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Abstract fixed-length records and fields, they are written once but

We study the problem of compressing massive tables. We devié€ad many times, and they are truly massive (TBs per year).
novel compression paradigntraining for lossless compressien  FUrthermore, they typically contain much redundancy.

which assumes that the data exhibit dependencies that can be ON the other hand, they aret text corpora (English,
learned by examining a small amount of training material. VBNA, €tc.), multimedia (images, audio, etc.), or WWW data
develop an experimental methodology to test the approach. €k@talogs, bibliographies, XML files, etc.) Developing se-
result is a systempzi p, which outperformgyzi p by factors of mantic compression techniques for each of these is an inde-
two in compression size and both compression and uncompresBigRdent research area. Such methods can exploit domain-
time for various tabular dat®zi p is now in production use in anSPeCcific information, which is problematic in our setting for

AT&T network traffic data warehouse. reasons explained below. Furthermore, our data sets are
larger than most commercial data sets. Most dictionaries,
1 Introduction corpora, etc., also are not this large. (For example, The Ox-

We study the problem of compressing massive tables, whlf(%d. English Dictionary consumes less than 10 GB; the As-

. . sociated Press Newswire generates about one million words
arises naturally in corporate data warehouses. Our 90a
of text per week.)

is to provide a working system that can be put into pro- " L . .
) : i ) . . Traditionally, compression is desirable because it saves
duction use and achieve 100:1 compression, in particular

one that can compress 10s of TB of data into 100s of G Ot only storage space but also the 1/0O bandwidth (to disks,

. . . apes, etc.) for accessing data. An added benefit is the sav-
We devise a novel compression stratedyaiing for loss- . . . - o
. X . ings in network bandwidth for transmitting data. This inter-

less compressierwhich can leverage standard compressian ) :
. . - ests AT&T, where traffic tables may be shipped repeatedly to

methods, and we demonstrate its effectiveness experimen- ) : - .
. . . many centers: for fraud detection, billing, report generation,
tally. In the process, we identify the requirements for our _.°. ; .
. ) . . : uditing, marketing, archival, customer care, and data analy-
compression application and design algorithmic solutions {0

various technical problems. The system we bpii p, can sIs in general. The benefit of compression is thus saving not

compress 1 TB of data from AT&T’s network traffic dat qnly storage space for a single copy of the data, with propor-

warehouse into about 28 GB, small enough to fit on one glenal effects on capnal requwemepts for data warghouses,
: . 2 . but also the cumulative cost of storing and transporting mul-
disk and a two-fold improvement over existing solutions (i

. S ! . : lee copies of the data over the system for its entire lifespan,
time as well as spacefpzi p is now in production use inthe " .
warehouse. which may well be several years.

Our motivating applications are tables of traffic dat Any solution to the problem of compressing massive ta-

2 les must satisfy the following constraints. (1) The com-
from telecommunication networks. For example, the AT& . . Lo
. o ression must be lossless, as the information in the records
voice communications network generates a record of edch

phone call it carries. A typical record consists of severg]ust be preserved. (2) The algorithms must work on-line,

) . . rocessing the data as a stream, because there are applica-
hundred bytes and depicts network-level information (e.g. . o .
. ) . . igns, such as fraud detection, that require immediate access
endpoint exchanges), time-stamp information (e.g., star

and end times), and billing-level information (e.g., appliet? the data. (3) The system must work fast, in particular

tariffs). This application generates about 1 TB of data p'epr better than real time: the total time to process one_days
o : worth of data cannot exceed one day, and compression ac-
month and is just one example of the many different tables : N
. : ounts for a small fraction of the total processing time. There

that AT&T and other corporations generate. Others include iy . . .
additional requirements that are dictated by the peculiar

. ) : re
switch- and router-level traffic data, equipment sensor da . .

) : ircumstances under which the problem arises. Large cor-
(e.g., alarm status), and credit card transaction records

: s - orations have legacy data, legacy systems feeding on such
These data have certain unifying characteristics: they h Ve and large bgodigs of pers?onzelymanaging the?n. Thus

ny system-level solution must work on legacy data formats,
¥AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Park, NJ y sy gacy
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and maintained. Finally, it is preferable that any solution beeen deployed in the AT&T network traffic data warehouse.
general, applying to the many different tables, or portions i p achieves factors of about 2 improvement in compres-
tables, that are processed. Thus we cannot exploit domaion size and both compression and uncompression time over
specific syntactic or semantic information. gzi p, the method previously used in this application.
Studying massive tables is a new focus in compression In Section 2, we discuss the table compression problem
research. To distinguish our context from extant ones, cdofther and define our assumptions regarding data dependen-
sider the related field of database compression, where rel@s. In Section 3, we present technical problems that ex-
tional data may be viewed as tables. This differs from optoit our assumptions, and we give algorithmic solutions to
table compression problem in many ways. First, the godlese problems. In Section 4, we present our experimental
are different. Database compression stresses the presaesults, and in Section 5, we discuss gE p system and
tion of indexing—the ability to retrieve an arbitrary record—some additional applications. In Section 6, we summarize
under compression [7]. Table compression does not i contributions and present directions for future work.
quire indexing to be preserved. Next, the data are different.
Database records are often dynamic, unlike table data, whizh Problem Discussion

have a write-once discipline. Databases consist of hetegg;, input consists of a table]’, of a large number of
geneous data, possibly with several string fields of variablgys each of lengtn bytes. We definecolumni to
length; table data are more homogeneous, with fixed figld the projection of théth byte of each row, forl <
lengths. Also, non-tabular databases are not routinely TBs< (A byte is the smallest unit of data that can
in size. (An exception is NASA's EOSDIS database [13he easily and rapidly accessed; moreover, this level of
which anticipates processing 1 TB of satellite images evegyanularity captures patterns among larger lexical units.) The
two weeks.) Finally, the approaches to database compressiH)e compression probleis to compresd’, such that the
include lightweight techniques such as compressing each,télquirements discussed in Section 1 are satisfied.
ple by simple encodings [7, 8] and tiling the entire table [8]. ' From an information-theoretic point of vie®, can be
These approaches are not appropriate for table compressijpthted as a string, e.g., of bytes in row-major order. It would
the former is too wasteful, and the latter too expensive afgl;s suffice to perform Lempel-Ziv [20, 21] or Huffman [9]
cumbersome. compression, yielding provably optimal asymptotic perfor-
Our contribution is a novel approach for the table comnance in terms of certain ergodic properties of the source
pression problemiossless compression via trainingrhe  hat generates the table. This does not, however, adequately
idea is to constructeompression plafor the table by study- sg|ve the table compression problem. For specific classes of
ing a very small training set off line. To do so, we assumgputs, e.g., tables of network traffic data, the optimality re-
that the data can be modeled by an underlying source t4gfs may not necessarily hold. In particular, the optimality
can be learned from a small sample. We further assume aggits hold only with respect to compression methods that
exploit dependencies in the columns of the data in one of tWRewise treatT as a (byte) string; i.e., methods that do not
ways: (1) implicitly, by grouping the columns that compresgccount for complex dependenciefin Some compression
well together; and (2) explicitly, by determining a depenyges result, however, and we use this method as our bench-
dency tree among the columns. We then employ the COfizrk in Section 4.
pression plan on the entire dataset. To test our assumptions, \we need a few technical definitions. Denotemy] the
we implement algorithms to construct compression plans @R column of7T. Denote byI'[i, j] the interval of columns
some training sets, and we compress test sets with respgfough; of 7. Finally, denote byS(C) the size of the
to the plans. We compare the resulting compression to {&it of compressing some inten@lof columns, in row-
straightforward approach of treating the tables as text aﬁ'ﬁ\jor order, using an arbitrary but fixed compressor.
applying Lempel-Ziv compression [20, 21]. It will be clear
that comparable performance would falsify our assumptiopsg Assumptions. Our approach to the table compression
about the data dependencies. In all cases, however, gifblem assumes that there are dependencies among the
algorithms provide substantial compression improvementgjumns ofT'. In particular, we will consider dependencies

While training has been applied to lossy compression, e.gtwo types:combinationagnddifferential
in speech coding [12, 15], ours is the first known instance of

applying training to lossless compression. DEFINITION 2.1. Two contiguous intervals of columns
For our primary application, compression exploitind’[i, j] andT[j + 1, £] are combinationally dependeift

implicit dependencies outperformed that using explicit de-

pendencies. We have implemented the corresponding S(T[z,4]) + S(T[5 + 1,4]) > S(T'[s, 4]).

algorithm—eptimum partitioning—in pzi p, a fully work-

ing software system for compressing table data, which h[z)is Comb_|nat|onal dependency is amplicit dept_andency
etween intervals. It merely expresses that intervals of



columns are dependent, without determining which columoptimum partitions for compressirigy and that among these

are dependent on the others. are some in which the classes are not too wide. To do
so, we develop a “chunking” approach, in which, for some

DEFINITION 2.2. ColumnTT;] is differentially dependent 1 < r < n, we divide then columns into[n/k] pairwise-

on columril'[:] if disjoint intervals of size at mosteach, and solve our general
. . . problem on each such interval. The running time becomes
S(T[5]) > S(Tli] - T[5]), O(nk). We call thischunk partitioning and it likewise

whereT'[i] — T'[;] is the column formed by taking the row/EWUMNS a compression plan.

wise difference between colunfg] andT'[:].
Bl ] 3.2 Differential Approach. We can exploit differential

Differential dependency is aexplicit dependencpe- dependencies as follows. Consider a partition of the
tween columns, in that it determines which column is déolumns ofT" into two sets,P and P = [1,n] \ P. We
pendent on the other. In general, we might compfelg$ treat the columns i assource columnand those in” as
andT'[i] — T[] by different methods, and we might consideerived columnsGiven a mapping : P — P, we define
other transformation®’[i] ® T[j]. This does not affect the thecost S(P, o) to be
ensuing discussion.

Our approach also makes the important assumption that Y S8(Tlp) + > S(Tlo(p)] — TR
the data is generated by some source that is well behaved, pEP pEP
in particular, that dependencies (such as those above) among ) i . .
columns, if they exist, can be captured by examining a smaff€ goal is to find a paifP, o) of minimum cost.

amount of data, independent of the sizelof This is precisely the facility location problem [17]. We
will assume that the differential cost is a metric. In general,
3 Algorithmic Issues this depends on the base compressor. We apply the simple,

. . reedy algorithm for this problem [14].
We design compression schemes based on the assumpl?ons : : A
embodied in Definitions 2.1 and 2.2. Al any time, we have a candidate pdiP, 7). We

determine the smallest cost soluti¢#®’, 6'), obtained by

3.1 Combinational Approach. We can exploit combina- 1. removing a column fron®,
tional dependencies as follows. Consider a partitimf T’ R

into intervalsT [po+1,p1], T[p1+1,p2), ... , T[pe_1+1,p], 2. adding a column td, or
such thatpg = 0 andp, = n. We refer to an interval
Tlpi—1 + 1,p;] in P as aclass We define thecostof P

to be , (Ties are broken arbitrarily.) B(P',6') < S(P,5), then
! ~ PN H :
S(P) = ZS(T[pifl +1,pi]). we setP < P’ andé + &' and iterate. Otherwise we are

done. We call thigireedy differential compressioiihe final

3. substituting one of the columns if for one not inP.

i=1
o . - o solution is roughlys-optimal under the metric assumption
The goal is find an optimum partition, i.el> such that [14]. Better approximations [3, 4, 5, 11] are known, but

S(P) = minp S(P). the greedy algorithm suffices for our purpose of testing the
We can find an optimum partition as follows. Defin‘fbresence of differential dependencies.

E(7) to be the cost of an optimum partition @f1, ] for Greedy differential compression produces the follow-

i > 1, and defineZ(0) = 0. Then fori > 1, ing compression plan: compress each colum®imdepen-

dently, and for each colu P, compresg'[6(p)]—T[5).
BG) = min | BG) + S(T +1,4). g e P compresdloI=Tl
S)St—
3.3 Lossdess Compression via Training. Our overall ap-
Assuming that the cos§(7'[j,:]) has been computed forproach is thus the following.

al1 < j < ¢ < n, we can computeF(n) (and the
corresponding partition) i®(n?) time by simple dynamic 1. Select a small subsgt C T as training material.
programming.

We call this optimum partitioning This gives the
following compression plarior compressingl’: compress
eaqh class in the optimum partition independently in row-g Compresg” with the compression plaR.
major order.

We can further speed up the dynamic programming, Our assumption that the amount of training data needed
under the assumption that there are many optimum or néaindependent of the size @f implies that, once we have

2. UsingT’, compute a compression plak, for T by
either the combinational or differential approach.



generated a compression plan, we can use it to compr@ssar) optimum partitions must have at least one wide class.
future tables generated by the same sourc&.a3raining If benchmark C outperforms the greedy differential compres-
is thus an off-line procedure. sion, then our data sets do not present differential dependen-
So far, we have abstracted the base problem of compeies. We discuss testing assumption (4) below.

ing S(T'[¢]) andS(T'[s, j]). Rather than develop our own  For each experiment, we produced a compression plan
base compression method, we decided to use one of the stgnrunning the corresponding algorithm on a training data
dard programs, which have already been well optimizeskt. Using the resulting plan, we compressed a disjoint test
e.g.,conpress [18, 21], gzi p [20], andvdel t a [10]. data set, and we compared the compression performance
Each is fast, on-line, and well-suited to our application. (fime and size) to that of the benchmark(s) for that goal.
other available compressors, we note ®PRM[6, 19], which Although size of compressed output is the metric by which
exploits context sensitivity and thus seems applicable to tair assumptions can be falsified, we also measured running
ble data, andzi p [1] are too slow for our environment,times, to assess the practicality of our methods. This method-
although attempts have been made to tBR®for speed at ology extends to assess other, similar compression systems.
the expense of compression size [16]. We therefore do not We also varied the amount of training data available,
usebzi p andPPMin our compression scheme, but we dto gauge the effect of training size on compression perfor-
compare our scheme agaitsti p andPPMby themselves. mance. This is only the first step in testing assumption (4).
We note but do not consider in this paper hybrid approachéfswe do not see compression performance stabilize at some
in which we pick the best compressor for a given intervgboint as we increase the amount of training data, then as-
We can even nest the differential approach within the comisamption (4) is likely falsified. After observing this stabi-

national approach. lization, however, a second test will be required: namely,
to fix the training set size above the point at which we ob-
4 Experiments served stability and increase the test set size arbitrarily. If
4.1 Methodology. We summarize our assumptions as fokhe relative performance of the compression systems being
lows. compared does not remain stable, again assumption (4) is

likely falsified. Otherwise, we will have evidence supporting
1. Our data sets present combinational dependencies. agssumption (4). Although this second experiment remains to
np:}e conducted, based on our results we do not expect assump-
tion (4) to be falsified.
Finally, we compared the best results from the above
3. Our data sets present differential dependencies. experiments with isolated usages of compressors based on
. . the Burrows-Wheeler transform [1] and prediction by par-
4. The above d_ependenmgs can be detected Wlth a srﬂg“ match (PPM) [6, 19]. The goal was to assess empir-
amount of training data, independent of the siz&0f joo1y the benefit of our training scheme, which leverages

We fix gzi p as our underlying compression methocstandard compression technology, versus other methods that
While this does not explore the range of possible base coffgim improved compression via sophisticated analyses of
pressor options, it suffices to test our approach.bésch- the source data.
mark R we applygzi p to T in row-major order, corre- Data. We used 100,000 records from a network traffic
sponding to the usage gi p without off-line training; as data warehouse. Each record is 781 bytes and pertains
benchmark Cwe app|ygz| p toT in C0|umn_major order, to an individual network event. The warehouse receives
corresponding to the other extremal partition in which n@Pproximately one billion records per month, so effective
combinational or differential dependencies exist. We thggmpression is critical to this application. From the 781

designed experiments to compare the performance of columns of bytes, we extracted the 90 with the highest
frequency i.e., the number of times the value of the byte

1. optimum partitioning to the benchmarks, changed as the column was scanned top-down. We explain
this in Section 5; basically, in our real application, the
other 691 columns were compressed more effectively using
3. the greedy differential compression to both optimuincomparable methods.

partitioning and benchmark C. We divided the 100,000 (now 90-byte) records into

2. The combinational approach is likely to induce so
(near) optimum partition in which no class is wide.

2. chunk partitioning to optimum partitioning, and

not present combinational dependencies. If optimum ar%[dered training setand (2) a randomly chosen set of 9091
P P ’ P P records, which we will call theandom training set Each

tioning significantly outperforms chunk partitioning, then all



way left the corresponding rest of the data as the test seéwed as an off-line procedure. The results suggest that op-
In all our experiments, we used the training sets to generéiteum partitioning offers significant improvement over both
the corresponding compression plans, and we conductedtleachmarks and thus fail to falsify assumption (1). We saw
compression experiments using those plans and the test $81s35% improvement in compression for this application.
Software. To run the experiments, we implemented thé/e suspect that most of the 15-25% degradation in com-
following tools. pression and uncompression time vs. benchmark R can be
pi n. Given a training setpi n computes a compressionattribmed to the work requ@red fqn_zi p to organize the
plan based on optimum partitioning. columns. Analogous effort is required t(_) compress bench-
mark C, but not benchmark R. We argue in Section 5 that the
pzi p. Given a compression plan computedgiyn, pzi p  resulting size improvement is worth this time overhead.
compresses a test set with respect to the plan. It encodes Chunk Partitioning. To test assumption (2) and assess
enough of the plan into the output (which is included ithe degradation in partition quality from using chunk parti-
the output size results reported) so that, given a cofiening, we computed chunk partitions on the training sets
pressed filepzi p will uncompress it without needingthat were 2% of the test set size. (The optimum partition-
the original plan. Ri n andpzi p actually form our ing experiment suggests that larger training sets offer no in-
working system, and we discuss them in greater detaikased benefits in compression performance.) Using
in Section 5.) on the individual chunks, we computed an optimum chunk
. - partition for each possible chunk size. We ugad p with
col sel . Qven a training setcol sel computes a com- aach resulting compression plan to compress the test set. We
pression plan based on the greedy differential alg(‘?()mpared each result to that given byi p using an opti-
rithm. mum partition (from the 2% training size), measuring rel-

cszi p. Given a compression plan computeddyl sel , ative output size, compression and uncompression speeds,
cszi p compresses a test set with respect to the p|§lﬂd training time. We performed this experiment using both
It encodes enough of the plan into the output (whicth€ ordered and random training sets, comparing chunk par-
is included in the output size results reported) so thaitioning to the corresponding optimum partition.

given a compressed filegszi p will uncompress it Figure 3 displays the results, as a function of chunk size.
without needing the original plan. The results fail to falsify assumption (2) and furthermore

suggest that chunk partitioning is worthwhile, as small chunk
sizes (10-20 in this experiment) yielded almost identical

to compress the intervals and columns, respectively. erformance as optimum partitioning, but required only
System. All the training and experiments were run o bout 2—6% of the training time.

one 250 MHz MIPS R10000 processor on a 16-processor Greedy Differential Compression. To test assumption

SGI Origin 2000 running IRIX 6.5, with 10 GB of main 3y ang assess how greedy differential compression affects
memory. Each time reported is the median of five runSg tormance, we computed greedy differential compression
summing user and system time for each run. plans usingcol sel on pieces of the training data of in-

. creasing size. We compressed the test set ussizg p with
42 Experimentsand Results the resulting plans and compared the resulting size, compres-

Optimum Partitioning. To test assumption (1) and aS3ion and uncompression time to thatpafi p using an opti-

sess how optimum partitioning affects compression perfQgi,m partition (from the 2% training size) and also to bench-
mance, we usegi n to compute optimum partitions oy ¢ For the comparison to optimum partitioning, we also
pieces of the training data of increasing size. Wepanp ., mnared the time to compute the greedy assignment (using
with each resulting compression plan on the test set and CQYT sel ) to that to compute the optimum partition (using

pared the compression time and resulting size to those of qq). We performed this experiment using both the ordered
benchmarks; we also compared uncompression times. random training sets.

performed this experiment using both the ordered and ran- Figure 4 displays the results, as a function of the amount

dom training sets. . . of training material used. (For brevity, we display only the
Figures 1 and 2 displays the results, as a function ofq,ts for the ordered training set. As in the previous experi-
the amount of training material used. Training on the 2%50 s ysing the random training set yielded similar results.)
size (w.rt. the test set size) data set, at which we see i, rogits show that greedy differential compression offers
results.s.tablllze,. took about 2.27 CPU .mlnutes. .Becaugpght improvement over benchmark C, in particular a 2.5%
we anticipate using the same compression plan with mulflin o\ ementin compression, and thus fail to falsify assump-
ple tables from a fixed source, though, training should b, 3y on the other hand, greedy differential compression

does not compare favorably to optimum partitioning, except
Tftp://ftp.cdrom cond pub/infozip/zlib P y P P 9 P

Pzi p andcszi p use thezl i b library, version 1.1.3,
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Figure 1. Results of optimum partition compression, as a function of amount of training material. Shown is the relative
performance of optimum partitioning over benchmark R in terms of compressed size, compression time, and uncompression
time. (a) Ordered training set; (b) random training set.

in training time.

We offer a caveatipzi p has undergone significantly
more code optimization thaaszi p, which partially ex-
plains the relative difference in running times. We belie

Table 1: Comparison to other methods. Size and times are
ratios of optimum partitioning values to the corresponding
\%ther—method values.

that we can improve the running time@$zi p by combin- Compress. Uncompress.
ing the column differencing and compression of the derived pMethod Size time time
columns into a single pass. gzi p

row-major | 6.340e-1  1.202e-0 1.129e-0
4.3 General Discussion. In all the experiments above, the  col-major | 6.977e-1  6.457e-1 3.168e-1
difference between using ordered and random training setspzj 7.768e-1  4.344e-1 2.165e-1
was negligible, although the ordered sets did provide slightly ppp 8.786e-1  2.950e-3 4.010e-4

better results, suggesting the need for future experiments to
assess the effects of contiguity in the training data.
We did observe stabilization of compression perfor-
mance in all the experiments. Perhaps most remarkabl®i$? we used coder 9, which offers the best (albeit the
that this stabilization occurred at training set sizes of 1-29%west) compression, with the rationale that if best PPM
of the test set size. Again, further experiments with increasmmpression turned out to be less than that of optimum
ingly larger test sets and a fixed training set size are requigattitioning, faster PPM variants would not offer interesting
before assumption (4) can be assumed with confidence. comparisons.
Table 1 details the results. For completeness, we include

4.4 Comparison to Other Methods. We compared the comparisons tgzi p used in row-major order (i.e., bench-
result of optimum partitioning (using the 2% training sizeinark R), corresponding to off-the-shelf usegafi p, and to
to Burrows-Wheeler [1] and PPM [6, 19] compression igzi p in column-major order (i.e., benchmark C). Optimum
isolation. For Burrows-Wheeler, we used Sewali¥s p2, partitioning achieved greater compression than all the other
version 0.9.5¢ For PPM, we used BloomBpne, version methods used in isolation. Furthermore, it was faster than all

the other methods, except for row-mag@i p; compared to
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Figure 2: Results of optimum partition compression, as a function of amount of training material. Shown is the relative
performance of optimum partitioning over benchmark C in terms of compressed size, compression time, and uncompression
time. (a) Ordered training set; (b) random training set.

PPM, the relative speed difference was orders of magnitudei p benchmark (R) by two orders of magnitude in com-
The results suggest that, for our table application, opgifression size and almost an order of magnitude in compres-

mum partitioning usingzi p as the underlying compressiorsion time. To measure how the full system works on the

method outperforms isolated usagéai p andPPM which original data set, we repeated the structure of the optimum

by themselves purport to outperforgzi p. Sincebzi p partitioning experiment, allowingi n to detect the low fre-

did out-compresgzi p with only a slight time penalty, it quency columns angdzi p to use differential encoding on

is worth future experimentation to assess the performartbem. The system setup was as in Section 4, and again we

of optimum partitioning usindyzi p as the underlying com- fixedgzi p as the underlying compression method. We com-

pression method. pared to benchmark R, corresponding to off-the-shelf use of
gzi p, which was the method of choice in the AT&T net-
5 Partition Compression System and Applications work traffic data warehouse prior to our work. The results

Pi n andpzi p actually form our production compressiorf'® shown in Figure 5. For this experiment, we used only the
system. Recall that the experiments in Section 4 used off§éred training set, as the random training set destroys the
the 90 highest frequency columns from the original data sé€duency information. . _
Prior to determining an optimum partitiopj n calculates The results indicate overall improvements relative to
column frequencies. It actually computes the optimum paitraightgzi p of 55% in compression sizand 40-50% in
tition only on the projection of the high frequency columnd?0th compression and uncompression time, supporting the
(How it determines low from high is a heuristic outside thBrgument that the space improvement by optimum partition-
scope of this paper.) Furthermore, before computing the piid is worth the extra time. The time savings for the low
tition, it employs another heuristic to reorder the high frdl€quency columns more than paid for the extra time needed
guency columns to improve compression size further. Agal, compress the high frequency columns via optimum parti-
this heuristic is outside the scope of this paper and was turi&ing. Again, training sets of 1-2% of the test set size suf-
off for the experiments in Section 4. ficed to achieve these results. Applied to the network traf-
Pzi p then compresses the low frequency columns 6&? warehousepi n/ pzi p compresses the raw data for an
differential encoding, additionallgzi pping the output of €ntire month from the original 1 TB to about 28 GB, small
of that phase, and the high frequency columns with resp&gough to fiton alarge PC disk. By comparisgai p com-
to the (reordered) partition. On the low frequency columns 8féssed the data only to about 65 GB.
the full network traffic data set, this method outperformed the
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Figure 3: Results of chunk partition compression, as a function of chunk size. Shown is the relative performance of chunk
partitioning over optimum partitioning in terms of compressed size, compression time, uncompression time, and training
time. (a) Ordered training set; (b) random training set.

5.1 Additional Test Sets.

The AT& T network switch statistics project. In this
project, statistics are collected at 15-minute intervals fro
ATM switches in a network. A record corresponds to a re-

Table 2: Summary of results. Size and times are ratios of
R%i p values to the correspondiggi p values.

Compression  Uncompression

placeable circuit component in one of the switches and CONPata Size time time
sists of a 16-byte hardware identifier, a 4-byte statistic ider FNtwk. traffic | 45 62 54
tifier, a 4-byte time stamp, and a 4-byte count value. EaChNtwk. switch | 05 80 80
15-minute interval produces a file with about 80,000 recordsU.S_ census | 56 50 33

for a 6-switch network. The items are sorted by the 16-byte

hardware identifier; sorted identifiers usually differ by one

byte from one item to the next. The file format is determined

by the switch manufacturer and has an irregular structure:

variable length headers and interspersed sequencing recditils generated a 342 MB file with 932-byte recori p

make the records variable length in general. The average @itempressed the file to 31.5 MB.

size is about 2.2 MB andzi ps to about 192 kB, making Pi n determined that 186 columns were high frequency.

the daily space requirement 18.4 MB. In the optimum partition generated, the largest class was
To usepzi p, each record was padded to a fixed 326 bytes wide, indicating high combinational dependence.

bytes. This expanded the average file size to about P&i p compressed the file to 17.5 MB, a 44.4% improvement

MB. Training data produced 10 high frequency columnsyergzi p. The compression time improvement was 50%,

for which an optimum (reordered) partition was generateand uncompression time improvement was 67%.

The resulting averagpzi pped file size was 10.3 kB, for

a daily space requirement of 1 MB, a 95% improvemeBt2 Discussion. Table 2 summarizes the results in this

over straighigzi p. Compression and uncompression timsgection.

improvement was only about 20%. Based on its performance on the network traffic data,
U.S. censusdata. We took a portion of the United Stategpzi p has been put into production use in the AT&T network

1990 Census of Population and Housing Summary Tape Hitaffic warehouse, using a compression plan generated by

3A(a.k.a.STF3A[2]. The data format is fixed length ASCII pi n on about 100,000 records. Although not in a controlled

records. We used field group 301, level 090, for all statesetting, this will provide an “in-production” experiment that
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Figure 4: Results of greedy differential compression, as a function of amount of ordered training material. (a) Shows the
relative performance of greedy differential compression over optimum partitioning in terms of compressed size, compression
time, uncompression time, and training time. (b) Shows the relative performance of greedy differential compression over
benchmark C in terms of compressed size, compression time, and uncompression time.

can help assess assumption (4), because going forwandie the compressed size of an interval of columns, such as
pzi p will be compressing an arbitrary amount of data basgdoviding a suitable lower bound on their joint entropy—a

on the fixed-size training set. fundamental problem of independent interest—would there-
fore be valuable in speeding the overall algorithm.
6 Concluding Remarks Two aspects of our work that are now only heuristic are

We have presented massive tables as a new focus in @stfollows. Permuting the columns before partitioning them
compression research. We have given a systematic apprd@ff@€ts greater compression. The problem of optimally per-
for solving the problem, based on the experimental valputing the columns can be abstracted in combinatorial op-
dation of data dependency assumptions. The result idirgization terms as versions of the Hamiltonian path prob-
new compression paradigm: training for lossless compré%m or clustering. We suspect that these formulations will
sion. By exploiting data dependencies, our scheme outp@fove to be hard, but proving their hardness is non-trivial.
forms standard methods based on information theoretic Ay reduction must capture required costs by constructing
sults, e.g., Lempel-Ziv [20, 21]. We tested two such depeq;plumns whose compressed size using a particular program
dencies. For our application, optimum partitioning is bettel®Uch asgzi p) will match required costs in the reduction.
and it is in production use within AT&T, in thpzi p sys- From a practical point of view, an efficient heuristic with
tem. We anticipate instances for which the differential agpod performance is desirable. Our second heuristic involves
proach will outperform the combinational approach and al$ge choice of low frequency columns that are removed prior

instances that favor a hybrid approach. We leave as an offg#faining. In our data sets, simple rules of thumb sufficed
problem to find other data dependencies. to identify such columns, but a formal approach would be

Our results demonstrate the utility of training for lossdesirable.
less compression. Given multiple tables from a common In the differential approach, we focused on the case
source, training becomes an off-line operation, suitable féy Which derived columns can be assigned only to source
computationally expensive optimizations. The bottleneck §flumns. In general, however, we can build a tree of
our dynamic programming algorithm for optimum partitionder_iyations, .which implies an interesting variation of the
ing is the computation o (T'[j,i]) forall 1 < j < i < n, facmty. Iocatlon. problem that can be solved exactly by a
which requires running the base compressgi (p, in our éduction to minimum spanning trees. We also leave as
case) or®(n?) intervals of columns. A quick way to esti-OP€n problems to explore the effect on compression plans
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Figure 5: Results of usingi n/ pzi p with all heuristics and [11]
optimum partition compression, as a function of amount of
ordered training material. Shown is the relative performance
of pzi p over benchmark R in terms of compressed siz82]
compression time, and uncompression time.

of using other approximations to the metric facility locatiom 3]
problem [3, 11], and to explore hybrid approaches in which
we apply optimum partitioning and differential compression
to disjoint intervals ofl".

Our experimental methodology—assuming dependen-

cies, deriving algorithms based on them, and testing to sdb‘—"]
port or falsify them—may be applied to other compression-

based scenarios. It remains to conduct the second test of, i‘él 3. D. Markel and A. H. Gray, JLinear Prediction of Speech

sumption (4)—that the amount of training material needed[is

independent of the size of the test set—by fixing a comprgsgg)
sion plan for an arbitrarily large amount of test material. The
production use opzi p is providing an uncontrolled version[17]
of this experiment that supports the assumption. Finally, as-
sessing the impact of data contiguity on training remains to

be studied rigorously.
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