} {(RL, 0.4), (HL, 0.4), (D, 0.2)}
#5 {(RF, 0.75), (F, 0.25)} {(Cr, 1)} {(RL, 0.474), (HL, 0.526)}
(d) DP
#1 {(RF, 0.667), (F, 0.333)} {(Cr, 0.536), (Cr, 0.464)} {(RL, 0.222), (HL, 0.778)}
#2 {(A, 0.182), (RF, 0.606), (F, 0.212)}  {(A, 0.226), (Cr, 0.645), (Ca, 0.129)} {(L, 0.333), (HL, 0.667)}
#3 {(RF, 0.5), (F, 0.5)} {(Cr, 0.5), (Ca, 0.5)} {(RL, 0.5), (HL, 0.5)}
#4 {(A, 0.2), (RF, 571), (F, 0.229)} {(M, 0.412), (Cr, 0.588)} {(RL, 0.417), (HL, 0.417), (D, 0.167)}
#5 {(RF, 0.52), (F, 0.48)} {(Cr, 0.75), (Ca, 0.25)} {(RL, 0.15), (HL, 0.85)}

In the rule base, 245 rules have been established, of which only 32 rules are fired due to the CPP failure in
this particular case for expert #1, i.e. Rules #130-133, #137-140, #165-168, #172-175, #200-203, #207-210,
#235-238, and #242-245. These rules are all listed in Table AV in Appendix A.
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Figure 1. The safety estimate of CPP by expert #1
Based on the individual matching belief degrees, the activation weight wy (k =1, ..., 32) of each rule in
the fired sub-rule base is calculated using Equation (7), where we assume that the attribute weight §; =1 (i =
1, 2, 3) and the relative weight of the rules are all equal or 6y =1 (k =1, ..., 32). The fuzzy rule expression

matrix for the sub-rule base with the fired 32 rules is shown in Table AV in Appendix A. Taking rule #132 for
example, the assessment can be represented by

S(A"2) = {((Good, 0), (Average, 0), (Fair, 0.2), (Poor, 0.7)}
with the activation weight w13, = 0.015.

3.2.3.  Fired rule combination to get the safety estimate using the ER algorithm

Based on Table AV in Appendix A, the Intelligent Decision System (IDS)** is used to implement the
combination of the 32 rules and to generate safety estimates. The final assessment result for CPP by expert
#1 is generated as follows and is shown in Figure 1.

Generated result: {(Good, 0), (Average, 0.0057), (Fair, 0.3735), (Poor, 0.6208)}

This result can be interpreted in such a way that the safety estimate of CPP to technical failure is ‘Average’ with
a belief degree of 0.0057, ‘Fair’ with a belief degree of 0.3735 and ‘Poor’ with a belief degree of 0.6208.

Similar computations are performed for the other four experts for CPP, and for the other three potential causes
(the thruster, PRS, and DP) of technical failure. The safety estimates generated for the CCP, thruster, PRS and
DP by five experts are summarized in Table V(a)-(d), respectively.

3.3.  Illustration of safety estimate based on the incomplete input

To illustrate how the incompleteness of input can be reflected and dealt with in the FURBER inference engine,
we use another example by modifying the input of expert #1 for CPP. We use the same input for FR and FCP
as shown in Table II(a), but assume that the input for the CS is incomplete. Suppose the transformation of the
input is {(Critical, 0.2), (Catastrophic, 0.6)}, as shown in Table III using bold fonts in the parentheses of the
fourth column. It is possible in this case that no numerical value is available and only subjective judgements can
be made with the incomplete belief assessment due to the lack of information.

Due to the change in the input, the activation weight of each rule is also changed using Equation (7), and
the degrees of belief of the rules are updated using Equation (8). Because the input of CS is incomplete,
ie. Z?:] a2j = 0.8 < 1, together with Z;Z] arj = Z;Zl a3j = 1, then the degree of belief Bix for the fired
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Table V. Safety estimate by each expert on the collision risk between a FPSO and a shuttle tanker due to
technical failure caused by (a) the CPP, (b) the thruster, (c) the PRS and (d) the DP

Safety estimate

Expert FR CS FCP Good  Average Fair Poor
(a) CPP

#1 (6.5, 8,9.5) (7.5,8.5,9.5) (5.5,7,8.5) 0 0.0057  0.3735  0.6208
#2 (5.5,7.5,9.0) (7, 8.5, 10) (5,7.5,9.5) 0 0.0075  0.3750  0.6175
#3 [6, 8] [7,9] [6.5,9] 0 0.0033  0.3090  0.6876
#4 {5.5,6.5,9,10} {5.5,7, 8,10} {5,7,8,8.5} 0 0.0233  0.4751 05016
#5 7.75 8.25 7.6 0 0.0123  0.3641  0.6236

(b) Thruster

#1 6,7,7.5) (6.5,7,8) (4.5,5.5,6) 0 0.0373 0.7802  0.1825
#2 (6, 6.5, 8) (7,8,9) (6,7.5,8) 0 0.0640 0.4165 0.5195
#3 [5.5,5.5,7.5,7.5] [6, 6, 8, 8] [6, 6, 8, 8] 0 0.0375 0.6503  0.3122
#4 {5,6,7,8} {5,7,8,9} {5,6,7,9} 0 0.0274 0.5540 0.4186
#5 7.15 7.95 7.25 0 0.0013 0.4179  0.5808
c) PRS

#1 (6.5,7,7.5) (8,8.5,9) (5.5,7,8) 0 0.0047 0.6151  0.3802
#2 6,7.5,8) (7.5,8,9.5) 5,6,7) 0 0.0041 0.6142  0.3817
#3 [6.5, 6.5, 8, 8] [7,7,7.5,7.5] [6.5,6.5,7.5,7.5] 0 0.0055 0.3845  0.6100
#4 {6,7,8,9} {5,7,8, 8.5} {6,7,8,9} 0 0.0204 0.5111 0.4685
#5 7.5 7.2 7.1 0 0.0080 0.3694  0.6226
(d) DP

#1 (7,7.5,8) (7.5,8.5,9) 6,7,7.5) 0 0.0102 0.3595  0.6303
#2 (6.5,7,8) (6.5,7,8.5) (5.5,6,7) 0 0.0097 0.6926  0.2977
#3 [7,7,9,9] [7.5,7.5,9.5,9.5] [7,7,8, 8] 0 0.0097 0.3930  0.5973
#4 {6.5,7,7.5,8} {6,6.5,7, 8} {6.5,7,7.5,9} 0 0.0200 0.5733  0.4067
#5 7.95 8.25 7.9 0 0.0256 0.2688  0.7056

2rules(@=1,...,4;, k=1, ...,32) are updated into B;x = Bix * 2.8/3 = Bix * 0.9333 using Equation (8).

Hence, 0 < Z?:l Bix < 1forall k. Table AVI in Appendix A is the fuzzy rule expression matrix for the sub-rule
base, which is generated using the fired 32 rules based on this new input. The final assessment result is generated
using IDS as follows and also shown in Figure 2:

{(Good, 0), (Average, 0.0041), (Fair, 0.3847), (Poor, 0.5594), (unknown, 0.0518)}

This result means that the output will also be incomplete due to the incompleteness of the input. The final
output still gives a similar overall picture about the safety level with the possible incompleteness.

Similar computations may be performed for safety assessment using the proposed fuzzy-logic-based ER
approach for the other three potential causes of technical failure.

3.4. Safety synthesis

The ER approach can be used not only to aggregate fuzzy rules for safety analysis in the FURBER
framework, but also to assess the safety of the whole system. IDS is again used to synthesize safety estimates.
Three examples are demonstrated. The first example is multi-cause synthesis, the second example is the multi-
expert evaluation of a particular failure mode, and the last example is a multi-cause—multi-expert synthesis and
evaluation.

3.4.1. Multi-expert safety synthesis
Based on the results shown in Table V(a)-(d), Table VI(a) and (b) show the results of multi-expert safety
synthesis on collision risk between a FPSO and a shuttle tanker due to CPP, thruster, PRS and DP caused
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Figure 2. The final safety estimate of CPP by expert #1 based on the incomplete input

Table VI. Multi-expert safety synthesis on collision risk between a FPSO and a
shuttle tanker due to CPP caused technical failure with (a) equal expert weights
and (b) different expert weights Wy

Safety synthesis

Technical failure cause Good Average Fair Poor

(a) Equal expert weights

CPP 0 0.0063 0.3468 0.6469
Thruster 0 0.0336 0.6378 0.3286
PRS 0 0.0053 0.5538 0.4409
DP 0 0.0097 0.4563 0.5339
(b) Different expert weights W]’_:k

CPP 0 0.0086 0.3582 0.6333
Thruster 0 0.0305 0.6098 0.3597
PRS 0 0.0080 0.4903 0.5017
DP 0 0.0108 0.4993 0.4898

technical failure, respectively. The synthesis is carried out using both equal and different relative weights among
experts.

Suppose the same relative weight is given to the panel of experts, i.e. WE = {Wexpert#1; Wexpert#2: Wexpert#3;
Wexpert#4: Wexpert#s} = {1, 1, 1, 1, 1}. Based on the safety estimate of each expert on collision risk between a
FPSO and a shuttle tanker due to four anticipated causes to technical failure, shown in Table V(a)—(d), the
multi-expert safety synthesis is carried out using IDS and the results are summarized in Table VI(a) and (b).

Again IDS is used to carry out the multi-expert safety synthesis with different weights assigned to the experts,
e.g. Wg = {Wexpert#1; Wexpert#2; Wexpert#3; Wexpert#d; Wexperttts} = {0.3, 0.5, 0.9, 0.8, 0.1}, which is normalized as
{0.12, 0.19, 0.35, 0.31, 0.04} so that their total weights are summed to one. The synthesis result is depicted in
Table VI(b).

3.4.2. Safety ranking

To calculate risk ranking index values associated with various causes of technical failure, it is required to
describe the four safety expressions, i.e. {Good, Average, Fair, Poor} using utility values. The utility values
associated with the defined safety expressions can be assigned by experts. Suppose u(Good), u(Average),
u(Fair), u(Poor) represent the utilities associated with ‘Good’, ‘Average’, ‘Fair’, ‘Poor’, respectively, and

{u(Good), u(Average), u(Fair), u(Poor)} ={1, 0.8, 0.6, 0.2}
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Table VII. Risk ranking

Ranking
Rank items Expert weights CPP Thruster PRS DP
Safety ranking index value ~ Equal weight 0.34634 0.45088 0.40428 0.38724
Different weight W~ 0.3484 0.4622 0.4009 0.4062
Safety ranking ordering Equal weight 1 4 3 2
Different weight W 1 4 2 3

Table VIII. Multi-cause safety synthesis for the
technical failure by each expert

Safety synthesis

Expert Good  Average Fair Poor
Expert #1 0 0.0116 ~ 0.5438  0.4446

Expert #2 0 0.0170  0.5352  0.4478
Expert #3 0 0.0111 0.4217  0.5672
Expert #4 0 0.0182  0.5402 0.4416
Expert #5 0 0.0091 0.3258  0.6651

The risk ranking index value Rcpp associated with the cause CPP is calculated based on the multi-expert safety
synthesis shown in Table VI(a) with equal expert weight and using Equation (13) as follows:

4
Repp =Y 0™ x u(Di) = (0 x 1) + (0.0063 x 0.8) + (0.3468 x 0.6) + (0.6469 x 0.2) = 0.346 43
i=1

Based on the results shown in Table VI(a) and (b), the risk ranking index values associated with the causes CPP,
Thruster, PRS and DP of technical failure can be calculated and the results are summarized in Table VII.

From Table VII it can be noted that for the two sets of weights assigned to the experts, the potential risk caused
by CPP is always the highest, so it deserves more attention to reduce its potential risk to ALARP. The thruster is
always ranked to be the safest among the four options. When the relative weights of the panel experts are taken
as equal, the potential risks caused by DP and PSR are ranked second and third, respectively. When different
weights were given, the potential risks caused by PSR and DP are ranked second and third, respectively.

3.4.3.  Multi-cause safety synthesis
Table VIII shows the results of the multi-cause safety synthesis by each expert on the four anticipated causes of
technical failure, which result in collision between a FPSO and a shuttle tanker. The result produced by expert
#1 is as follows:

Multi-cause safety synthesis (Expert #1) = {(Good, 0), (Average, 0.0116), (Fair, 0.5438), (Poor, 0.4446)}.

3.4.4. Multi-cause—multi-expert safety synthesis

Suppose equal relative weights are given to the panel of experts, i.e. WE = {Wexpert#1; Wexpert#2; Wexpert#3;
Wexpert#4; Wexpertts} = {1, 1, 1, 1, 1}. Based on Table VIII, the multi-cause-multi-expert safety synthesis is
given by {(Good, 0), (Average, 0.0106), (Fair, 0.4698), (Poor, 0.5196)}.

For the different weights, the multi-cause—multi-expert safety synthesis is given by {(Good, 0), (Average,
0.0115), (Fair, 0.4902), (Poor, 0.4983)}. The results of the multi-cause—multi-expert safety synthesis for the
two sets of weights are summarized in Table IX.

The belief distribution {(Good, 0), (Average, 0.0106), (Fair, 0.4698), (Poor, 0.5196)} represents the final
multi-cause—multi-expert safety synthesis of a technical factor, meaning that the panel of experts is 51.96% sure
that the safety level is Poor, and 46.98% sure that the safety level is Fair, and 1.06% sure that the safety level is
Average. This final result gives a panoramic view of the safety level for a technical factor.
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Table IX. Multi-cause-multi-expert safety synthesis by experts for different weights

Expert’s weight Safety synthesis

Expert #1 ~ Expert#2  Expert#3  Expert #4  Expert#5  Good  Average Fair Poor

1 1 1 1 1 0 0.0106  0.4698  0.5196
0.3 0.5 0.9 0.8 0.1 0 0.0115  0.4902  0.4983

4. CONCLUSION

A fuzzy rule-based hierarchical multi-expert safety analysis and synthesis framework using the ER approach
was proposed. In this approach, information on different properties from various sources can be transformed
and used in the rule base and in the inference process. In the framework, a normal ‘IF-THEN’ rule
base can be extended to a rule base with a belief structure, so that subjective expert judgements with
uncertainties of both a probabilistic and fuzzy nature can be taken into account. The FURBER approach can
be used to accommodate domain-specific human experts’ experiences and safety engineering knowledge with
uncertainties. Multi-attribute and multi-expert decision-making can also be conducted on the basis of safety
estimates using the ER algorithm. The new approach provides a flexible way to represent and a rigorous
procedure to deal with hybrid uncertain safety assessment information to arrive at final conclusions.

The results generated from a series of case studies on collision risk between a FPSO and a shuttle tanker
have demonstrated that such a framework can provide safety analysts and designers with a convenient tool
that can be used at various stages of the design process of offshore engineering systems for risk analysis.
In conclusion, the proposed framework offers great potential in safety assessment and deign decision support
of engineering and management systems, especially in the initial conceptual design stages. Moreover, this new
methodology provides scope and flexibility for rule training and self-learning/updating in a rule base, which
will be investigated in future work.
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APPENDIX A
Table AL Failure rate>’
Rank FR Meaning (general interpretation) Failure rate (1/year)
1,23 Very low Failure is unlikely but possible during lifetime <10~
4 Low Likely to happen once during lifetime 0.25 x 1072
5 Reasonably low Between low and average 025 x 1074
6 Average Occasional failure 1073
7 Reasonably frequent  Likely to occur from time to time 0.25 x 1072
8,9 Frequent Repeated failure 0.125 x 107!
9,10  Highly frequent Failure is almost inevitable or likely to exist repeatedly >0.25 x 107!
Table AIL Consequence severity>’

Rank CS Meaning (generic marine and offshore structure/system interpretation)

1 Negligible At most a single minor injury or unscheduled maintenance required (service and operations can continue)

2,3 Marginal Possible single or multiple minor injuries and/or minor system damage. Operations interrupted slightly,
and resumed to their normal operational mode within a short period of time (say less than 2 h)

4,5,6  Moderate Possible multiple minor injuries or a single severe injury, moderate system damage. Operations and
production interrupted marginally, and resumed to their normal operational mode within, say, no more
than 4h

7,8 Critical Possible single death, probable multiple severe injuries or major system damage. Operations stopped,

platform closed, shuttle tanker’s failure to function. High degree of operational interruption due to the
nature of the failure such as an inoperable platform (e.g. drilling engine fails to start, power system failure,
turret mooring system failure) or an inoperable convenience subsystem (e.g. DP, PRS)

9,10 Catastrophic ~ Possible multiple deaths, probable single death or total system loss. Very high severity ranking when a

potential failure mode (e.g. collision between a FPSO and a shuttle tanker, blow-out, fire and explosion)
affects safe platform operation and/or involves non-compliance with government regulations
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Table AIIIL. Failure consequence probability37

Rank FCP Meaning

1 Highly unlikely The occurrence likelihood of possible consequence is highly unlikely given the occurrence of
the failure event (extremely unlikely to exist on the system or during operations)

2,3 Unlikely The occurrence likelihood of possible consequences is unlikely but possible given that the
failure event happens (improbable to exist even on rare occasions on the system or during
operations)

4 Reasonably unlikely =~ The occurrence likelihood of possible consequences is reasonably unlikely given the
occurrence of the failure event (likely to exist on rare occasions on the system or during
operations)

5 Likely It is likely that consequences happen given that the failure event occurs (a programme is not
likely to detect a potential design or operations procedural weakness)

6,7 Reasonably likely It is reasonably likely that consequences occur given the occurrence of the failure event (i.e.
exist from time to time on the system or during operations, possibly caused by a potential
design or operations procedural weakness)

8 Highly likely It is highly likely that consequences occur given the occurrence of the failure event (i.e. often
exist somewhere on the system or during operations due to a highly likely potential hazardous
situation or design and/or operation procedural drawback)

9,10  Definite Possible consequences happen given the occurrence of a failure event (i.e. likely to exist

repeatedly during operations due to an anticipated potential design and operation procedural
drawback)
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Table AIV. Illustration of safety rule base with belief structure

Safety estimate

Item Antecedent attribute Good  Average  Fair  Poor
R #1 (very low, negligible, highly unlikely) 1

R#2 (very low, negligible, unlikely) 0.8 0.2

R #244  (highly frequent, catastrophic, highly likely) 0.05 0.95
R #245  (highly frequent, catastrophic, definite) 1

Note: (very low, negligible, highly unlikely) represents ‘FR is very low AND CS is negligible
AND FCP is reasonably unlikely’. Other rules have the same meaning. Blank entries for the
belief in the table mean ‘0’.

Table AV. Fuzzy rule expression matrix of the knowledge base with the fired 32 rules

Output
Input D1 (Good) D5 (Average) D5 (Fair) Dy (Poor)
A130 (0.005) 0 0 1 0
AT (0.024) 0 0 0.5 0.5
A132.(0.015) 0 0 0.3 0.7
A133 (0.010) 0 0 0.2 0.8
A137 (0.005) 0 0 0.5 0.5
A138(0.028) 0 0 0.4 0.6
A139(0.015) 0 0 0.2 0.8
A140 (0.010) 0 0 0.15 0.85
A165(0.017) 0 0 0.8 0.2
A166 (0.084) 0 0 0.5 0.5
A167 (0.050) 0 0 0.4 0.6
A168 (0.034) 0 0 0.3 0.7
A172.0.017) 0 0.1 0.8 0.1
A173 (0.087) 0 0 0.9 0.1
Al74(0.052) 0 0 0.4 0.6
Al75(0.035) 0 0 0.3 0.7
A200 (0.017) 0 0 0.5 0.5
A201 (0.084) 0 0 0.3 0.7
A202 (0.050) 0 0.1 0.1 0.8
A203 (0.034) 0 0 0.2 0.8
A207 (0.017) 0 0 0.5 0.5
A208 (0.087) 0 0 0.4 0.6
A209 (0.052) 0 0 0.3 0.7
A210(0.035) 0 0 0.2 0.8
AZ35(0.006) 0 0 0.4 0.6
A236 (0.031) 0 0 0.2 0.8
A237(0.019) 0 0 0.1 0.9
A238(0.012) 0 0 0 1
A2 (0.006) 0 0 0.2 0.8
A3 (0.032) 0 0 0.15 0.85
A%%(0.019) 0 0 0.05 0.95

Note: The values in the parentheses in the first column are the weights of the activation
attributes of AK generated using Equation (7), where the weights of the rules and the
weights of the antecedents are assumed to be equal. Moreover, because the inputs are
complete, then the degrees of belief do not need to be updated.
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Table AVI. Fuzzy rule expression matrix with the fired 32 rules for the incomplete input

Output
Input D1 (Good) Dy (Average) D3 (Fair) Dy (Poor)
A130 (0.002) 0 0 0.933333 0
AL 0.011) 0 0 0.466 667 0.466 667
A132 (0.006) 0 0 0.28 0.653333
A133 (0.002) 0 0 0.186 667 0.746 667
A137 (0.006) 0 0 0.466 667 0.466 667
A138.(0.032) 0 0 0.373333 0.56
A3 (0.019) 0 0 0.186 667 0.746 667
A140 (0.006) 0 0 0.14 0.793333
A165 (0.008) 0 0 0.746 667 0.186 667
A166(0.038) 0 0 0.466 667 0.466 667
A9 (0.023) 0 0 0.373333 0.56
A168 (0.008) 0 0 0.28 0.653333
A172 (0.023) 0 0.09333 0.746 67 0.09333
Al73(0.113) 0 0 0.84 0.093 333
A4 (0.068) 0 0 0.373333 0.56
A7 (0.023) 0 0 0.28 0.653 333
A290 (0.008) 0 0 0.466 667 0.466 667
A201 (0.038) 0 0 0.28 0.653 333
A202 (0.023) 0 0.093 333 0.093 333 0.746 667
A293 (0.008) 0 0 0.186 667 0.746 667
A27 (0.023) 0 0 0.466 667 0.466 667
A208 (0.113) 0 0 0.373333 0.56
A299 (0.068) 0 0 0.28 0.653 333
A210 (0.023) 0 0 0.186 667 0.746 667
A235 (0.003) 0 0 0.373333 0.56
A236.(0.014) 0 0 0.186 667 0.746 667
A237 (0.008) 0 0 0.093 333 0.84
A238 (0.003) 0 0 0 0.933333
A2 (0.008) 0 0 0.186 667 0.746 667
A3 (0.041) 0 0 14 0.793 333
A4 (0.024) 0 0 0.046 667 0.886 667

Copyright © 2005 John Wiley & Sons, Ltd.
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