
Engineering World-Wide Multi-Agent Systems

with Hypermedia

Andrei Ciortea1, Olivier Boissier1, and Alessandro Ricci2

1 Univ. Lyon, MINES Saint-Étienne, CNRS Lab Hubert Curien UMR 5516
Saint-Étienne, France F-42023

{andrei.ciortea,olivier.boissier}@emse.fr
2 University of Bologna, Cesena, Italy

a.ricci@unibo.it

Abstract. A well studied problem in the engineering of open MASs
is to enable uniform interaction among heterogeneous agents. However,
AOSE as a field has grown to recognize that a MAS consists of more
than only agents and thus should be designed on multiple dimensions
(including the environment, organization etc.). The problem of enabling
interaction among heterogeneous entities across dimensions is either not
considered, or it is addressed in an ad hoc and non-uniform manner.
In this chapter, we introduce a novel approach to use hypermedia as
a general mechanism to support uniform interaction in MASs. The core
idea is that agents use hypermedia to discover at runtime (i) other entities
in a MAS (e.g., other agents, tools, organizations) and (ii) the means
to interact with those entities (e.g., interaction protocols, APIs). This
reduces coupling and enhances the scalability and evolvability of the
MAS. We present a demonstrator that supports these claims. We believe
that a hypermedia-based mechanism for uniform interaction in MASs
could provide a foundation for engineering world-wide MASs.

Keywords: Multi-agent systems; hypermedia systems; interaction

1 Introduction

The vision of world-wide multi-agent systems (MASs) has been around for some
time. In 2001, the Agentcities initiative was aiming to create a world-wide open
network of heterogeneous agents to which any organization or individual re-
searcher could connect their agents [38]. The same year, the seminal paper on
the Semantic Web was published [1], which promoted the vision of a Web for
both people and autonomous agents. Since then, we have witnessed significant
progress both in MASs and Semantic Web research, but we have yet to witness
the deployment of world-wide and long-lived MASs.

The Web, on the other hand, has had remarkable success as a world-wide
and long-lived system of people. One way to look at the Web is that it provides
people with a distributed hypermedia environment (composed of interrelated Web
pages) that they can navigate and use in pursuit of their goals. This hypermedia

environment was specifically designed to be open, Internet-scale, and to allow
people to use it in new and unanticipated ways [2,14]. All these properties were
designed into the Web architecture, and its central distinctive feature is the use
of hypermedia as an engine for uniform interaction between components [14].
We believe that we can apply the same design rationale as an effective means to
engineer open, scalable, and evolvable MASs – which implies significantly more
than just implementing MASs using Web services.

Our hypothesis is that we can use hypermedia to create a general mecha-
nism for uniform interaction in MASs. Given such a mechanism, heterogeneous
agents would then be able to interact in a uniform manner with other agents
as well as other heterogeneous entities (tools, knowledge repositories, organi-
zations, datasets etc.) that could help them achieve their goals. Engineers in
different parts of the world could then develop and deploy agents and other en-
tities independently from one another, and old and new implementations could
co-exist in one system.

A mechanism for uniform interaction in MASs such as the one described
above is currently lacking. Perhaps the closest solution can be found in the
FIPA standards3, but it only addresses interaction among agents. Interaction
between agents and other entities in a MAS is not addressed.

In this chapter, we introduce an approach to use hypermedia for uniform
interaction in MASs. In a hypermedia MAS, agents are situated in a distributed
hypermedia environment (composed of interrelated resources) that they can nav-
igate and use in pursuit of their goals. Agents use the hypermedia environment
to discover and interact with heterogeneous entities in the MAS. To support
our approach, we implemented a demonstrator in which BDI agents are able
to discover and interact with artifacts in a hypermedia environment distributed
across multiple nodes. Hypermedia allows the environment to be seamlessly dis-
tributed from the agents’ viewpoint, and allows agents to discover and exploit
new functionalities added to artifacts at runtime. This demonstrator confirms
key elements of our hypothesis and suggests it could provide a foundation for
engineering world-wide MASs.

We discuss background and related work in Section 2. In Section 3, we pro-
pose a set of design principles and a model for hypermedia MASs. We report on
our implementation and experience in Section 4, and then conclude in Section 5.

2 Background and Related Work

In the following, we first discuss the role of hypermedia in the Web architecture,
and then current approaches to engineer Web-based and world-wide MASs.

2.1 Hypermedia and HATEOAS

A central feature of REST, the architectural style of the Web, is that it uses
hypermedia to drive interaction between components, a principle known as hy-

3 http://www.fipa.org/repository/standardspecs.html, accessed: 05.11.2018.

http://www.fipa.org/repository/standardspecs.html

permedia as the engine of application state (HATEOAS) – see [14] for details. To
illustrate this principle, an HTML page typically provides the user with a num-
ber of affordances, such as to navigate to a different page by clicking a hyperlink
or to submit an order by filling out and submitting an HTML form. Performing
any such action transitions the application to a new state, which provides the
user with a new set of affordances. In each state, the user’s browser retrieves
an HTML representation of the current state from a server, but also a selec-
tion of next possible states and the information required to construct the HTTP
requests to transition to those states. Retrieving all this information through
hypermedia allows the application to evolve without impacting the browser, and
allows the browser to transition seamlessly across servers. The use of hyperme-
dia and HATEOAS is central to reducing coupling among Web components, and
allowed the Web to evolve into an open, world-wide, and long-lived system.

In contrast to the above example, when using a non-hypermedia Web service
(e.g., an implementation of CRUD operations over HTTP), developers have to
hard-code into clients all the knowledge required to interact with the service.
This approach is simple and intuitive for developers, but the trade-off is that
clients are then tightly coupled to the services they use (hence the need for API
versioning). In recent years, hypermedia has started to receive more attention in
Web service design (e.g., [27]), in particular in the context of the Web of Things
(WoT) [25] – where it is important for devices to be able to interact with one
another in a loosely coupled manner rather than having developers in the loop to
constantly update integrations as devices (and their exposed Web APIs) evolve.

2.2 Web-based Multi-Agent Systems

There has been extensive research on using the Web as an infrastructure for
distributed MASs. Early work was influenced by service-oriented architectures
(SOA) based on the WS-* standards (SOAP, WSDL, UDDI etc.) [24,35,23,19].
However, Web service design has evolved drastically over the past decade. It
is now well recognized that WS-* services use the Web merely as a transport
layer [30]. Based on similar ideas, FIPA proposed a specification for using HTTP
as a transport protocol for messages exchanged among agents [17], which was im-
plemented by several FIPA-compliant platforms (e.g., [21,10,12]). The problem
with systems that use the Web merely for transport is that they are misaligned
with the Web architecture (see Section 6.5.3 in [15] for a detailed discussion).
Consequently, such systems make limited use of the existing Web infrastructure
and its future extensions, and – more importantly for our purposes – do not in-
herit the architectural properties that turned the Web into an open, world-wide,
and long-lived system (e.g., scalability, loose coupling).

More recent approaches for engineering Web-based MASs have turned to
resource-oriented architectures (ROA) based on REST-like, non-hypermedia ser-
vices (e.g., [29,20]). In contrast to the WS-* services, which are typically designed
in terms of operations, these services are designed in terms of resources. Clients
then interact with the services using a small set of generic operations with well
defined semantics, such as the ones defined by the HTTP protocol [13] (e.g.,

GET, PUT, POST, DELETE). These services use the Web as an application
layer and are better aligned with the Web architecture, but they generally do
not use hypermedia or HATEOAS, which leads to tight coupling (see the discus-
sion in the previous section). To the best of our knowledge, the engineering of
Web-based MASs using hypermedia services is not yet thoroughly investigated.

2.3 World-Wide Multi-Agent Systems

There have been considerable efforts to support the engineering of open, world-
wide, and long-lived MASs – among the most prominent, the FIPA standards,
Agentcities [38], DARPA CoABS GRID [26], and the Semantic Web [1]. These
efforts have generally focused on enabling uniform interaction among heteroge-
neous agents (e.g., see [16,18]), but a general mechanism for uniform interaction
with any entity in an open MAS is lacking. From an architectural perspective,
most previous efforts to engineer large-scale MASs generally relied on RPC-
like architectures.4 When it comes to engineering world-wide systems, RPC-like
architectures have shortcomings as compared to REST-style, resource-oriented
architectures. For instance, they cannot (or make it very difficult to) use in-
termediary layers that can process requests almost as well as their intended
recipients (see Section 6.5.2 in [15]). Intermediaries have proven very useful in
world-wide systems such as the Web. Furthermore, in a REST-style architecture,
hypermedia enables the serendipitous use of resources, a property promoted in
recent years by the linked data initiative [3]. Support for new and unanticipated
applications is an important property for sustaining long-lived systems.

3 Hypermedia Multi-Agent Systems

We consider that a sensible path towards the engineering of open, world-wide,
and long-lived MASs is to use hypermedia as a uniform interaction engine in
MASs. In a hypermedia MAS, agents are situated in a distributed hypermedia
environment that they can navigate and use in pursuit of their goals. The envi-
ronment is a first-class abstraction in the system and on the surface it provides
agents with all typical functionalities of endogenous environments (see [37,32]),
such as interaction with services, tools, and the external world, or mediating
interaction and coordination with other agents. However, in contrast to typical
endogenous environments, a hypermedia environment uses hypermedia to drive
interaction in the MAS: agents navigate the hypermedia environment to dis-
cover other entities in the MAS, as well as the means to interact with those
entities. This reduces coupling and enhances the scalability and evolvability of
the systems. We introduce a set of design principles for hypermedia MASs in
Section 3.1, and then present a concrete model in Section 3.2.

4 This includes approaches that use Web services to tunnel RPC-like method invoca-
tions through HTTP (e.g., using SOAP).

3.1 Design Principles for Hypermedia Multi-Agent Systems

As discussed in Section 2.2, the mere use of any Web service design is not suf-
ficient to create a hypermedia MAS. We introduce three key design principles
meant to ensure the proper use of hypermedia as a general mechanism for uni-
form interaction in MASs. These principles are based on the design rationale
behind the Web architecture [14]. As it is generally the case with software design
principles, the proposed principles impose constraints on the design of MASs.
Engineers can choose to ignore one or more of these principles, but then the
MASs would most likely make limited use of hypermedia and would not achieve
uniform interaction.

Principle 1 (Uniform resource space) All entities in a hypermedia MAS
and relations among them should be represented in the hypermedia environment
in a uniform, resource-oriented manner.

In a hypermedia system, and in particular in REST-style systems, a resource
is the key abstraction of information [14]. The core idea behind this first principle
is to project the entire observable state of the MAS into the distributed hyper-
media environment in a uniform, resource-oriented manner (e.g., as an RDF
graph [9]) such that agents can interpret, reason upon, and interact with the
MAS by consuming and producing hypermedia. For instance, one agent could
send a message to another by writing an RDF representation of the message in
the hypermedia (e.g., using an OWL ontology for describing messages).5 To re-
ceive messages, an agent could observe a resource that represents its mailbox in
the hypermedia. To turn on a light bulb, an agent could manipulate the state of a
resource that represents the light bulb in the hypermedia. Interactions between
agents and resources in their hypermedia environment should conform to the
REST constraints. In what follows, we discuss only three key aspects of apply-
ing REST to hypermedia MASs (and refer readers to [14] for more details about
REST): uniform identification of entities, uniform representation of entities, and
the use of relations among entities to enable discoverability.

Uniform identification (e.g., via IRIs [11]) allows entities in a hypermedia
MAS to be referenced globally. Agents can then use hypermedia to interact with
the entities regardless of their location. For instance, if an agent or a light bulb
in its environment are identified via IRIs, then they can be referenced with-
out the need for additional contextual information – such as how to interpret
platform-specific identifiers, or low-level network information (e.g., IP addresses
of hosts). In non-hypermedia MASs, this is not generally the case. FIPA defined
its own standard uniform identifier for agents (see Section 3 in [18]), but uniform
identification of other entities in a MAS is not addressed. Furthermore, the use
of FIPA-specific identifiers requires custom infrastructure for managing entity
identifiers and descriptions – as opposed to using IRIs and the existing Web in-
frastructure. Platforms that support distributed endogenous environments, such

5 Note that FIPA already proposed an RDF-based content language for FIPA mes-
sages: http://www.fipa.org/specs/fipa00011/XC00011B.html, accessed: 05.11.2018.

as CArtAgO [32], either require agents to manage the low-level network infor-
mation when joining remote nodes, or use additional infrastructure to manage
this information (e.g., [28]).

Uniform representation of the externally observable state of entities in hy-
permedia MASs6 allows to hide any implementation-specific details behind stan-
dardized knowledge models. For instance, the state of a light bulb could be repre-
sented in the hypermedia environment using RDF and some standard ontology.
An agent could then interact with the light bulb by interpreting and manipu-
lating its semantic representation either directly or via some intermediary tool
(e.g., to translate it in a different knowledge representation language, or to use
the light bulb via an artifact). A similar approach was taken by FIPA to define
a standard format for ACL messages exchanged between agents [16], and to de-
scribe agents and the services they provide [18]. However, the uniform modeling
of any other entities in a MAS is not addressed.7

In a hypermedia MAS, relations among entities (e.g., agents, tools, docu-
ments, organizations, datasets) can be represented explicitly in the hypermedia.
The relations can then be crawled to discover entities of interest in the MAS.
Agents could do the crawling themselves, or they could use search engines (i.e.,
external services) that do the crawling for them. This approach to discoverabil-
ity has proven very practical for open, large-scale and decentralized systems,
such as the Web [5]. In non-hypermedia MASs, discoverability is typically based
on the registration of agents (and their services) to centralized directories, such
as the Directory Facilitator (DF) standardized by FIPA [18]. Multiple DFs can
then be federated to support decentralized searches, where requests are propa-
gated between DFs up to a maximum depth level. However, this approach to
discoverability is biased towards the locality of agents, which may prove inef-
ficient in a Web-scale MASs. In contrast, crawling-based DFs could avoid the
locality bias by exploiting relations in the distributed hypermedia environment.
Furthermore, having typed relations among federated DFs could help propagate
search requests in an informed manner.

The uniform resource space principle provides the underpinning for scalable
and evolvable hypermedia MASs: it enables the seamless distribution of the hy-
permedia environment, and it allows agents to interact with other entities in the
MAS in a uniform manner through hypermedia. The implied trade-off is interop-
erability vs. innovation: translating an implementation-specific model to a uni-
form representation promotes interoperability, but may loose implementation-
specific features.

Principle 2 (Single entry point) Given a single entry point into the environ-
ment of a hypermedia MAS, an agent should be able to discover the knowledge
required to participate in the system by navigating the hypermedia.

6 We are not interested here in the entities’ internal state.
7 Note that while any entity in a MAS could be encapsulated behind an agent (and
then described using existing FIPA standards), this approach would simply obscure
large parts of the MAS. The literature on engineering MASs already provides argu-
ments for considering MASs as composed of more than just agents (e.g., see [37,4]).

The core idea behind this second principle is to maximize the usage of hyper-
media in order to minimize coupling in the MAS. As mentioned for Principle 1,
hypermedia can help reduce coupling by enabling system-wide discoverability –
agents can crawl the hypermedia to discover what other agents, tools, or entities
in the system can help them achieve their goals (hard-coding any such relations
into the agents would increase coupling). Equally important, however, agents can
also discover in the hypermedia how to interact with entities: the affordances of
resources in their environment (e.g., operations exposed by a light bulb and how
to perform them), specifications of agent interaction protocols in a given lan-
guage (e.g., BSPL [34]), specifications of organizations in a given language (e.g.,
MOISE [22]), polices created by policy engineers (e.g., the terms of service of a
hypermedia search engine), or norms created by other agents (e.g., norms that
emerged in a given society) etc. The single entry point principle implies that any
knowledge required to participate in the system that can be represented in the
hypermedia should be represented in the hypermedia.

In other words, given an entry point into the environment of a hypermedia
MAS, agents should require minimal a priori knowledge to interact with entities
in the system besides the general knowledge required to consume and produce
hypermedia. Any a priori knowledge and assumptions required to participate in
the system should be standardized at the system-level (i.e., shared by everyone in
the system). All other knowledge required to participate in the system should be
discovered in the hypermedia. Furthermore, if an agent has to interact with one
or more entities to achieve its goals and those entities are present in the system,
the hypermedia environment should allow their eventual discovery via crawling.
Violating any of these two constraints (i.e., hard-coding ad hoc knowledge into
agents instead of placing it in the hypermedia, not enabling navigability) would
violate the single entry point principle.

To illustrate the above point with an example, say an agent in a hypermedia
MAS has to turn on a light bulb. A priori knowledge required by the agent to
achieve its goal could include the HTTP protocol, RDF standards, a general
model of its environment, and an OWL ontology describing light bulbs and the
operations they expose (e.g., turn on), which could all be standardized at the
system-level. Knowledge that should be discovered in the hypermedia would
include the uniform identifier of a light bulb and the specification of an HTTP
request that turns on the light bulb. Hard-coding into the agent the light bulb’s
identifier or, for instance, the knowledge required to use the Philips Hue HTTP
API8 (e.g., the Philips Hue data model) would couple the agent to the light
bulb, and similar knowledge would have to be hard-coded in order to use light
bulbs from other manufacturers.

The single entry point principle is central to designing evolvable and long-
lived hypermedia MASs. The main trade-off is that relying on knowledge discov-
ered in the hypermedia can increase the complexity of programming the MAS,

8 https://developers.meethue.com/documentation/getting-started, ac-
cessed: 05.11.2018.

https://developers.meethue.com/documentation/getting-started

but this can be mitigated through the use of appropriate middleware (as we
show in Section 4).

Principle 3 (Observability) In a hypermedia MAS, any resource in the hy-
permedia environment that could be of interest to agents should be observable.

The first two principles ensure the dynamic discovery of a hypermedia MAS
via crawling. However, constantly crawling large hypermedia MASs to keep track
of their evolution would be inefficient. Instead, this third principle promotes the
use of mechanisms that allow agents to selectively observe entities of interest in
the MAS via the entities’ representation in the hypermedia environment, which
could include the entities’ states, affordances, relations to other entities etc. This
principle improves the scalability of hypermedia MASs: agents can handle larger
environments, and at the same time the load on the hypermedia infrastructure
is decreased (and thus it can serve more agents). The trade-off is the extra com-
plexity added by observability mechanisms, but this can be mitigated through
the use of appropriate middleware and intermediary components (see Section 4).

3.2 A Model for Hypermedia Multi-Agent Systems

We applied the proposed design principles to define a model for hypermedia
MASs. This model is intended to provide an extensible conceptual foundation
and thus only defines the core abstractions required to design and program hy-
permedia MASs.9 The model (see Figure 1a) is based on the Agents and Artifacts
(A&A) meta-model [32] and our previous research on socio-technical networks
(e.g., see [6,8]). We present the model in what follows, and then introduce a Web
ontology that formalizes this model and discuss its usage.

Cognitive agents in artifact-based hypermedia environments Following
the A&A meta-model, we design and program hypermedia MASs in terms of
agents and artifacts. In A&A, artifacts are first-class programming abstractions
(and not just design abstractions): they are as much a programmable part of the
MAS as are agents. We use artifacts to program the application environment (cf.
Figure 1a) such that it provides agents with a uniform, general interface defined
in terms of observable properties, observable events, and operations (see [32] for
more details on artifacts). Artifacts thus help reduce the coupling between agents
and their environment.

As depicted in Figure 1a, all entities (e.g., agents, their services, artifacts,
workspaces), the relations among them, and the affordances of artifacts are pro-
jected into a uniform RDF abstraction layer – cf. Principle 1 (uniform resource
space). This layer effectively decouples agents from the application environment
and enables system-wide discoverability via crawling. From an agent’s viewpoint,
the set of all affordances of its environment is determined by the artifacts dis-
covered in the hypermedia, where the affordances of a given artifact are also

9 We leave a more complete treatment of MASs as future work (see Section 5).

EXTERNAL
ENVIRONMENT

op2
op1

op2
op1

op2
op1

op2
op1

op2
op1

op2
op1

op2
op1

APPLICATION ENVIRONMENT

AGENTS

Hypermedia Abstraction Layer

Legend

Agent

op2
op1 Artifact

Workspace

Environment

Host

RDF Graph

(a) Layers of abstraction in hypermedia MASs.

Workspace Agent

Environment Artifact

Observable

Event

Observable

Property

Operation Affordance

joined

contains

subClassOf

subClassOf

contains

subClassOf

hasAffordance

uses

UserAccount

holds

connectedTo

(b) EVE ontology.

Fig. 1: The core concepts used to model hypermedia MASs.

discovered in the hypermedia – see Principle 2 (single entry point). To avoid
dealing with low-level manipulation of hypermedia, agents could use hyperme-
dia controllers (similar to Web browsers) in order to interact seamlessly with
artifacts through the hypermedia layer (see implementation in Section 4.2).

The environment and workspace abstractions (cf. Figure 1a) are containers
that allow agents to prune their crawling in the hypermedia environment, as well
as focus their observations on those parts of the environment that are of inter-
est – cf. Principle 3 (observability). When observing an artifact, the artifact’s
observable properties and events constitute percepts. In BDI architectures, such
percepts can be modeled inside agents as beliefs about the state of their environ-
ment. Agents can use artifacts to observe other agents in the system regardless
of their location.

Hypermedia networks of agents and artifacts We formalized the proposed
model in an OWL 2 ontology, which we call the Agent Environment (EVE) ontol-
ogy (see Figure 1b). Engineers can use the ontology to create uniform representa-
tions of hypermedia MASs based on the proposed core model. The ontology can
then be extended with modules for other dimensions of MASs, or with domain-
and application-specific modules. A benefit of choosing Web standards is that
engineers of hypermedia MASs can then benefit from all the results and resources
provided by the Semantic Web community (ontologies, tooling etc.).

To enforce Principle 2 (single entry point), it is important to consider the
navigability of hypermedia MASs. Representing explicitly in the environment all
eve:joined and eve:contains properties guarantees that all agents and arti-
facts in the system are discoverable. Agents are represented in the system via
user accounts, which can be used (among others) to interact with other agents

and observe their relations. Representing explicitly the agents’ relations (e.g.,
via eve:connectedTo) can help enhance navigability. The affordances of arti-
facts should also be described explicitly. The EVE ontology defines concepts and
properties for this purpose (cf. Figure 1b). However, it is outside the scope of this
ontology to describe implementations of affordances. Other existing ontologies
can be used in conjunction with the EVE ontology for this purpose (e.g., [25]).

4 Implementation and Experience

To demonstrate our approach, we developed a prototype platform for hypermedia
MASs and used it to deploy a distributed hypermedia environment. We present
the demonstrator scenario in Section 4.1, and an overview of the deployed system
in Section 4.2. We discuss what has been achieved through this demonstrator and
what are the limitations in Section 4.3. The software used in our demonstrator
is available on GitHub.10,11

4.1 Demonstrator Scenario

We implemented a demonstrator in which a BDI agent has to notify a human
whenever an event occurs. The agent is situated in a hypermedia environment
that contains one workspace with two artifacts: an artifact that generates two
types of observable events (i.e., positive and negative), and a light bulb ar-
tifact that can be used to send visual notifications to humans. The hypermedia
environment is distributed. The agent is given an entry IRI in the hypermedia
environment and has to discover the rest of the system at runtime.

In the beginning of our demonstration, the environment contains only the
event generator artifact (henceforth the event-gen artifact). The agent discovers
the event-gen artifact and starts observing the generated events, but at this
point the agent has no means to notify humans. The light-bulb artifact is
added to the environment. The agent discovers the light-bulb artifact and its
affordances, and can now send visual notifications to humans by flicking the light
bulb. At this point, however, the visual notifications do not differentiate between
positive or negative events – the light bulb is simply turned on and off.

While the system is running, a developer extends the light-bulb artifact
with a new operation for setting the color of the light. The agent discovers the
newly added operation and can now send visual notifications with different color
codes (i.e., green light for positive events, blue light for negative events).

4.2 System Overview and Deployment

We deployed the hypermedia environment in our demonstrator scenario using a
prototype platform for hypermedia MASs, named Yggdrasil12. The environment

10 https://github.com/andreiciortea/emas2018-yggdrasil, accessed: 05.11.2018.
11 https://github.com/andreiciortea/emas2018-jacamo, accessed: 05.11.2018.
12 Yggdrasil is a mythical tree that interconnects the nine worlds in Norse mythology.

https://github.com/andreiciortea/emas2018-yggdrasil
https://github.com/andreiciortea/emas2018-jacamo

was distributed across two Yggdrasil nodes: one node hosted the event-gen

artifact and was deployed on a virtual machine in the cloud, and the other node
hosted the light-bulb artifact and was deployed on a Raspberry Pi in our
local network. We used a Philips Hue light bulb that is accessed via the HTTP
API exposed by a Philips Hue bridge in the local network. The BDI agent in
our scenario was implemented in a separate JaCaMo [4] application that was
deployed on a MacBook Air machine in the local network.

In what follows, we first present the deployed hypermedia environment, and
then discuss our implementation considerations for Yggdrasil and the JaCaMo
application.

Hypermedia environment We constructed the hypermedia environment in
our scenario using the EVE ontology. Dereferencing the environment’s IRI re-
trieves the RDF representation shown in Listing 1.1. This representation points
to one contained workspace (line 4), which allows agents to continue their crawl-
ing. Dereferencing the workspace IRI returns a similar representation (presented
later in Listing 1.3) that points to the artifacts available in that workspace.

Listing 1.1: A Turtle [31] representation of the deployed environment created
with the EVE ontology.

1 @pref ix eve : <http :// w3id . org / eve#> .
2

3 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro / environments /env1> a eve : Environment ;
4 eve : conta in s <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /workspaces /wksp1> .

Dereferencing the IRI of the light-bulb artifact retrieves the representation
shown in Listing 1.2. In addition to the EVE ontology, this representation uses
the W3C Web of Things (WoT) Thing Description (TD) ontology (currently be-
ing standardized [25]) and is based on a WoT TD used at the latest plugfest of
the W3C WoT Working Group. The WoT TD ontology was designed to describe
interactions with things in the WoT. Even though the thing and artifact abstrac-
tions have been developed independently in two different communities (and for
different purposes), the abstractions define a similar interface composed of ob-
servable properties, observable events, and actions (or operations, respectively).
This makes the WoT TD ontology a good candidate standard for describing in-
terfaces of artifacts in hypermedia environments. Here, we use the WoT TD to
describe the HTTP API of the Philips Hue light bulb in our deployment.

Listing 1.2 shows the description of an artifact operation for setting the color
of a Philips Hue light bulb. In our demonstrator, this operation is added in the
hypermedia by a developer while the system is running. We have created similar
operation descriptions for turning the light bulb on and off.

Listing 1.2: This listing shows an excerpt from the RDF representation used for
the light-bulb artifact in our deployment. The operation shown here allows an
agent to set the color of a given Philips Hue light bulb. The description includes
a full specification of the HTTP request that implements the operation.

1 @pref ix td : <http ://www.w3 . org /ns/ td#> .

2 @pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
3 @pref ix i o t : <http :// iotschema . org/> .
4 @pref ix http : <http :// iotschema . org / p ro to co l /http> .
5

6 <http : / /85 . 2 04 . 1 0 . 2 33 : 8 080/ a r t i f a c t s /hue1>
7 a eve : Ar t i f a c t , td : Thing , i o t : Light , i o t : BinarySwitch ;
8 eve : hasName ”Lamp”ˆˆxsd : s t r i n g ;
9 td : base ”http : //192 . 168 . 0 . 101/”ˆˆ xsd : anyURI ;

10 td : i n t e r a c t i o n [
11 a eve : Operation , td : Action , i o t : SetColor ;
12 td : name ”Set Color ”ˆˆ xsd : s t r i n g ;
13 td : form [
14 http :methodName ”PUT”ˆˆxsd : s t r i n g ;
15 td : h r e f ”/ api /YqqaHVH8QF−...−UQc/ l i g h t s /3/ s t a t e ”ˆˆ xsd : anyURI ;
16 td : mediaType ” app l i c a t i on / j son ”ˆˆ xsd : s t r i n g ;
17 td : r e l ” invokeAct ion ”ˆˆ xsd : s t r i n g
18] ;
19 td : inputSchema [
20 td : schemaType td : Object ;
21 td : f i e l d [
22 td : name ”on”ˆˆ xsd : s t r i n g ;
23 td : schema [td : schemaType td : Boolean ; td : const t rue]
24] ;
25 td : f i e l d [
26 td : name ”xy”ˆˆ xsd : s t r i n g ;
27 td : schema [
28 td : schemaType td : Array ;
29 td : i tems [a i o t : CIExData ; td : schemaType td : Number] ,
30 [a i o t : CIEyData ; td : schemaType td : Number]
31]]]] ,
32 (. . .)

Yggdrasil The hypermedia environment deployed in our demonstrator was
hosted on Yggdrasil. While still under early development, Yggdrasil provides two
core functionalities required by our demonstrator: (i) it serves as a repository for
hypermedia environments that conform to the model in Section 3.2, and (ii) it
acts as a hub that (partially) implements the W3C WebSub recommendation13;
agents (or any software clients) can use this functionality to observe resources
in the environment. The Yggdrasil version used in our demonstrator is available
on GitHub.14

Yggdrasil implements an event-driven non-blocking architecture usingVert.x 15,
a framework that is both powerful enough to support high-throughput Web
servers16, and lightweight enough to perform well on small devices, such as the
Raspberry Pi17. The platform exposes a REST HTTP API for creating, updat-
ing, and deleting RDF representations of environment, workspace, and artifact
abstractions. For instance, Listing 1.3 shows an HTTP request that retrieves a
Turtle [31] representation of the workspace used in our deployment. Lines 12-14
point to the artifacts contained in this workspace (and make them discoverable).

13 https://www.w3.org/TR/2018/REC-websub-20180123/, accessed: 05.11.2018.
14 https://github.com/andreiciortea/emas2018-yggdrasil, accessed: 05.11.2018.
15 http://www.vertx.io/, accessed: 05.11.2018.
16 According to independent benchmarks for Web frameworks: https://www.

techempower.com/benchmarks/, accessed: 05.11.2018.
17 http://vertx.io/blog/vert-x3-web-easy-as-pi/, accessed: 05.11.2018.

https://www.w3.org/TR/2018/REC-websub-20180123/
https://github.com/andreiciortea/emas2018-yggdrasil
http://www.vertx.io/
https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/
http://vertx.io/blog/vert-x3-web-easy-as-pi/

Listing 1.3: A sample HTTP request (and the corresponding response) for re-
trieving the representation of a workspace from Yggdrasil.

1 GET /workspaces /wksp1 HTTP/1.1
2 Host : y g gd r a s i l . a nd r e i c i o r t e a . ro
3

4 HTTP/1.1 200 OK
5 Content−Type : t ext / t u r t l e
6 Link : <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /hub>; r e l=”hub”
7 Link : <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /workspaces /wksp1>; r e l=” s e l f ”
8

9 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro /workspaces /wksp1>
10 a <http :// w3id . org / eve#Workspace> ;
11 <http :// w3id . org / eve#hasName> ”wksp1” ;
12 <http :// w3id . org / eve#conta ins>
13 <http : / /85 . 2 04 . 1 0 . 2 33 : 8 080/ a r t i f a c t s /hue1> ,
14 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro / a r t i f a c t s / event−gen> .

The response shown in Listing 1.3 contains two Link headers that conform
to the W3C WebSub recommendation. Agents can thus discover and use these
headers to subscribe for notifications whenever the workspace evolves (e.g., an
artifact is added or removed, the workspace is deleted). All resources hosted on
Yggdrasil support WebSub by default.

JaCaMo application To facilitate access to the hypermedia environment, our
JaCaMo application18 provides agents with “middleware” they can use. Given
the IRI of a hypermedia environment (e.g., see Listing 1.1), the middleware
automatically reflects into the local CArtAgO environment all the workspaces
discovered in the hypermedia and the artifacts they contain. Agents are notified
whenever a workspace or an artifact has been reflected. The middleware also
provides agents with a CArtAgO artifact that serves as a hypermedia controller
(i.e., a facade) for hypermedia artifacts with WoT TDs (e.g., see Listing 1.2).
A controller is instantiated for each such artifact discovered in the hypermedia.
Using these controllers, agents can then interact with hypermedia artifacts as
they would typically interact with local CArtAgO artifacts. The main difference
is that each controller instance exposes metadata via observable properties, such
as what are the operations supported by the hypermedia artifact. To perform an
operation, such as the one of changing the light color in Listing 1.2, agents use
a generic act operation provided by the controller, as shown in Listing 1.4. This
generic operation takes as arguments the IRI of the actual intended operation
and its parameters, which can also carry semantics via IRIs. The IRIs could
denote terms defined by an ontology.

Listing 1.4: The Jason plan used to send visual notifications via colored light.

1 +! t h i n g c o l o r e d l i g h t n o t i f i c a t i o n (ArtifactName , CIEx , CIEy) : t rue <−

2 act (” http :// iotschema . org / SetColor ” , [
3 [” http :// iotschema . org /CIExData” , CIEx] ,
4 [” http :// iotschema . org /CIEyData” , CIEy]
5]) [a r t i f a c t name (ArtifactName)] ;
6 . wait (2 000) ;
7 act (” http :// iotschema . org / SwitchOff ” , []) [a r t i f a c t name (ArtifactName)] .

18 https://github.com/andreiciortea/emas2018-jacamo, accessed: 05.11.2018.

https://github.com/andreiciortea/emas2018-jacamo

In addition to hypermedia controllers, the middleware can also instantiate
regular CArtAgO artifacts based on semantic descriptions discovered in the hy-
permedia, such as the one in Listing 1.5 for the event-gen artifact in our demon-
strator. This allows offloading the execution of artifacts on the client-side – if
the artifact code can be retrieved at runtime (e.g., via JavaScript, OSGi).

Listing 1.5: RDF description of the event-gen artifact, which includes the canon-
ical name of the Java class of the corresponding CArtAgO artifact. Initialization
parameters could also be specified in the description.

1 <http :// yggd r a s i l . a nd r e i c i o r t e a . ro / a r t i f a c t s / event−gen> a eve : A r t i f a c t ;
2 eve : hasName ”event−gen” ;
3 eve : hasCartagoArt i f ac t ”emas . EventGeneratorArt i fact ” .

4.3 Discussion

Our demonstrator proves key elements of our hypothesis. In what follows, we
analyze what has been demonstrated for the scalability and evolvability of hy-
permedia MASs, and then discuss the limitations of our demonstrator.

Scalability Our demonstrator shows that agents can perceive and act upon
a distributed hypermedia environment while being agnostic to the underlying
infrastructure. The environment in our demonstrator is distributed across loosely
coupled origin servers, and agents observe the environment using WebSub hubs
discovered at runtime. All entities in our demo use the same WebSub hub, but
each entity could use any number of hubs (e.g., to distribute the load). Other
publish/subscribe mechanisms for Web resources can also be used, such as the
one built into CoAP [33]. In principle, any mechanisms that have proved useful
for managing the growth of the Web (e.g., load balancers, intermediaries for
enforcing security or encapsulating legacy systems) could be applied to manage
the growth of the hypermedia environment infrastructure.

Evolvability Our demonstrator shows that hypermedia-driven interaction al-
lows agents and their environments to be deployed and to evolve independently
from one another. Agents can discover the distributed hypermedia environment
at runtime starting from a single entry point, and they can observe the envi-
ronment as it evolves – for instance, as workspaces and artifacts are added to
the environment. Artifacts themselves can also evolve at runtime without dis-
rupting the behavior of agents. This allows engineers to enrich the MAS with
features that were not anticipated when the system was initially deployed. Fur-
thermore, both engineers and agents could further exploit the hypermedia to
enrich the system over time, for instance by writing new resources for agents
to discover and use (e.g., shared knowledge) or by rewiring relations among re-
sources (e.g., to create mash-ups of artifacts). The Web has already shown that
a resource-oriented, evolvable environment can support new and unanticipated
applications, which is essential for sustaining long-lived MASs.

Limitations In our demonstrator, agents are able to use artifacts as they evolve
at runtime, but the behaviors that use the artifacts are pre-programmed (e.g.,
see Listing 1.4). However, this is a limitation of our demonstrator and not an
intrinsic limitation of our approach. One way to avoid this limitation would be
to advertise in the hypermedia artifact manuals (e.g., [36,7]) that would allow
agents to infer how to achieve their goals using the discovered artifacts.

As mentioned, Yggdrasil is in an early stage of development. As such, it
does not yet implement an engine for actually running the artifacts, such as
CArtAgO [32]. The logic of the event-gen artifact was simulated for the purpose
of this demonstrator by sending the generated events via HTTP to Yggdrasil,
which then dispatches the events to subscribers. The “middleware” developed
in our JaCaMo application is an ad hoc solution meant to demonstrate that the
additional programming complexity that comes with hypermedia environments
can be mitigated through tooling. A proper extension would require a deeper
integration into CArtAgO.

5 Conclusions

This chapter presents an approach to enable uniform interaction among het-
erogeneous entities in an open MAS such that the entities can be developed,
deployed and can evolve independently from one another. The core idea is to use
hypermedia to drive the interaction between agents and their environment. Our
demonstrator proves that this approach: (i) can effectively decouple agents from
their environment, and (ii) allows a seamless distribution of the environment.
Even though in this chapter we focus on the agent ↔ environment interaction,
the environment can also mediate interaction with other dimensions of a MAS:
it can be used to discover and interact with other agents (e.g., as we have shown
in [8,6]), with organizations (e.g., by means of organizational artifacts [4]) etc. In
principle, any abstract entity in a MAS that is relevant to agents can be reified
in the hypermedia environment – either as a passive resource that agents can
discover and consume (e.g., to learn a new interaction protocol), or as an active
resource (e.g., a tool) that agents can interact with. The results presented in
this chapter suggest that using hypermedia as a general mechanism to support
uniform interaction in MASs enhances the systems’ scalability and evolvability –
and could potentially enable the deployment of world-wide and long-lived MASs.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, May 2001.

2. Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. DIANE Publishing
Company, 2001.

3. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems (IJSWIS),
5(3):1–22, MarMar 2009.

4. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and An-
drea Santi. Multi-agent oriented programming with jacamo. Science of Computer
Programming, 78(6):747–761, 2013.

5. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30(1):107 – 117, 1998.
Proceedings of the Seventh International World Wide Web Conference.

6. Andrei Ciortea, Olivier Boissier, Antoine Zimmermann, and Adina Magda Florea.
Give Agents Some REST: A Resource-oriented Abstraction Layer for Internet-
scale Agent Environments. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’17, pages 1502–1504, Richland, SC,
2017. International Foundation for Autonomous Agents and Multiagent Systems.

7. Andrei Ciortea, Simon Mayer, and Florian Michahelles. Repurposing Manufactur-
ing Lines On-the-fly with Multi-Agent Systems for the Web of Things. In Proceed-
ings of the 17th Conference on Autonomous Agents and MultiAgent Systems, page
xx (in press), 2018.

8. Andrei Ciortea, Antoine Zimmermann, Olivier Boissier, and Adina Magda Florea.
Hypermedia-driven Socio-technical Networks for Goal-driven Discovery in the Web
of Things. In Proceedings of the 7th International Workshop on the Web of Things
(WoT). ACM, 2016.

9. Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax, W3C Recommendation 25 February 2014. W3C Recommenda-
tion, World Wide Web Consortium (W3C), February 25 2014.

10. O?uz Dikenelli. Seagent mas platform development environment. In Proceedings
of the 7th international joint conference on Autonomous agents and multiagent
systems: demo papers, pages 1671–1672. International Foundation for Autonomous
Agents and Multiagent Systems, 2008.

11. M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs). RFC
3987 (Proposed Standard), January 2005.

12. Jose Exposito, Joan Ametller, and Sergi Robles. Configuring the JADE
HTTP MTP. http://jade.tilab.com/documentation/tutorials-guides/configuring-
the-jade-http-mtp/, 2010. Accessed: 15.11.2016.

13. R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC 7231 (Proposed Standard), June 2014.

14. Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Trans. Internet Technol., 2(2):115–150, May 2002.

15. Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

16. Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Speci-
fication. http://www.fipa.org/specs/fipa00061/SC00061G.html, 2002. Document
number: SC00061G.

17. Foundation for Intelligent Physical Agents. FIPA Agent
Message Transport Protocol for HTTP Specification.
http://www.fipa.org/specs/fipa00084/SC00084F.html, 2002. Document number:
SC00084F.

18. Foundation for Intelligent Physical Agents. FIPA Agent Management Specification.
http://www.fipa.org/specs/fipa00023/SC00023K.html, 2004. Document number:
SC00023K.

19. Nicholas Gibbins, Stephen Harris, and Nigel Shadbolt. Agent-based semantic web
services. Web Semantics: Science, Services and Agents on the World Wide Web,
1(2):141–154, 2004.

20. Abdelkader Gouäıch and Michael Bergeret. Rest-a: An agent virtual machine based
on rest framework. In Advances in Practical Applications of Agents and Multiagent
Systems, pages 103–112. Springer, 2010.

21. Miguel Escrivá Gregori, Javier Palanca Cámara, and Gustavo Aranda Bada. A
jabber-based multi-agent system platform. In Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, pages 1282–1284.
ACM, 2006.

22. Jomi F. Hübner, Jaime S. Sichman, and Olivier Boissier. Developing Organised
Multiagent Systems Using the MOISE+ Model: Programming Issues at the System
and Agent Levels. Int. J. Agent-Oriented Softw. Eng., 1(3/4):370–395, December
2007.

23. Michael N Huhns. Agents as web services. IEEE Internet computing, 6(4):93, 2002.
24. Michael N. Huhns and Munindar P. Singh. Service-oriented computing: Key con-

cepts and principles. IEEE Internet computing, 9(1):75–81, 2005.
25. Sebastian Kaebisch and Takuki Kamiya. Web of Things (WoT) Thing Description,

W3C Working Draft 5 April 2018. W3C Working Draft, W3C, April 2018.
26. Martha L. Kahn and Cynthia Della Torre Cicalese. Coabs grid scalability experi-

ments. Autonomous Agents and Multi-Agent Systems, 7(1):171–178, Jul 2003.
27. Markus Lanthaler and Christian Gütl. Hydra: A Vocabulary for Hypermedia-

Driven Web APIs. In Proceedings of the WWW2013 Workshop on Linked Data on
the Web, volume 996 of CEUR WS, 2013.

28. Xavier Limon, Alejandro Guerra-Hernandez, and Alessandro Ricci. Distributed
Transparency in Endogenous Environments: the JaCaMo Case. In Proceedings
of the 5th International Workshop on Engineering Multi-Agent Systems. Springer,
2017.

29. Dejan Mitrović, Mirjana Ivanović, Zoran Budimac, and Milan Vidaković. Radigost:
Interoperable web-based multi-agent platform. Journal of Systems and Software,
90:167–178, 2014.

30. Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.
”big”’ web services: Making the right architectural decision. In Proceedings of the
17th International Conference on World Wide Web, WWW ’08, pages 805–814,
New York, NY, USA, 2008. ACM.

31. Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle - Terse RDF Triple
Language, W3C Recommendation 25 February 2014. W3C Recommendation,
World Wide Web Consortium (W3C), February 25 2014.

32. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, Sep 2011.

33. Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252 (Proposed Standard), June 2014.

34. Munindar P. Singh. Information-driven interaction-oriented programming: Bspl,
the blindingly simple protocol language. In The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’11, pages 491–
498, Richland, SC, 2011. International Foundation for Autonomous Agents and
Multiagent Systems.

35. Munindar P. Singh and Michael N. Huhns. Service-oriented computing: semantics,
processes, agents. John Wiley & Sons, 2006.

36. Mirko Viroli, Alessandro Ricci, and Andrea Omicini. Operating instructions for
intelligent agent coordination. The Knowledge Engineering Review, 21(1):4969,
2006.

37. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. Autonomous agents and multi-agent systems,
14(1):5–30, 2007.

38. S. Willmott, J. Dale, B. Burg, P. Charlton, and P. O’Brien. Agentcities: A world-
wide open agent network. Agentlink News, 8, 2001.

	Lecture Notes in Computer Science
	Introduction
	Background and Related Work
	Hypermedia and HATEOAS
	Web-based Multi-Agent Systems
	World-Wide Multi-Agent Systems

	Hypermedia Multi-Agent Systems
	Design Principles for Hypermedia Multi-Agent Systems
	A Model for Hypermedia Multi-Agent Systems
	Cognitive agents in artifact-based hypermedia environments
	Hypermedia networks of agents and artifacts

	Implementation and Experience
	Demonstrator Scenario
	System Overview and Deployment
	Hypermedia environment
	Yggdrasil
	JaCaMo application

	Discussion
	Scalability
	Evolvability
	Limitations

	Conclusions

