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ABSTRACT In real-life systems, people cannot get precise data. The data are represented in the forms of

interval or multiple intervals in many cases. Most intelligent algorithms are designed for precise data in

algorithm research. People always use a real number contained in the interval or multiple intervals as the

candidate for the precise data. However, such a measure will lose lots of information contained in the interval

or multiple intervals. Fuzzy Cognitive Map (FCM) is one of the famous intelligent algorithms. The Fuzzy

Grey Cognitive Map (FGCM) was proposed to enable FCM to do interval computation. But FGCM can

only deal with a single interval, as for multiple intervals, the FGCM is powerless. Thus, this paper aims

to enhance the FGCM to make it can cope with multiple intervals. The paper introduces the general grey

number and deduces the new activation functions according to Grey System Theory (GST) and Taylor series.

Finally, an industrial process control problem is applied to verify the new algorithm. The results show that

the new algorithm is not only compatible with the original FGCM and FCM, but can process more uncertain

knowledge and data. In general, the new algorithm inherits most of FGCM’s characteristics and can copewith

the data expressed by multiple intervals, which means it can be used in environments with more uncertain

knowledge and data.

INDEX TERMS Fuzzy grey cognitive map, fuzzy cognitive map, uncertainty modeling, general grey

number, grey system theory.

I. INTRODUCTION

Recently, coping with the uncertainty data and information

is one of the main tasks of soft computing. Soft comput-

ing is different from the ‘‘hard computing’’, which need

deterministic analytic techniques. Soft computing can deal

with imprecision, uncertainty, partial truth, and approxima-

tions. The principal constituents of soft computing techniques

are probabilistic reasoning, fuzzy logic, neuro-computing,

genetic algorithms, belief networks, chaotic systems, as well

as learning theory [1]. Fuzzy Cognitive Map (FCM) is one

of the soft computing techniques [2]. Due to its simplic-

ity, support of inconsistent knowledge, and circle causali-

ties for knowledge modeling and inference [3], FCM has

made many significant achievements in many research
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areas, including decision-support [4], [5], system simula-

tion [6], system prediction [7], smart city [8], intrusion

detection [9], and industrial process control [10]–[13] etc.

FCM assigns fuzzy weights to topological graphs, so it

is also treated as a fuzzy-neural system [14]. Unlike neu-

ral networks, FCM’s nodes are explanatory, which gives

engineers and data scientists convenience to conduct the

what-if analysis of the system [15]. And an FCM can be

easily built by exploiting the historical data or the experts’

knowledge [16].

The data from real-life system always have uncertainty.

People always use intervals to express the data with uncer-

tainty, which leads to the emergence of grey system theory

(GST) [17]. To make the use of such uncertainty data, many

algorithms have been extended according to the GST, which

include the FCM. The model is called Fuzzy Grey Cognitive

Map [15] (FGCM), the FGCM can support the interval input,
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improving the uncertainty modeling ability of the FCM [18].

In this paper, the uncertainty modeling ability refers to the

algorithm’s ability to represent and process uncertain data.

Although FGCM can process the uncertain data represented

by intervals, the multiple intervals or discrete data are often

encountered in real life, FGCM cannot deal with such data.

Consider an occasion: a decision support model of an air-

craft needs the data of the ground speed, but the ground

speed obtained from the Inertial Navigation System (INS)

is always different from the one calculated by the Global

Positioning System (GPS). For example, the GPS gives a

value falls in the data range of [215, 220] because of the

positioning error, but the INS gives a value falls in the data

range of [200, 210] caused by the cumulative error, if the

decision support model is built as an FCM, a fuzzy number

which falls into the union of [200, 210] ∪ [215, 220] may be

chosen as the input value because the FCM only supports a

fuzzy number as its node value. Which number should be

chosen as the input? Different numbers may cause totally

different results, the pilot has to make a decision according

to a number selected randomly in [200, 210] ∪ [215, 220],

which will involve many fateful consequences. If the decision

support model is built as an FGCM, which interval should

be chosen as the input of the FGCM? Some methods, like

Dempster-Shafer (D-S) evidence theory [19], [20] would like

to make a choice between them, but making a choice between

[200, 210] and [215, 220] will lose another interval’s infor-

mation, and it should be avoided to make a decision at the

cost of losing partly information. Choosing [200, 220] will

add the uncertainty of the input data, which can also damage

the precision of the decision-making. The best way is to make

[200, 210] ∪ [215, 220] as the input of FGCM, in this way,

no information is lost, and the pilot can make a decision

by full information. However, FGCM cannot calculate with

such data. The same predicament will be confronted more

often when two or more experts were invited to determine the

FGCM’s weight. For example, expert A believes the weightw

should be [0.1, 0.15] whereas expert B thinks it is [0.35, 0.4].

How can the [0.1, 0.15] ∪ [0.35, 0.4] be used as the values

of w? One solution is to run the FGCM multiple times, but

the running time is too long to tolerate. Consider an FGCM

has 10 nodes and 10 weights, each node has 2 candidate

intervals, each weight has 3 candidate weights, to get the

candidate results, we have to run FGCM 210 × 310 times!

Another idea is to ‘‘average’’ such intervals directly, but

how to ‘‘average’’ intervals? Averaging their upper bounds

and lower bound is unwise because such measurement will

average the length of intervals at the same time. For exam-

ple, average [0.1, 0.15] and [0.35, 0.4] directly, and we get

[0.225, 0.275], simultaneously, the length of [0.225, 0.275]

becomes 0.05, but the length of [0.1, 0.15] ∪ [0.35, 0.4] is

more than 0.05 for sure. Actually, the average is not equal

to the union, some information will be lost by averaging the

intervals. A reasonable solution to cope with the multiple

interval values is to introduce the general grey number into

FGCM, change the inference process of the FGCM according

to the arithmetic rules of the general grey number, which is

the aim of this paper.

A general grey number is the union of interval grey

numbers or real numbers [21]. For example, [200, 210] ∪
[215, 220] is a general grey number, and [200, 210] ∪
[215, 220] ∪ 230 is also a general grey number. In 2007,

the extend grey number [22], [23] was proposed as the precur-

sor of the general grey number. Then in 2012, the general grey

number was clarified as the ‘‘generalized grey number’’ [24].

Almost simultaneously, the general grey number and their

operations were summarized in [21]. After that, the general

grey number can be used in many fields [25]–[27] because of

its adequate representation and arithmetic operation system.

The FGCM uses the interval grey number as its basic

element. Interval grey number is a special form of the gen-

eral grey number, for example, [200, 220] can be seen as

an interval grey number. However, the general grey number

runs different arithmetic operation systems with the interval

grey number, which is the main obstacle to introduce the

general grey number to the FGCM. To tackle the problem,

this paper changed the data structure as well as the activation

functions for FGCM. As the innovation is mathematical, one

classical application of FGCM is enough to verify it. The new

algorithm should be compatible with classical FGCM, and

it can operate with the data in the form of the general grey

number.

Thus, the paper’s main contributions are:

• Introducing the general grey number in the FGCM;

• Formulating the FGCM’s activation function in the form

of the general grey number;

• Validating the newmodels compatibility and availability

by the industrial process control problem.

The FGCM using general grey number is a novel extension

of the FCM, which combines GST and FCM more deeply

than FGCM.When the data have more uncertainty, especially

contains multiple intervals or discrete values, the FGCM

using the general grey number should be applied.

The rest of the paper is organized as follows: Section II

reviews the fundamentals of GST followed by the FGCM

framework, introduces the general grey number; Section III

shows how to apply the general grey number to FGCM

and how the activation functions works; Section IV takes

an industrial process control problem as an example to ver-

ify FGCM using general grey number; Section V analyzes

the experiment result and computational complexity; finally,

section VI concludes the characteristics of FGCM using gen-

eral grey number and shows the future work.

II. PRELIMINARY KNOWLEDGE

Before turning to the proposed algorithm, the preliminary

knowledge is described here.

A. GREY SYSTEM THEORY

Grey SystemTheory (GST) was proposed in the 1980s to deal

with the uncertainty caused by incomplete information and
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inaccurate data. The GST has been successfully applied in

the areas of environment [28], military [29], business [30],

agriculture [31], geology [32], and meteorology [33].

In order to tackle the uncertainty of the system, repre-

sentation is required firstly. The grey number is the basic

component of the GST, which represents a crisp number

falling into one or more ranges. The interval grey num-

ber is the most commonly used grey number, indicated as

⊗G ∈ [G,G],G 6 G. If the lower bound is known but the

upper bound is unknown, the interval grey number should

be written as ⊗G ∈ [G, +∞); the same as the case if the

upper bound is known but the lower bound is unknown,

denoted as ⊗G ∈ (−∞,G]. If neither the upper bound nor

lower bound is known, the grey number becomes a black

number, indicated as ⊗G ∈ (−∞, +∞). No information can

be operated from a black number. If a grey number’s upper

bound and lower bound are equal, then it is a white number,

it means the complete certain information is known, indicated

as ⊗G ∈ [G,G], G = G.

The interval grey numbers’ operation rules are defined as

below:

⊗G1 + ⊗G2 ∈
[

G1 + G2,G1 + G2

]

(1)

− ⊗ G ∈
[

−G, −G
]

(2)

⊗G1 − ⊗G2 = ⊗G1 + (− ⊗ G2)

∈
[

G1 − G2,G1 − G2

]

(3)

⊗G1 × ⊗G2

∈
[

min(G1 · G2, G1 · G2,G1 · G2,G1 · G2),

max(G1 · G2,G1 · G2,G1 · G2, G1 · G2)
]

(4)

1

⊗G
∈

[

1

G
,
1

G

]

(5)

⊗G1 ÷ ⊗G2 = ⊗G1 ×
1

⊗G2

∈

[

min(G1
1

G2
,G1

1

G2

,G1
1

G2

,G1
1

G2
),

max(G1
1

G2
,G1

1

G2

,G1
1

G2

,G1
1

G2
)

]

(6)

λ · ⊗G ∈
[

λ · G, λ · G
]

(7)

The degree of greyness represents the level of uncertainty

a grey number contains. For convenience, the degree of

greyness will be called greyness in this paper. Given a grey

number ⊗ generated from the domain �, its greyness can be

defined as:

g◦(⊗) =
µ(⊗)

µ(�)
. (8)

The µ() calculates the measure of the grey number or the

domain. The greyness is valid in [0, 1], i.e., 0 6 g◦(⊗) 6 1.

The higher the greyness is, the higher the uncertainty of the

grey number. A white number’s greyness is 0 and a black

number’s greyness is 1 obvious.

FIGURE 1. Mapping of the FCM into the FGCM.

B. THE FUZZY GREY COGNITIVE MAP

The main idea of the FGCM is to use greyness to replace

the fuzziness in the FCM, because a grey set can be speci-

fied to a fuzzy set [24]. The FGCM model keeps the same

topological structure and the inference process as those in the

FCM (Fig. 1). The nodes in FGCM represent the variables

or concepts that have uncertainty. And grey weight (weight

shown by grey numbers) can represent the uncertainty of the

experts’ suggestions or the incomplete data sets.

To carry out the iteration in the FGCM model, the node

values and weight are often written as grey vectors and grey

matrix. The grey vectors’ and matrix’s operation rules are

the same with the real vectors and matrix. For example,

Fig. 1 (right) shows a simple FGCM, its initial state vector

is

⊗ EC0 =
(

⊗C [1]
0 , ⊗C [2]

0 , ⊗C [3]
0 , ⊗C [4]

0

)

=
([

C
[1]
0 ,C

[1]
0

]

,

[

C
[2]
0 ,C

[2]
0

]

,
[

C
[3]
0 ,C

[3]
0

]

,

[

C
[4]
0 ,C

[4]
0

])

. (9)

And the grey weight matrix is

⊗w =









0 ⊗w12 0 0

0 0 ⊗w23 0

⊗w31 0 0 0

⊗w41 0 ⊗w43 0









. (10)

Like the FCM, the FGCM gets its new node values by

⊗ECt+1 = S
(

⊗ ECt · ⊗w
)

= S
(

⊗EC ′
t+1

)

=
(

S
(

⊗C [1]
t

′
)

, S
(

⊗C [2]
t

′
)

,

· · · , S
(

⊗C [n]
t

′
))

, (11)

where S(⊗) is the activation function to compress the node

value into [0, 1] or [−1, 1], when the node value is in [0, 1],

the activation function is

S(⊗G) =

[

1

1 + e−λG
,

1

1 + e−λG

]

, (12)

when the node value falls in [−1, 1], the S(⊗) is the hyper-

bolic tangent:

S(⊗G) = tanh(⊗G)

=

[

eλG − e−λG

eλG + e−λG
,
eλG − e−λG

eλG + e−λG

]

. (13)
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The positive parameter λ is used to control the steepness of

the curve. The lager the λ is, the steeper the curve is.

The inference results reach a steady state, a limit cycle or

chaotic results, which depends on the FGCM’s structure [15].

C. THE GENERAL GREY NUMBER

This section introduces the general grey number’s concept

and arithmetic operations. Following Liu et al.’s work [21],

we present some definitions and theorems are given here to

provide a better understanding of general grey number [34].

They are fundamentals to enhance the FGCM’s uncertainty

modeling ability.

Definition 1: Assume ⊗ ∈ [a, a] is an interval grey num-

ber, with the distribution of the grey number ⊗ is unknown:

1) if ⊗ is continuous, the kernel of the ⊗ is ⊗̂ = 1
2
(a+ a);

2) if ⊗ is discrete, the kernel of the ⊗ is ⊗̂ = 1
n
(
n
∑

i=1

ai).

Definition 2: Assume ⊗ ∈ [a, a] is an interval grey num-

ber, with the distribution of the grey number ⊗ is already

known, the kernel of the ⊗ is ⊗̂ = E(⊗). The E(⊗) is the

expectation, calculated as E(⊗) =
∫

p ⊗ d⊗ if the ⊗ is a

continuous grey number, or E(⊗) =
∑

pi⊗i if the ⊗ is a

discrete grey number.

Definition 3: Assume ⊗̂ is the kernel of the grey number

⊗, g◦ is the greyness of the grey number, then the ⊗̂(g◦) is

called the simplified form of the grey number.

For an interval grey number, the simplified form of it

contains all information about itself. The simplified form of

interval grey number can replace the interval grey number

itself.

Definition 4: The interval grey number and white number

are the basic elements of the general grey number.

Definition 5: A general grey number is defined as

g± ∈

n
⋃

i=1

[ai, ai] (14)

for all interval grey number ⊗i ∈ [ai, ai] ⊂
n
⋃

i=1

[ai, ai],

ai, ai ∈ R and ai−1 6 ai 6 ai 6 ai+1,

g− = inf
ai∈g

±
ai, g+ = sup

ai∈g±

ai

are called the lower bound and upper bound of g±.

The general grey number is defined as the union of interval

grey number or white number, it can express data have more

uncertainty. The next step is to determine the operation of the

general grey number. Before achieving this objective, define

the kernel and greyness of the general grey number.

Definition 6: Assume g± ∈
n
⋃

i=1

[ai, ai] is a general grey

number, its kernel is calculated by

ĝ =
1

n
(

n
∑

i=1

âi). (15)

If the distribution of the general grey number is already

known, and the probability of g± ∈ [ai, ai], (i = 1, 2, · · · , n)

is pi, and

n
∑

i=1

pi = 1, pi > 0, i = 1, 2, · · · , n

then the kernel is calculated by

ĝ =

n
∑

i=1

piâi. (16)

Definition 7: Assume � is the domain of g± ∈
n
⋃

i=1

[ai, ai],

µ() is the measure function in�, then the greyness is defined

as

g◦(g±) =
1

ˆ|g|

n
∑

i=1

|âi|µ(⊗i)/µ(�). (17)

There are two axioms prepared for the operation rules of

general grey number [21].

Axiom 1 (The Synthesis Axiom for Greyness): When add-

ing or subtracting a set of n general grey numbers

g1, g2, · · · , gn, the greyness g
◦ of the operation result g± can

be calculated as follows:

g◦(g±) =
1

∑n
i=1 |ĝi|

n
∑

i=1

g◦
i |ĝi| =

n
∑

i=1

wig
◦
i , (18)

the wi is the weight of g
◦
i , wi = |ĝi|

n
∑

i=1

|ĝi|
, i = 1, 2, · · · , n.

Axiom 2 (Axiom of Greyness Undiminished): When divid-

ing or multiplying a set of n general grey numbers, the grey-

ness of the operation result is no less than the maximum

greyness of the operated general grey number in the set.

Based on these two axioms, the basic operating rules of the

general grey number are summarized and proven in [35], and

shown as follows:

ĝ1(g◦
1)

= ĝ2(g◦
2)

⇐⇒ ĝ1 = ĝ2 and g
◦
1 = g◦

2 (19)

ĝ1(g◦
1)

+ ĝ2(g◦
2)

= (ĝ1 + ĝ2)(w1g
◦
1+w2g

◦
2)

(20)

where

w1 =
|ĝ1|

|ĝ1| + |ĝ2|
, w2 =

|ĝ2|

|ĝ1| + |ĝ2|

−ĝ(g◦) = (−ĝ)(g◦) (21)

ĝ1(g◦
1)

− ĝ2(g◦
2)

= (ĝ1 − ĝ2)(w1g
◦
1+w2g

◦
2)

(22)

where

w1 = =
|ĝ1|

|ĝ1| + |ĝ2|
, w2 =

|ĝ2|

|ĝ1| + |ĝ2|

ĝ1(g◦
1)

× ĝ2(g◦
2)

= (ĝ1 × ĝ2)(max(g◦
1,g

◦
2))

(23)

1

ĝ1(g◦
1)

=

(

1

ĝ1

)

(g◦
1)

, (ĝ1 6= 0) (24)

ĝ1(g◦
1)

ĝ2(g◦
2)

=

(

ĝ1

ĝ2

)

(max(g◦
1,g

◦
2))

, (ĝ2 6= 0) (25)
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k · ĝ(g◦) = (k · ĝ)(g◦), k ∈ R (26)

(ĝ(g◦))
k = (ĝ)k(g◦), k ∈ R (27)

III. THE PROPOSED ALGORITHM

Comparing to the interval grey number, the general grey num-

ber can handle more uncertainties carried from the incom-

plete information. For the node value, two or more interval

grey numbers can often be chosen as the input. If the FGCM is

applied to such occasions, only one interval grey number can

be used, or one uses the minimum (the greyness is minimum)

interval grey number that contains all node values gotten

before. For example, g± ∈ [0.5, 0.6]
⋃

[0.8, 0.9] is a general

grey number. Its underlying white number may get its value

from [0.5, 0.6] or [0.8, 0.9]. However, we cannot get its value

within (0.6, 0.8). This is different from an interval [0.5, 0.9]

where (0.6, 0.8) is a valid part for candidate values [24].

What’s more, a general grey number allows candidate values

in a discrete set, such as g± ∈ {0.3, 0.4, 0.5}, which cannot

be represented as an interval. Because of the conflict opinions

raised by experts or the data from the environment, the weight

and node values of the FGCM can also encounter multiple

interval or discrete values cases. To make use of the general

grey number in FGCM, the activation function of the general

grey number’s form is needed.

A. THE SIGMOID ACTIVATION FUNCTION IN THE FORM

OF GENERAL GREY NUMBER

If the domain is [0, 1], then the sigmoid activation function

is

S(g±) =
1

1 + e−λg± . (28)

The result of S(g±) is a new general grey number, the ker-

nel of the Ŝ(g±) is calculated as

Ŝ(g±) =
1

1 + e−λĝ
, (29)

the greyness is calculated as

S◦(g±) =
1

1 + e−λĝ
g◦. (30)

The proof of (29) and (30) is shown below:

Proof: According to the Taylor’s formula,

e−λg±
=

(−λ)0(g±)0

0!
+

(−λ)1(g±)1

1!
+

(−λ)2(g±)2

2!
+ · · ·

(31)

according to the equation (27), the kernel of (g±)n is ĝn,

the greyness is g◦; thus, the kernel of
(−λ)n(g±)n

n! is
(−λ)nĝn

n! , n =

1, 2, 3 · · · , the greyness is g◦; therefore, the kernel of e−λg±

is

ê−λg±
= 1 +

(−λ)ĝ

1!
+

(−λ)2(ĝ)2

2!
+

(−λ)3(ĝ)3

3!
+ · · ·

= e−λĝ, (32)

according to axiom 1, the greyness of e−λg±
is

(e−λg±
)◦

=
1 × g◦

1 +
∣

∣

∣

(−λ)ĝ
1!

∣

∣

∣
+

∣

∣

∣

(−λ)2(ĝ)2

2!

∣

∣

∣
+

∣

∣

∣

(−λ)3(ĝ)3

3!

∣

∣

∣
+ · · ·

+

∣

∣

∣

(−λ)ĝ
1!

∣

∣

∣
× g◦

1 +
∣

∣

∣

(−λ)ĝ
1!

∣

∣

∣
+

∣

∣

∣

(−λ)2(ĝ)2

2!

∣

∣

∣
+

∣

∣

∣

(−λ)3(ĝ)3

3!

∣

∣

∣
+ · · ·

+

∣

∣

∣

(−λ)2(ĝ)2

2!

∣

∣

∣
× g◦

1 +
∣

∣

∣

(−λ)ĝ
1!

∣

∣

∣
+

∣

∣

∣

(−λ)2(ĝ)2

2!

∣

∣

∣
+

∣

∣

∣

(−λ)3(ĝ)3

3!

∣

∣

∣
+ · · ·

+ · · ·

=
1 × g◦ +

∣

∣

∣

(−λ)ĝ
1!

∣

∣

∣
× g◦ +

∣

∣

∣

(−λ)2(ĝ)2

2!

∣

∣

∣
× g◦ + · · ·

e|λĝ|

= g◦. (33)

According to the (20) and (24), the greyness of the S(g±) is

S◦(g±) = (1 + e−λg±
)◦

=
1 × 0

1 + e−λĝ
+

g◦

1 + e−λĝ

=
1

1 + e−λĝ
g◦. (34)

And using (32), the kernel of S(g±) is

Ŝ(g±) =
1

1 + ê−λg±

=
1

1 + e−λĝ
(35)

The proof is end.

B. THE HYPERBOLIC TANGENT ACTIVATION FUNCTION IN

THE FORM OF GENERAL GREY NUMBER

If the domain is [−1, 1], then the hyperbolic tangent is often

used as activation function:

tanh(g±) =
eλg±

− e−λg±

eλg±
+ e−λg± . (36)

The kernel of tanh(g±) is

tanh(ĝ) =
eλĝ − e−λĝ

eλĝ + e−λĝ
, (37)

the greyness is calculated as

(tanh(g±))◦ = g◦ (38)

The proof of it is very similar to the sigmoid activation

function’s, so it will not be shown here.

The figures of these two functions are shown in the

Fig. 2 and 3. Like the FGCM’s activation functions, the lager

the λ is, the steeper the surface is.
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FIGURE 2. The figures of S(g±) with different λs.

FIGURE 3. The figures of tanh(g±) with different λs.

Algorithm 1 FGCM Using General Grey Number

Data: the initial vector in the form of general grey

number ⊗EC
Result: the output vector in the form of general grey

number

while t < iteration_times do

⊗ECt+1

= S
(

⊗ ECt · ⊗w
)

= S
(

⊗EC ′
t+1

)

=
(

S
(

⊗C [1]
t

′
)

, S
(

⊗C [2]
t

′
)

, · · · , S
(

⊗C [n]
t

′
))

,

t = t + 1

the S
(

⊗C [i]
t

′
)

is calculated by (28),(29),(30)

or (36),(37),(38);

end

C. FUZZY GREY COGNITIVE MAP USING GENERAL GREY

NUMBER

After getting the activation functions, the general grey num-

ber can be applied in FGCM. The FGCM using general grey

number algorithm is shown in Algorithm 1.

Like FCMs, the new algorithm iterates until the node val-

ues reach a steady point, a cycle contains several general grey

numbers or chaotic results.

Compared with the FGCM, the new algorithm’s data struc-

ture is general grey number whereas the FGCM’s is inter-

val grey number. And the activation functions’ computing

methods are different, the new algorithm’s are (28),(29),(30)

or (36),(37),(38), the kernel and greyness are calculated in

order, but FGCMs use (12) or (13). The new model is more

complex than original FGCM.

In next section, the validation experiments are conducted

to show how the FGCM using the general grey number

works.

IV. EXPERIMENTS AND RESULTS

The proposed algorithm can be used universally. And it is

enough to validate it using a classical application of FCM or

FGCM. We choose the industrial process control problem as

an example to show how the general grey number works in

FGCM.

To evaluate the performance of the proposed algorithm,

three experiments are designed to test the compatibility and

availability. In Section IV-A, we show the background of

the industrial process control problem and how the FCM

solves this problem, this FCM is the benchmark of the

comparison experiments shown in Section IV-B. And then

we build an original FGCM and FGCM using general grey

number to prove the compatibility of the proposed algorithm

in Section IV-B. In Section IV-C, two cases are specially

designed to test the unique characteristics of the proposed

algorithm, in which a single FCM or FGCM is not applicable.

These two cases also proved that the proposed algorithm has a

wider application domain than the FCM and FGCM. Finally,

a more complexed situation where both nodes and weights

values are two ormore intervals is designed in Section IV-D to

show the proposed algorithm’s availability, at the same time,

we exploit the original FGCM multiple times to solve this

situation, the results range of the original FGCM is consistent

with the proposed model, but so many original FGCM’s

runtime is too long to be tolerant.

A. THE INDUSTRIAL PROCESS CONTROL SYSTEM

The industrial process control problem was first discussed

using FCM by C.D. Stylios in 1998 [36], [37]. Then, it was

used in many validations of new FCM-relevant algorithms.

In 2006, this problem was used as a case study to compare

two unsupervised learning methods for fine-tuning fuzzy

cognitive map causal links [38]. In 2011, Extended Great

Deluge Algorithm (EGDA) has been considered as a training

algorithm for FCM, the industrial process control problem

was one of the case studies to validate the EGDA [39]. And

the FGCM was applied to analyze the industrial process

control problem in 2014 [13]. Therefore, the FGCM using

general grey number is validated by the industrial process

control problem here.
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FIGURE 4. The industrial process control system.

This industrial process control system aims to control the

height and temperature of the liquid in 2 tanks in a suitable

range. It contains two tanks, three valves, and a heating

element, as shown in Fig. 4. V1 is the inlet valve, and its outlet

valve (V2) is the inlet valve of tank 2. The heating element

lies in tank 1, thus, the hot liquid heated in tank 1 can flow

into the tank 2. V3 is the outlet valve of the tank 2. If the

height of the liquid in tank 2 is too high, the valve 3 is needed

to open.

The aims of such a control system are:



















H1
min 6 H1 6 H1

max

H2
min 6 H2 6 H2

max

T 1
min 6 T 1 6 T 1

max

T 2
min 6 T 2 6 T 2

max

where, the H i, (i = 1, 2) is the height of liquid in tank

i, (i = 1, 2); the T i, (i = 1, 2) is the temperature of liquid

in tank i, (i = 1, 2).

Stylios and Salmeron have constructed the FCM and

the FGCM models correspondingly. However, Salmeron

applied a different set of weights with the Stylios’ [13].

To make a convincing comparison, we use the origi-

nal FCM built by Stylios as the benchmark. The FCM

contains 8 nodes. Each node’s definition [36] is shown

below:

C1 The height of the liquid in tank 1.

C2 The height of the liquid in tank 2.

C3 The state of valve 1.

C4 The state of valve 2.

C5 The state of valve 3.

C6 The temperature of the liquid in tank 1.

C7 The temperature of the liquid in tank 2.

C8 The state of the heating element.

The node values need to be normalized before processing

by the FCM. For example, if the height of liquid in tank 1

is 20%, then the C1’s value is 0.2. In practice, the normal-

ized approach was selected by the engineers. If the C3 is 0,

it means the valve 1 is totally closed. If the C3 is 1, it means

the valve 1 is totally open. And the weight matrix is shown

TABLE 1. The weights in interval grey number and general grey number
forms.

below.

w =

























0 0 0.21 0.38 0 0 0 0

0 0 0 0.70 0.60 0 0 0

0.76 0 0 0 0 0 0 0

−0.80 0.80 0 0 0 0 0 0.09

0 − 0.42 0 0 0 0 0 0

0 0 0 0 0 0 0.6 0

0 0 0.4 0 0 0.53 0 0

0 0 0 0.3 0 0 0 0

























The initial vector is

Cinitial =
(

0.2 0.01 0.55 0.58 0 0.05 0.2 0.1
)

. (39)

After 5 iterations, the output contracted to a steady state,

which is

Coutput

=
(

0.48 0.58 0.58 0.68 0.59 0.58 0.59 0.52
)

. (40)

Next compatibility and availability experiments are con-

ducted. The FGCM of this problem has been built in [40]

and it was compatible with the original FCM we referred.

To validate the compatibility, keep the weights be same with

the FGCM, but transfer the weights into general grey number

and build a new FGCM using general grey number. Given the

same input vector, if the results are approximately equal, then

the new model is compatible with FCM and FGCM.

B. COMPATIBILITY CHECK

As Salmeron has built the FGCM for this problem, we refer to

the weight greyness in [40] and get a matrix of interval grey

number. The weights are listed in Table 1 and transferred to

the general grey numbers by Definition 1, 2 and 3.

Apply the weight above, the FGCM using general grey

number is obtained; the topological graph is shown in Fig. 5,

and the inputs are the same as FCM’s. The only difference is

the data structure. After 10 iterations, all three models: FCM,

FGCM and FGCM using general grey number, reach a steady

state, as shown in Table 2 and Fig. 6.

To make a comparison, we transfer the FGCM’s outputs

into the form of the general grey number, they are listed
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TABLE 2. The results of the FGCM and FGCM using general grey number.

FIGURE 5. The topological graph of FGCM using general grey number.

correspondingly in the fourth column (Table 2). Findings

from Table 2 are summarized as following:

• Both FGCM and FGCM using general grey number are

compatible with the original FCM as their results always

cover the FCM’s results;

• The kernels of the two FGCM’s results are appropriately

equal to the FCM’s;

• The greyness calculated by the FGCM using general

grey number is appropriately equal to the ones calculated

by FGCM.

C. THE UNIQUE CHARACTERISTICS OF THE PROPOSED

ALGORITHM

Characteristics of FGCM using general grey number are

explored here by setting the following 2 cases: the input

contains the general grey number and the weights contain

the general grey number. The FCM and the original FGCM

cannot cope with these 2 cases, but the algorithm this paper

proposed can tackle them.

1) THE INPUT CONTAINS GENERAL GREY NUMBERS

Consider a case following: there are two liquid height sensors

in tank 1, both sensors are not broken down, but one gives the

height of the liquid in [0.19, 0.21], another gives [0.29, 0.31],

the engineers cannot determine which scale is more appropri-

ate as they cannot measure it directly, but they ensure the true

liquid height falls either in [0.19, 0.21] or [0.29, 0.31]. So the

FIGURE 6. The proposed algortihm is compatible with the original FCM
and FGCM.

FIGURE 7. The results of FGCM using general grey number with the
general grey initial vector (41).

[0.19, 0.21] ∪ [0.29, 0.31] is the input value, it is transferred

into the form of general grey number 0.25(0.04) using (15)

and (17). Thus the initial vector is

Cinitial1

=
(

0.25(0.04) 0.01 0.55 0.58 0 0.05 0.2 0.1
)

. (41)

Using (41) as the input, the same output with the (39) should

be obtained according to the research about the convergence
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TABLE 3. The results of the FGCM using general grey number, whose
⊗w13 = 0.352(0.1864), compared with the FGCM using general grey
number with ⊗w13 = 0.21(0.20).

FIGURE 8. The results of FGCM using general grey number with
⊗w13 = 0.352(0.1864).

of the FCM [41]. The simulation results are shown in Fig. 7,

the model gets the same results with the FGCM using general

grey number in Section IV-B.

2) THE WEIGHTS CONFRONT CONTRADICTORY EXPERTS’

SUGGESTIONS

Now consider another case: one engineer believes that

⊗w13 = [0.01, 0.25], another thinks ⊗w13 = [0.4, 0.6] is

more appropriate. According to the experience, the first engi-

neer is more authoritative than the second, so the weight of

the first engineer’s weight is 0.6, and the weight of the second

engineer’s is 0.4. Use the (16) and (17), the ⊗w13 should be

0.352(0.1864). In this way, both two of the engineer’s advice is

considered. So we update the weight matrix accordingly and

use the initial vector (39) in the FGCM using general grey

number. The nodes vector gets into a steady state at the sixth

iteration. The steady state is shown in Table 3 and Fig. 8.

Because the ⊗w13 is the only changed weight, it can only

influence the node 1 and node 3: the values of these two nodes

have changed accordingly.

Next, a more complex situation is designed to show the

proposed algorithm can handle that most of the nodes and

weights are in the form of multiple intervals.

FIGURE 9. The results of FGCM and proposed method in a more complex
situation.

D. MORE COMPLEX SITUATION

This experiment is designed to show the availability of the

proposed algorithm and why we should use the FGCM using

general grey number instead of simply run many different

FGCMs when we encounter the multiple intervals data.

If most of nodes confront the the situation like

section IV-C1, i.e., most nodes’ input is multiple intervals or

discrete data, as shown in Table 4. And most of the weights

are made up by multiple intervals, as shown in Table 5.

Using the proposed model, the results are show in Fig. 9 and

Table 6.

If we want to use FGCM to solve the problem, we need to

run
∏n

i=1 Cni×
∏n×n

i=1,j=1 wnij = 35831808 times. Cni means

the node Ci contains Cni intervals. If Ci is a real number,

Cni = 1. n is the number of nodes. wni is the number of

intervals wij contained, if wij is a real number, wni = 1. It is

so time consuming that usingmany FGCMs to solve the cases

that the data contains multiple intervals. Actually, under the

platform of MacOS 10.15.5, using Python 3.7, the CPU is

intel core i7, 2.3 GHz, the total runtime of all FGCMs is

110980.1357s. On the other hand, the FGCM using general

grey number only needs to compute one time, and the runtime

is 0.0056s.

The results of multiple FGCMs are overlapped with each

other, after unioning the 35831808 intervals, the results are

also summarized in Fig. 9 and Table 6.

Whether can we average the multiple intervals before run-

ning the FGCM? The answer is no. There is no meaning to

average a set of interval grey numbers. For example, consider

the C1’s value [0.19, 0.21] ∪ [0.29, 0.31], if average the

[0.19, 0.21] and [0.29, 0.31] directly, the average result is

[0.24, 0.26], the greyness becomes 0.02. Obviously, the grey-

ness of [0.19, 0.21]∪[0.29, 0.31] is more than 0.02. Actually,

we can calculate the greyness of [0.19, 0.21] ∪ [0.29, 0.31]

is 0.04 according to Axiom 1. Thus, there is no meaning to

average intervals represented by interval grey numbers.
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TABLE 4. A more complex input.

TABLE 5. More complex weights.

TABLE 6. The results of the FGCM and FGCM using general grey number in a complex situation.

V. THE RESULTS ANALYSIS

In this section, a more thorough analysis of the experiments

above is given.

A. COMPATIBILITY AND AVAILABILITY

In Section IV-B, we run the FGCM and the proposed algo-

rithm independently. The FGCM is extended from the FCM

directly according to [40], and the FGCM using general grey

number is obtained from FGCM directly. The comparison

fairness is ensured by:

• The FCM, FGCM, and the proposed method share with

the same structure.

• The inputs and weights of FGCM are extended from

FCM directly according to [40].

• The inputs and weights of FGCM and proposed method

are the same.

• The FCM, FGCM, and the proposed method iterates 10

times correspondingly.

• The FCM, FGCM, and the proposed method using

the same type of activation function: sigmoid, and the

parameter λ is set as 1 for all models.

• The only difference is the data structure.

The comparation results show the proposed method are

compatible with the FGCM and FCM as expected: most of

the results of the FGCM and the proposed method cover

the results of FCM. And the kernel of the results of FGCM

and the proposed algorithm is approximately equal to the

FCMs.

The results of the proposed algorithm and the original

FGCM have almost the same greyness, which ensures com-

patibility in the perspective of greyness. When FGCM pro-

cessing the data, it calculates the upper bound and lower

bound of the interval grey number, the greyness is calcu-

lated in an implicit and passive way. The proposed model

calculates the greyness in an explicit and active way: first it

calculates the kernel and then calculates the greyness directly.

The uncertainty propagation of the FGCM using general

grey number is another interesting problem deserving more

explorations.

In Section IV-C and IV-D, we test if FGCM using gen-

eral grey number can handle the multiple intervals in nodes,

weights, and both of them. The results show that the proposed

algorithm can cope with the occasions that the nodes and

weights contain multiple intervals. A more complex case
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FIGURE 10. The histograms of the runtime of three algorithms.

is conducted also, it shows that the FGCM using general

grey number can handle the situation where both nodes and

weights contain multiple intervals. But when the original

FGCM encounter such occasions, it has to run many times,

the time consumed cannot be tolerant.

B. THE COMPUTATIONAL COMPLEXITY

In this part, the computational complexity is analyzed. Con-

sider a single FCM, FGCM, and FGCM using general grey

number. Because their structures are same with each other,

their computational complexity is the same, it isO(m×n× l),

where m is the number of weights, n is the number of nodes,

l is the number of iteration times.

Although a single FCM, FGCM, and FGCM using general

grey number share the same time complexity, the runtime

is different from each other. With the same m, n, and l,

the proposed algorithm’s runtime is longest, and the FGCM’s

is medium, the shortest is FCM’s. The reason is that the

arithmetical operations of general grey numbers are more

complex than the operations of real numbers and interval grey

numbers, especially for the addition. For the real number,

it just needs an addition operation of float number. For the

interval grey number, an addition operation needs 2 float

addition operations. For the general grey number, an addi-

tion operation needs 2 abs() functions, 2 multiplications,

2 divisions, and three additions. So, with the same n,m, and l,

the runtime of the proposed algorithm is longest.

We run the experiment in Section IV-B to show the runtime

of each algorithm because the fairness is ensured in that

experiment. The platform is MacOS 10.15.5, using Python

3.7, the CPU is intel core i7, 2.3 GHz. To eliminate the

randomness of a single simulation, we run 10000 times

experiments. The runtime distributions of each algorithm are

shown in Fig. 10. It can be found that the runtime of the three

algorithms obeys right-skewed distribution. The the medians

of FCM’s, FGCM’s, and proposed algorithm’s runtime are

0.000069, 0.003333, and 0.004359 correspondingly. We did

a hypothesis-testing to confirm the runtimes order. Because

the runtime data obey skewed distribution, Wilcoxon tests

were used. The results show, in our simulation environment,

the runtime of FGCM is longer than 46 times of FCM’s,

with the confidence of 99.96%; the runtime of FGCM using

general grey number is longer than 1.297 times of the original

FGCM, with the confidence of 99.93%.

However, when encountered the multiple interval input

or weights, The program’s time complexity becomes

O(
∏n

i=1 Cni ×
∏n×n

i=1j=1 wnij × m× n× l), where Cni means

the node Ci contains Cni intervals, if Ci is a real number,

Cni = 1, n is the number of nodes, wni is the number of

intervals wij contained, if wij is a real number, wnij = 1. But

apply the proposed algorithm, the program’s time complexity

is still O(m × n × l). Thus, in the perspective of runtime,

when
∏n

i=1 Cni ×
∏n×n

i=1j=1 wnij ≥ 1.297, i.e., once the

multiple intervals encountered, the proposed model is more

appropriate to be used.

VI. CONCLUSIONS AND FUTURE WORK

As a soft computing algorithm, FCM’s uncertainty modeling

ability has been improved by FGCM. But FGCM’s uncer-

tain modeling ability is limited due to the fact that it can

only deal with an interval grey number. Thus, the aim of

this paper is to enhance the FGCM’s uncertainty modeling

ability.

This paper introduces the general grey number into FGCM

to make it have the ability to deal with multiple interval

data. And two activation functions are deduced according to

GST and Taylor series. In this way, the FGCM using general

grey number is proposed. It transfers FGCM’s interval grey

number into the general grey number. The new algorithm’s

arithmetic operation and activation function are different

from the FGCM. Finally, three experiments are conducted

to validate the proposed algorithm of which the industrial

process control problem is the background. The first exper-

iment is employed to show the new model is compatible

with FCM and FGCM. The second experiment shows the

new model’s characteristics which the original FCM and

FGCM do not have. And the third experiment shows that the

proposed algorithm can handle the more complex situation:

both nodes and weights values are comprised of multiple

intervals.

In general, the main finding of this paper are as follows:
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• The new model has a stronger uncertainty modeling

ability since the general grey number is applied in the

FGCM.

• Two activation functions in the form of the general grey

number: sigmoid and tanh, make the new model can do

the reasoning under the uncertainty represented by the

general grey number.

• The reasoning ability and availability are proven by the

industrial process control problem.

The new algorithm combines the new theoretical achieve-

ments of GST and FCM. The FCM provides the basic algo-

rithm framework, and GST provides the representation and

arithmetic operation method. The general grey number’s

characteristics make the FGCM can process multiple inter-

vals, and the greyness will be kept during the inference. It can

be used in the situation where exists more uncertainty, such

as two or more sensors’ data, experts’ suggestions.

The proposed algorithm with general grey number

increases the complexity of the single FGCM, but when

encountered with the multiple interval input or weights,

the time complexity keeps the same. The other limitation is

that the results of the proposed method will be influenced by

the extreme values, but this can be easily overcome by data

cleaning or imputing in the data pre-processing.

Finally, there is still a lot of work to be undertaken in

the future, such as the investigation of convergence prop-

erty, the greyness propagation, the greyness’s convergence,

the applications of the FGCM using general grey number

et al. And more theoretical and application researches should

be conducted in order to construct an integrated theoretical

system of FGCM using general grey number, i.e., the Fuzzy

General Grey Cognitive Map (FGGCM).
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