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Abstract

Campesterol is an important precursor for many sterol drugs, e.g. progesterone and hydro-

cortisone. In order to produce campesterol in Yarrowia lipolytica, C-22 desaturase encoding

gene ERG5 was disrupted and the heterologous 7-dehydrocholesterol reductase (DHCR7)

encoding gene was constitutively expressed. The codon-optimized DHCR7 from Rallus nor-

vegicus, Oryza saliva and Xenapus laevis were explored and the strain with the gene

DHCR7 from X. laevis achieved the highest titer of campesterol due to D409 in substrate

binding sites. In presence of glucose as the carbon source, higher biomass conversion

yield and product yield were achieved in shake flask compared to that using glycerol and

sunflower seed oil. Nevertheless, better cell growth rate was observed in medium with sun-

flower seed oil as the sole carbon source. Through high cell density fed-batch fermentation

under carbon source restriction strategy, a titer of 453±24.7 mg/L campesterol was

achieved with sunflower seed oil as the carbon source, which is the highest reported micro-

bial titer known. Our study has greatly enhanced campesterol accumulation in Y. lipolytica,

providing new insight into producing complex and desired molecules in microbes.

Introduction

Campesterol is an important precursor for steroid drugs, which used as balance hormone drug

in the pharmaceutical industry [1, 2]. Yeast is a conventional host for sterol production such as

pregnenolone and hydrocortisone [3, 4], but campesterol tends to adhere to the membrane

and forms membranes structure, which would be a burden to cells [5–7]. Yarrowia lipolytica

lipid bodies accumulation is favorable for less polar compounds storage, thus Y. lipolytica is a

promising host cell for hydrophobic metabolites production [8, 9]. Matthaus et al. found that

lycopene located mainly within lipid bodies and increased lipid bodies formation led to an

increase of lycopene storage capacity when lycopene was successfully produced in Y. lipolytica

[10]. Y. lipolytica was also been used for the production of β-carotene [11], omega-3 fatty acids

eicosapentaenoic acid (EPA) [12], citric acid [13–15] and microbial lipids for cocoa-butter
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substitute [15, 16] or biodiesel precursor [15, 17]. Thus, Y. lipolytica is a potential host to pro-

duce campesterol.

DHCR7 is a membrane-embedded enzyme, which reduces the seventh position of the car-

bon-carbon double bonds of ergosta-5,7-dienol to campesterol [3]. Zhou et al. once reported

that DHCR7 activity was independent of cytochrome P450 reductase [18]. Some mutations

in DHCR7 lead to human autosomal recessive metabolic disorder, known as the Smith-Lemli-

Opitz syndrome (SLOS) [19]. Based on the crystal structure of its homological protein delta14-

sterol reductase (MaSR1, PDB accession 4quv) fromMethylomicrobium alcaliphilum 20Z, Li

et al. [20] generated the structural model for human DHCR7 and found that majority of the

SLOS-related mutations could be mapped to the sterol reductase catalytic domain, which com-

prised the carboxy-terminal half of the protein (the 6–10 helix) and affected the cofactor/sterol

binding. However, there is no research which has clearly identified the specific sites in the sub-

strate binding pocket for DHCR7 enzyme activity so far. Meanwhile, it is well known that

screening enzymes from different species aided by computer docking is a conventional and

efficient strategy to reveal the critical amino acid residue(s) in active pocket due to their

enzyme structure diversity [21, 22]. Ding et al. [21] enhanced the taxadiene biosynthesis dra-

matically in yeast by selection of geranylgeranyl diphosphate synthase from six different species

directed by computer-aided docking strategy. And it was also reported by Leonard et al. [22]

that the optimization of geranylgeranyl diphosphate synthase and levopimaradiene synthase

by phylogeny-based mutation strategy reduced the accumulation of byproducts significantly.

Thus, DHCR7 from different species could be chosen and screened for a higher production of

campesterol, aiding by protein modelling and cofactor/substrate docking for attempt to reveal

the relationship between some specific sites and DHCR7 activity.

Y. lipolytica is capable to utilize many kinds of substrates such as glucose, glycerol and espe-

cially oil [23–25]. Manipulation of the employed carbon sources can tremendously vary the

metabolic compounds synthesized in Y. lipolytica. When cultivated on hydrophilic carbon

sources (e.g. glucose and glycerol), most of the Y. lipolytica strains do not store significant

quantities of cellular lipids [13, 14, 17]. Meanwhile, growth of many Y. lipolytica strains on

hydrophobic materials (e.g. fatty acids and triacylglycerols) is accompanied by remarkable

accumulation of lipids [15, 16, 26], and the lipids accumulation is influenced by the fatty acid

composition of the fat used as the substrate [15, 16, 26]. As lipids accumulation might be bene-

fit for campesterol synthesis, exploration of different carbon sources would be one of the key

points to enhance production.

Here, Y. lipolytica was selected as the host for campesterol production. Initially the DHCR7

was introduced into Y. lipolytica while bypass of ergosterol formation was disrupted. Screening

of enzymes from different species and manipulation of different carbon source were utilized to

enhance campesterol production. The strain with DHCR7 from Xenapus laevis grown in the

medium containing sunflower seed oil achieved the highest campesterol production in 5-L bio-

reactor via high cell density fermentation process under carbon restriction strategy. This work

provides a good reference to produce desired molecules by means of metabolic engineering

and synthetic biology.

Methods and Materials

Strains and media

All the strains used in this study were listed in Table 1. The Y. lipolytica ATCC201249 was pur-

chased from the American Type Culture Collection. Y. lipolytica strains were cultured at 28°C

in YP medium [27] supplemented with the appropriate carbon source such as glucose, glycerol

or sunflower seed oil. The engineered Y. lipolytica strains were selected on synthetic complete
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(SC) medium [11], which consists of 0.67% (w/v) yeast nitrogen base, 2% (w/v) glucose and the

appropriate amino acid drop out mix supplemented. E. coli DH5α, which was used for vector

construction and replication, was grown at 37°C in Luria-Bertani (LB) broth. If needed,

100 μg/ml ampicillin was added to the media prior to use.

Construction of campesterol producing strain

All the primers used in this study were listed in S1 Table. The front and the back section of

gene ERG5 (ERG5(700) and ERG5(670), Fig 1b), together with the URA3marker (orotidine 5'-

phosphate decarboxylase encoding gene from Y. lipolytica for uracil synthesis) were amplified

from the genomic DNA of Y. lipolytica with primer pairs of NotI-ERG5(700)-F/URA3-ERG5

(700)-R, t1-ERG5(670)-F/t0-R and ERG5(700)-URA3-F/ t0-URA3-R, respectively. Meanwhile,

the homologous region t0 and t1 (Fig 1b), which were the partial sequences of Saccharomyces

cerevisiae terminator ENO2 and GPM1, were amplified from the genomic DNA of S. cerevisiae

BY4742 with primer pairs of URA3-t0-F/NotI-t0-R and NotI-t1-F/ERG5(670)-t1-R. The cas-

sette ERG5(700)-URA3-t0 and t1-ERG5(670) were assembled by overlap extension PCR

(OE-PCR), then digested with NotI and introduced into the corresponding site of pEASY-

Blunt (TransGene Biotech Co., China), obtaining pEASY-Blunt-101 and pEASY-Blunt-102.

The cassette t0-EXP1p-XPR2t-t1, which contained the endogenous promoter EXP1, termi-

nator XPR2 [12, 28, 29] and two BsaI sites with opposite direction in between (S1 Fig), was syn-

thesized by AuGCT Inc. (China) and cloned into pUC57-Simple (AuGCT Inc.). The genes

DHCR7 from Rallus norvegicus, Oryza saliva and X. laevis were codon optimized according to

the codon bias of Y. lipolytica derived from the Codon Usage Database (http://www.kazusa.or.

jp/codon/) (S2 Fig) and synthesized by GENEWIZ Inc. (China). The products were digested

with BsaI and inserted into the corresponding site of the cassette t0-EXP1p-XPR2t-t1, produc-

ing DHCR7 expression cassette plasmids (S1 Fig), i.e. pUC57-Simple-201, pUC57-Simple-202

and pUC57-Simple-203 respectively. Mutagenesis (D409E) of DHCR7 encoding sequences

from pUC57-Simple-201was achieved via the site-directed mutagenesis method described

before [30], producing pUC57-Simple-204.

Table 1. Strains used in this study.

Strain/Plasmid Genotype or plasmid Reference

Plasmids

pEASY-Blunt Blunt Cloning vector, resistant to aparamycin TransGene

pUC57-Simple Blunt Cloning vector, resistant to aparamycin GenScript

pEASY-blunt-101 The cassette ERG5(700)-URA3-t0 was inserted into the NotI site of pEASY-blunt. This study

pEASY-blunt-102 The cassette t1-ERG5(670) was inserted into the NotI site of pEASY-blunt. This study

pUC57-Simple-101 pUC57-Simple harboring the cassette t0-EXP1p-XPR2t-t1 This study

pUC57-Simple-201 Gene DHCR7 from Xenapus laevis was codon optimized, synthesized and cloned into pUC57-Simple-101 This study

pUC57-Simple-202 Gene DHCR7 from Oryza saliva was codon optimized, synthesized and cloned into pUC57-Simple-101. This study

pUC57-Simple-203 Gene DHCR7 from Rallus norvegicus was codon optimized, synthesized and cloned into pUC57-Simple-101. This study

pUC57-Simple-204 D409E mutation within DHCR7 encoding sequences from pUC57-Simple-201 This study

Yarrowia lipolytica Strains

ATCC 201249 MATA, ura3-302, leu2-270, lys8-11, pex17-ha [14]

SyBE_Yl1070028 ERG5::URA3-EXP1p-DHCR7 (Xenapus laevis)- XPR2t This study

SyBE_Yl1070029 ERG5::URA3-EXP1p-DHCR7 (Oryza saliva)- XPR2t This study

SyBE_Yl1070030 ERG5::URA3-EXP1p-DHCR7 (Rallus norvegicus, wild-type)-XPR2t This study

SyBE_Yl1070031 ERG5::URA3-EXP1p-DHCR7 (Xenapus laevis, D409E)-XPR2t This study

doi:10.1371/journal.pone.0146773.t001

Campesterol Overproduction in Y. lipolytica

PLOSONE | DOI:10.1371/journal.pone.0146773 January 11, 2016 3 / 14

http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/


Four separate pUC57-Simple-DHCR7 expression cassettes (pUC57-Simple-201, pUC57-

Simple-202, pUC57-Simple-203 and pUC57-Simple-204), together with pEASY-Blunt-101 and

pEASY-Blunt-102 were digested with NotI, and co-transformed into the wild-type Y. lipolytica

ATCC 201249 [31, 32]. The clone with mutant ERG5, whose middle section was replaced by

DHCR7 expression cassette (URA3-EXP1p-DHCR7-XPR2t, Fig 1b), was selected on solid SC

media without supplementation of uracil and further verified via PCR with primers of Y.L-

DHCR7(rat440)-F/Y.L-ERG5cassette-R, Y.L-DHCR7(rice743)-F/Y.L-ERG5cassette -R and

Y.L-DHCR7 (toad459)-F/ Y.L-ERG5cassette-R respectively.

Shake flask and fed-batch cultivation for campesterol production

For shake flask culture, engineered Y. lipolytica from glycerol tube was first grown in 5 ml SC

medium without uracil at 28°C, 220 rpm for 24 h to the exponential phase (OD600�5.0) and

then inoculated into 30 ml corresponding SC medium at an initial OD600 of 0.2 for further cul-

tivation of 18 h cultivation (OD600�6.0). After that, the seed culture was transferred into 50 ml

fresh YP medium supplemented with appropriate carbon source at an initial OD600 of 0.1 and

grown until harvest. The concentration of glucose, glycerol and sunflower seed oil in the media

was 5% (w/v), 4.07% (v/v) and 3.7% (v/v) respectively. Both glycerol and sunflower seed oil

Fig 1. Overview of campesterol biosynthesis pathway and the corresponding genetic modification in Y. lipolytica. (a) Overview of campesterol
biosynthesis pathway in Y. lipolytica. Campesterol was produced via expression of DHCR7 and disruption of ERG5 based on the ergosterol synthesis
pathway in Y. lipolytica. Acetyl-CoA, the precursor of campesterol, is provided either by glycolysis from hydrophilic carbon sources (i.e. glucose and glycerol),
or by β-oxidization from hydrophobic materials (e.g. oil). Meanwhile, acetyl-CoA from either hydrophilic or hydrophobic substrates can also generate cellular
fatty acids and subsequently triacylglycerols (TAG), consisting of the de novo and the ex novo lipid accumulation process in Y. lipolytica respectively. (b) The
method for expression of DHCR7 and disruption of ERG5 at the same time. The middle section of gene ERG5 was replaced by the DHCR7 expression
cassette (URA3-EXP1p-DHCR7-XPR2t) in chromosome A. (c) GC-TOF/MS profile of the wild-type Y. lipolytica. ATCC 201249 and campesterol producing
strain SyBE_Yl1070030. Wild-type strain (blue) showed an ergosterol peak at 21 min, while Y. lipolytica SyBE_Yl1070028 (red) showed a campesterol peak
at 21.7 min.

doi:10.1371/journal.pone.0146773.g001

Campesterol Overproduction in Y. lipolytica

PLOSONE | DOI:10.1371/journal.pone.0146773 January 11, 2016 4 / 14



concentration were standardized in moles of carbon equivalents relating to 50 g/L glucose

according to Sestric et al. [27].

For 5-L stirred-tank bioreactor (BLBIO-5GJG-2, Shanghai, China) experiment, precultures

were inoculated into 500 ml YPD medium (YP medium with 5% glucose) with an initial OD600

of 0.2 and cultivated for 18 h until OD600 reached about 14. After that, 350 ml seed culture was

transferred into 2.65 L of YP medium supplemented with 2% (w/v) glucose or 3.7% (v/v) sun-

flower seed oil as the carbon source. When glucose was employed as the carbon source, 50%

(w/v) glucose solution was fed periodically into the fermentation medium to keep the glucose

concentration under 1.0 g/L. Meanwhile, when sunflower seed oil was used as the carbon

source, oil concentration was restricted below 2 g/L by adjusting feed rate after the batch oil

was depleted. The temperature, pH, agitation and airflow were controlled at 28°C, 5.5, 400 rpm

and 1 vvm, respectively. 15 ml cultures were collected every 12 h for the analysis of substrate

concentration, cell density and campesterol production. When necessary, sterile water was

added to the culture to maintain the volume of the fermentation at 3 L.

Protein modeling

The amino acid sequences of DHCR7 from R. norvegicus, O. saliva and X. laevis were align-

ment by ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The DHCR7 models were

developed with BioLuminate v1.8 Homology Modeling from Schrodinger. The crystal structure

of delta14-sterol reductase fromM. alcaliphilum 20Z (PDB accession 4quv) [20] was used as

the template in all DHCR7 modeling. The sequence identity between DHCR7 proteins and the

template ranged from 33% to 39%. As part of the NADPH was missing in the template, the

Nicotinamide adenine group was re-modeled. The ergosta-5,7-dienol substrate was docked to

DHCR7 using AutoDock Vina [33]. The mutation on X. laevis DHCR7 was carried out using

Residue Scanning Tools included in the BioLuminate suite.

Microscopic analysis and biomass determination

For microscopic observation, cells were harvested by centrifugation at 10,000 rpm for 1 min

and re-suspended with sterile water to dilute into the final cell density of OD600 to 5.0. Images

were taken with an Olympus CX41 (Olympus, Tokyo, Japan) at the magnification of 40×. Bio-

mass determination was performed according to Aggelis et al. [26] and Papanikolaou et al.

[16]. Especially when sunflower seed oil was used as the carbon source, the harvested cells were

washed three times with hexane, followed by rinsing three times with distilled water in order to

remove residual fat before the dry cell weight (DCW) measurement [16, 26].

Measurement of substrate (glucose, glycerol, sunflower oil)
concentration and cellular total lipid content

The glucose and glycerol concentration in the medium were analyzed with HPLC following the

methods described before [34]. Unconsumed lipid were extracted and measured according to

Papanikolaou et al. [16]. Cellular total lipid was extracted and measured according to Soxhlet

extraction procedure revised from Folch et al [35]. Five grams of dried cells were weighed in a

thimble and subjected to Soxhlet extraction with 80 mL of diethyl ether for 2 hour at 60°C.

During the extraction process, all the solvent was collected in a round-bottomed flask (the

weight of the flask M1). After extraction and evaporation of solvent, the round-bottomed flask

was further dried at 104°C for 30 min until the weight was constant (M2). The total lipid

Campesterol Overproduction in Y. lipolytica
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content (TL %) was calculated as follows,

TL% ¼
ðM2�M1Þ

DCW
� 100%

Analysis of campesterol production

According to the earlier works [3, 4, 7, 34], saponification with KOH-methanol solution in

grinded cells has been prove to be an efficient way to recover sterol from its ester fraction.

Compared with the saponificated samples, ethyl esterified campesterol was detected beside the

free form in the product without saponification (S3 Fig). Even though the esterified form only

occupied a little fraction of total campesterol (S3 Fig), saponification is still required in sample

treatment before GC-TOF/MS analysis.

To be specific, cells were harvested, and washed by Milli-Q double deionized water. After

centrifugation, cell pellet was grounded into fine powder in liquid nitrogen, and then trans-

ferred into a 10 ml centrifugal tube, suspended in 5 ml KOH-methanol solution (20% (w/v)

KOH, 80% (v/v) methanol) and heated for 5 h at 60°C for saponification. 2 ml hexane was

added into the tube to extract campesterol and then freeze dried overnight. Then the product

was resuspended with 400 μl n-hexane and refreeze dried overnight. The derivatization of the

freeze-dried product was conducted with 200 μl N-methyl-N-(trimethylsilyl) trifluoroaceta-

mide (MSTFA) at 30°C for 2 h. Samples were diluted with hexane and measured by GC-TOF/

MS (Waters Corp. USA) [34]. The injector temperature was 280°C. The column temperature

was initially maintained at 70°C for 1 min, then increased to 250°C at a temperature ramp of

20°C/min and maintained at 250°C for 2 min, followed by an increase to 280°C at a tempera-

ture ramp of 15°C/min, finally maintained at 280°C for 15 min. The campesterol was identified

by Nist library search 2006 (the mass fragment 472, 382, 343 and 129 m/z).

Results and Discussion

Campesterol synthesis pathway was constructed in Y. lipolytica via
blocking ergosterol biosynthesis and introducing heterogeneous
DHCR7

The endogenous ergosterol synthesis pathway is the competitive branch to the heterogeneous

production of campesterol (Fig 1a). To produce campesterol in Y. lipolytica, the middle section

of the gene ERG5 was replaced by the heterologous DHCR7 expression cassette. The expression

of DHCR7 was controlled by the EXP1 promoter of Y. lipolytica (Fig 1b). The strain contained

R. norvegicus DHCR7 (named as SyBE_Yl1070030) was cultivated in YPD medium in shake

flask for 140 h and the product was analyzed by GC-TOF/MS. Instead of ergosterol (at 21 min)

in the wild-type Y. lipolytica ATCC201249, campesterol (at 21.7 min) was the major product in

strain SyBE_Yl1070030 (Fig 1c). Moreover, there was no other distinct by-product accumula-

tion (Fig 1c), indicating the campesterol biosynthesis pathway was successfully functioned in

Y. lipolytica.

Strain with DHCR7 from X. laevis achieved the highest campesterol
production

The gene DHCR7 was the only heterogeneous gene and essential in campesterol synthesis path-

way. Besides the one from R. norvegicus, DHCR7 from other two species as O. saliva and X. lae-

vis were selected to construct campesterol producing strain, obtaining strains SyBE_Yl1070029

Campesterol Overproduction in Y. lipolytica
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and SyBE_Yl1070028. Together with strain SyBE_Yl1070030, all these three strains were cul-

tured in YPD medium in shake flask for campesterol production. The strain SyBE_Yl1070028

with DHCR7 from X. laevis achieved the highest titer of 106±8.5 mg/L (Fig 2). Thus, this strain

was used as the candidate for the further optimization on campesterol production.

Based on the crystal structure of its homological protein delta14-sterol reductase (MaSR1)

fromM. alcaliphilum 20Z (PDB accession 4quv), the structural model of the full-length

DHCR7 from X. laevis, O. saliva and R. norvegicus was generated. As shown in Fig 3a, DHCR7

contained ten helices, nine of them (1–9 helix) were reported to be transmembrane segments

[19]. The 6–10 helixes enveloped two interconnected pockets for NADPH and sterol binding,

respectively (Fig 3a). Notably in the putative sterol-binding pocket of X. laevis DHCR7, the

hydroxyl group on the substrate formed a favorable hydrogen-bonding network with Y278 and

D409 (Fig 3a), which led to a tight binding of substrate to the enzyme. In DHCR7 from O.

saliva, this particular Asp residue was mutated to Glu (Fig 3b). And in silico computation cal-

culation using this model showed a loss of ~4 kcal/mol in binding affinity caused by the muta-

tion D409E. For validation, when D409 within X. laevis DHCR7 of SyBE_Yl1070028 was

mutated into Glu, the production of campesterol decreased by 86.7% accordingly (Fig 3c), sug-

gesting that D409 was essential for substrate binding and the mutation D409E might be the

reason for lower campesterol production achieved from strain SyBE_Yl1070029 (possessing O.

saliva DHCR7) than strain SyBE_Yl1070028 as well.

However, according to the current model, it was hard to explain the difference in campes-

terol production between the strain possessing DHCR7 from X. laevis and R. norvegicus, since

DHCR7 from these two species had identical active sites (Fig 3b). Through sequence align-

ment, some mutations such as L404F, S450A, S451N, K455R and K460E were identified (Fig

3b), which might attribute to the lowest activity of DHCR7 from R. norvegicus. These sites still

need to be verified via point mutagenesis and activity assay in future study.

Fig 2. Campesterol production in strains with DHCR7 from different species. Y. lipolytica strains with
DHCR7 from X. laevis, O. saliva and R. norvegicus were named as SyBE_Yl1070028, SyBE_Yl1070029 and
SyBE_Yl1070030 respectively. The amount of campesterol produced by these three strains was measured
after 120 h shake flask culture in YPDmedium.

doi:10.1371/journal.pone.0146773.g002
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Fig 3. Sequences and architecture differences among DHCR7 from X. laevis,O. saliva andR. norvegicus. (a) Overview the structure model of DHCR7
from X. laevis. NADPH (blue) was docked into the NADPH pocket and ergosta-5,7-dienol (yellow) modelled into the substrate binding pocket in the DHCR7
structure. The pocket for substrate binding was enlarged and present below, indicating that Y278 and D409 clamp the hydroxyl of the substrate through a
hydrogen-bonding network. (b) Sequences alignment of DHCR7 from X. laevis, O. saliva and R. norvegicus. The putative cholesterol hydroxyl group binding
sites and cofactor NADPH binding sites were marked by red squares and blue stars, respectively. Mutations which might attribute to the lowest activity of
DHCR7 from R. norvegicuswere boxed with red lines. (c) Campesterol production in Y. lipolytica strains with wild-type and mutated X. laevis DHCR7 (named
as SyBE_Yl1070028 and SyBE_Yl1070031 respectively). The campesterol production for these strains was measured after 120 h shake flask culture in YPD
medium.

doi:10.1371/journal.pone.0146773.g003
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Sunflower seed oil as carbon source achieved the highest reported
campersterol titer

The effect of different carbon source was investigated to optimize fermentation process. Glu-

cose, glycerol and sunflower seed oil were chosen as the carbon source to diverse production of

campesterol in shake flasks. And the biomass produced and the substrate consumed in time

course by Y. lipolytica strain SyBE_Yl1070028 together with the final campersterol titers were

shown in Fig 4a, 4b and 4c, respectively. As shown in Fig 4d, no matter the cell specific growth

rate, the biomass conversion yield and the campesterol production yield, glycerol was not a

good carbon source for campesterol production. In terms of cell growth, the engineered Y. lipo-

lytica strain with sunflower seed oil displayed a bit higher cell growth rate than that with glu-

cose (Fig 4d). Nevertheless, higher biomass conversion yield and a bit higher campesterol yield

were achieved in presence of glucose (Fig 4d). Thus except glycerol, both glucose and sunflower

seed oil were selected as the potential carbon source for further process optimization in

bioreactor.

Fig 4. Shake flask cultivation with different carbon sources. (a) Cells growth for Y. lipolytica strain SyBE_Yl1070028 with glucose, glycerol and sunflower
seed oil as the carbon source. (b) Substrate (glucose, glycerol and sunflower oil) consumed by strain SyBE_Yl1070028. (c) The final campersterol titers
produced by strain SyBE_Yl1070028 with glucose, glycerol and sunflower seed oil as the carbon source. (d) Cells growths specific rate (μ, h-1), biomass
conversion yield (YX/S) and campesterol production yield (YP/S) for strain SyBE_Yl1070028 with different carbon source. μ is determined as ln(X/X0)/ (t-t0),
where X is for total biomass (g/L) and t is for time (h). Meanwhile, YX/S represents the yield of total biomass produced per unit of substrate consumed and YP/S

represents the yield of product formed per unit of substrate consumed.

doi:10.1371/journal.pone.0146773.g004
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Fig 5. Bioreactor fermentation with different carbon sources.Campesterol producing strain SyBE_Yl1070028 was fed-batch cultured in glucose (a) or in
sunflower seed oil (b) with carbon source restriction strategy. YX/S (yield of total biomass produced per unit of substrate consumed) and YP/S (yield of product
formed per unit of substrate consumed) for fed-batch bioreactor cultures were compared with those from the shake-flask experiments (c).

doi:10.1371/journal.pone.0146773.g005
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All the fermentation optimization experiments were conducted in 5-L stirred bioreactor.

The rationale of experiment design is aimed to achieve high cell density fermentation by car-

bon source restriction strategy. In case of glucose as the carbon source, after the initial glucose

was depleted in batch medium, glucose solution was fed periodically into the medium. The glu-

cose concentration was maintained lower than 1 g/L by controlling the feeding rate (Fig 5a).

No acetate was observed during the whole process. Eventually, a titer of 224±25.9 mg/L cam-

pesterol was obtained after 132 h cultivation (Fig 5a). However, compared to those in shake

flask, the biomass conversion yield and the campesterol yield reduced by 23.8% and 12.7%

respectively (Fig 5c), probably due to lacking other nutritions such as nitrogen source and

metal ions during this period. These would be a potential optimization direction for future. In

the meanwhile, the fermentation was also carried out using sunflower seed oil as the carbon

source. To realize carbon restriction, the sunflower seed oil concentration was restricted below

2 g/L by adjusting the feed rate after oil was almost used up in batch medium at 43 h (Fig 5b).

There was no acetate accumulated in this case as well. Consequently, a highest reported micro-

bial titer known of 453±24.7 mg/L campesterol was generated (Fig 5b). In particularly, the bio-

mass conversion yield and the product yield were 39.9% and 0.765% respectively, which were

significantly increased by 69.2% and 328% compared to those in shake flask (Fig 5c). Thus, oil

would be a candidate carbon source for campesterol production in engineered Y. lipolytica.

Y. lipolytica lipid bodies are synthesized either through de novo lipid accumulation from

hydrophilic carbon sources (e.g. glucose and glycerol, Fig 1a) or through ex novo lipid accumu-

lation from hydrophobic materials (e.g. oil, Fig 1a). As the main component of oil, fatty acids

could enter β-oxidation and be degraded into acetyl-coA [36–39], which is an important pre-

cursor for both campesterol and lipids synthesis (Fig 1a). Besides that, fatty acids could also be

converted to triglycerides and stored as lipid bodies [39]. It is reported that the size of lipid

bodies is influenced by different carbon sources [15, 40]. And in this work, the lipid bodies

were only observed distinctively when providing sunflower seed oil as the carbon source and

the size was expanding over time course (Fig 6a), which was consistent with the early works

[15, 16, 26]. Consequently, 0.38 g of lipids per g of dry matter was observed when sunflower

seed oil was employed as the sole carbon source (Fig 6b).

Fig 6. Lipid accumulation in Y. lipolytica strain SyBE_Yl1070028 cultured with different carbon sources. (a) The morphology and the lipid body
(indicated by arrows) of the engineered Y. lipolytica strain in shake flask cultivation with glucose, glycerol and sunflower seed oil as the carbon source. (b)
The lipid accumulation on the dry cell weight (DCW) basis for the shake flask trials.

doi:10.1371/journal.pone.0146773.g006
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Because Y. lipolytica lipid bodies has been proved to be an advantageous cellular component

to store less polar compounds [6], the microbial lipids accumulation seems be benefit to cam-

pesterol production by providing a storage space. However, unlimited expansion on the size of

lipid bodies would not end up to enhancing campesterol production. In fact, there are two

kinds of complex flux flow competition between campesterol production and lipid storage, i.e.

one in fatty acids flux flow towards between acetyl-coA synthesis and lipid bodies’ formation,

and another one in acetyl-coA flux flow to sterol production and back to lipids synthesis (Fig

1a). Thus, how to balance these two aspects of flux would be a key point to enhance campes-

terol titer. In this study, under current carbon restriction strategy, the campesterol production

yield increased by 328% compared to that in shake flask. However, this is still not considered as

a high yield, and more efforts would be taken in further study for developing optimal fermenta-

tion process to better balance the formation rate between lipid bodies and targeted product.

Conclusion

Y. lipolytica was engineered to produce campesterol in this study. The DHCR7 from X. laevis

was verified to be the best one for campesterol among those from R. norvegicus, O. saliva and

X. laevis. Moreover, the highest campesterol production titer was achieved in 5-L bioreactor

using sunflower seed oil as the sole carbon source, suggesting oil would be a promising carbon

source for campesterol production in Y. lipolytica. This study sets a good reference for the het-

erologous biosynthesis enhancement of desired products by combination of enzyme and car-

bon source screening.
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