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ABSTRACT

Ubuntu dialogue corpus is the largest public available dialogue corpus to make it
feasible to build end-to-end deep neural network models directly from the con-
versation data. One challenge of Ubuntu dialogue corpus is the large number of
out-of-vocabulary words. In this paper we proposed a method which combines
the general pre-trained word embedding vectors with those generated on the task-
specific training set to address this issue. We integrated character embedding into
Chen et al’s Enhanced LSTM method (ESIM) and used it to evaluate the effective-
ness of our proposed method. For the task of next utterance selection, the proposed
method has demonstrated a significant performance improvement against original
ESIM and the new model has achieved state-of-the-art results on both Ubuntu di-
alogue corpus and Douban conversation corpus. In addition, we investigated the
performance impact of end-of-utterance and end-of-turn token tags.

1 INTRODUCTION

The ability for a machine to converse with human in a natural and coherent manner is one of chal-
lenging goals in AI and natural language understanding. One problem in chat-oriented human-
machine dialog system is to reply a message within conversation contexts. Existing methods can be
divided into two categories: retrieval-based methods (Wang et al., 2013; Ji et al., 2014; Yan et al.,
2016b) and generation based methods (Vinyals & Le, 2015). The former is to rank a list of candi-
dates and select a good response. For the latter, encoder-decoder framework (Vinyals & Le, 2015)
or statistical translation method (Ritter et al., 2011) are usually used to generate a response. It is not
easy to main the fluency of the generated texts.

Ubuntu dialogue corpus (Lowe et al., 2015) is the public largest unstructured multi-turns dialogue
corpus which consists of about one-million two-person conversations. The size of the corpus makes
it attractive for the exploration of deep neural network modeling in the context of dialogue systems.
Most deep neural networks use word embedding as the first layer. They either use fixed pre-trained
word embedding vectors generated on a large text corpus or learn word embedding for the specific
task. The former is lack of flexibility of domain adaptation. The latter requires a very large training
corpus and significantly increases model training time. Word out-of-vocabulary issue occurs for both
cases. Ubuntu dialogue corpus also contains many technical words (e.g. “ctrl+alt+f1”, “/dev/sdb1”).
The ubuntu corpus (V2) contains 823057 unique tokens whereas only 22% tokens occur in the
pre-built GloVe word vectors1. Although character-level representation which models sub-word
morphologies can alleviate this problem to some extent (Huang et al., 2013; Bojanowski et al., 2016;
Kim et al., 2016), character-level representation still have limitations: learn only morphological and
orthographic similarity, other than semantic similarity (e.g. ‘car’ and ‘bmw’) and it cannot be applied
to Asian languages (e.g. Chinese characters).

In this paper, we generate word embedding vectors on the training corpus based on
word2vec (Mikolov et al., 2013). Then we propose an algorithm to combine the generated one with
the pre-trained word embedding vectors on a large general text corpus based on vector concatenation.
The new word representation maintains information learned from both general text corpus and task-
domain. The nice property of the algorithm is simplicity and little extra computational cost will be
added. It can address word out-of-vocabulary issue effectively. This method can be applied to most

1glove.42B.300d.zip in https://nlp.stanford.edu/projects/glove/
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NLP deep neural network models and is language-independent. We integrated our methods with
ESIM(baseline model) (Chen et al., 2017). The experimental results have shown that the proposed
method has significantly improved the performance of original ESIM model and obtained state-of-
the-art results on both Ubuntu Dialogue Corpus and Douban Conversation Corpus (Wu et al., 2017).
On Ubuntu Dialogue Corpus (V2), the improvement to the previous best baseline model (single) on
R10@1 is 3.8% and our ensemble model on R10@1 is 75.9%. On Douban Conversation Corpus, the
improvement to the previous best model (single) on P@1 is 3.6%.

Our contributions in this paper are summarized below:

1. We propose an algorithm to combine pre-trained word embedding vectors with those gen-
erated on the training corpus to address out-of-vocabulary word issues and experimental
results have shown that it is very effective.

2. ESIM with our method has achieved the state-of-the-art results on both Ubuntu Dialogue
corpus and Douban conversation corpus.

3. We investigate performance impact of two special tags on Ubuntu Dialogue Corpus: end-
of-utterance and end-of-turn.

The rest paper is organized as follows. In Section 2, we review the related work. In Section 3
we provide an overview of ESIM (baseline) model and describe our methods to address out-of-
vocabulary issues. In Section 4, we conduct extensive experiments to show the effectiveness of the
proposed method. Finally we conclude with remarks and summarize our findings and outline future
research directions.

2 RELATED WORK

Character-level representation has been widely used in information retrieval, tagging, language mod-
eling and question answering. Shen et al. (2014) represented a word based on character trigram in
convolution neural network for web-search ranking. Bojanowski et al. (2016) represented a word by
the sum of the vector representation of character n-gram. Santos et al (Santos & Zadrozny, 2014;
Santos & Guimaraes, 2015) and Kim et al. (2016) used convolution neural network to generate
character-level representation (embedding) of a word. The former combined both word-level and
character-level representation for part-of-speech and name entity tagging tasks while the latter used
only character-level representation for language modeling. Yang et al. (2016b) employed a deep
bidirectional GRU network to learn character-level representation and then concatenated word-level
and character-level representation vectors together. Yang et al. (2016a) used a fine-grained gating
mechanism to combine the word-level and character-level representation for reading comprehen-
sion. Character-level representation can help address out-of-vocabulary issue to some extent for
western languages, which is mainly used to capture character ngram similarity.

The other work related to enrich word representation is to combine the pre-built embedding produced
by GloVe and word2vec with structured knowledge from semantic network ConceptNet (Speer &
Havasi, 2012) and merge them into a common representation (Speer & Chin, 2016). The method
obtained very good performance on word-similarity evaluations. But it is not very clear how useful
the method is for other tasks such as question answering. Furthermore, this method does not directly
address out-of-vocabulary issue.

Next utterance selection is related to response selection from a set of candidates. This task is similar
to ranking in search, answer selection in question answering and classification in natural language
inference. That is, given a context and response pair, assign a decision score (Baudiš et al., 2016). Ji
et al. (2014) formalized short-text conversations as a search problem where rankSVM was used to
select response. The model used the last utterance (a single-turn message) for response selection. On
Ubuntu dialogue corpus, Lowe et al. (2015) proposed Long Short-Term Memory(LSTM) (Hochre-
iter & Schmidhuber, 1997) siamese-style neural architecture to embed both context and response
into vectors and response were selected based on the similarity of embedded vectors. Kadlec et al.
(2015) built an ensemble of convolution neural network (CNN) (Kim, 2014) and Bi-directional
LSTM. Baudiš et al. (2016) employed a deep neural network structure (Tan et al., 2015) where CNN
was applied to extract features after bi-directional LSTM layer. Zhou et al. (2016) treated each turn
in multi-turn context as an unit and joined word sequence view and utterance sequence view together
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by deep neural networks. Wu et al. (2017) explicitly used multi-turn structural info on Ubuntu dia-
logue corpus to propose a sequential matching method: match each utterance and response first on
both word and sub-sequence levels and then aggregate the matching information by recurrent neural
network.

The latest developments have shown that attention and matching aggregation are effective in NLP
tasks such as question/answering and natural language inference. Seo et al. (2016) introduced
context-to-query and query-to-context attentions mechanisms and employed bi-directional LSTM
network to capture the interactions among the context words conditioned on the query. Parikh et al.
(2016) compared a word in one sentence and the corresponding attended word in the other sentence
and aggregated the comparison vectors by summation. Chen et al. (2017) enhanced local inference
information by the vector difference and element-wise product between the word in premise an the
attended word in hypothesis and aggregated local matching information by LSTM neural network
and obtained the state-of-the-art results on the Stanford Natural Language Inference (SNLI) Corpus.
Wang et al. (2017) introduced several local matching mechanisms before aggregation, other than
only word-by-word matching.

3 OUR MODEL

In this section, we first review ESIM model (Chen et al., 2017) and introduce our modifications and
extensions. Then we introduce a string matching algorithm for out-of-vocabulary words.

3.1 ESIM MODEL

In our notation, given a context with multi-turns C = (c1, c2, · · · , ci, · · · , cm) with length m and
a response R = (r1, r2, · · · , rj , · · · , rn) with length n where ci and rj is the ith and jth word in
context and response, respectively. For next utterance selection, the response is selected based on
estimating a conditional probability P (y = 1|C,R) which represents the confidence of selecting
R from the context C. Figure 1 shows high-level overview of our model and its details will be
explained in the following sections.

Word Representation Layer. Each word in context and response is mapped into d-dimensional
vector space. We construct this vector space with word-embedding and character-composed em-
bedding. The character-composed embedding, which is newly introduced here and was not part
of the original forumulation of ESIM, is generated by concatenating the final state vector of the
forward and backward direction of bi-directional LSTM (BiLSTM). Finally, we concatenate word
embedding and character-composed embedding as word representation.

Context Representation Layer. As in base model, context and response embedding vector se-
quences are fed into BiLSTM. Here BiLSTM learns to represent word and its local sequence con-
text. We concatenate the hidden states at each time step for both directions as local context-aware
new word representation, denoted by ā and b̄ for context and response, respectively.

āi = BiLSTM(āi−1, wi), 1 ≤ i ≤ m, (1)

b̄i = BiLSTM(b̄j−1, wj), 1 ≤ j ≤ n, (2)

where w is word vector representation from the previous layer.

Attention Matching Layer. As in ESIM model, the co-attention matrix E ∈ Rm×n where Eij =
āTi b̄j . Eij computes the similarity of hidden states between context and response. For each word
in context, we find the most relevant response word by computing the attended response vector in
Equation 3. The similar operation is used to compute attended context vector in Equation 4.

ãi =

n∑
j=1

exp(Eij)∑n
k=1 exp(Eik)

b̄j , 1 ≤ i ≤ m, (3)

b̃j =

m∑
i=1

exp(Eij)∑m
k=1 exp(Ekj)

āi, 1 ≤ j ≤ n. (4)

After the above attended vectors are calculated, vector difference and element-wise product are used
to enrich the interaction information further between context and response as shown in Equation 5

3



Under review as a conference paper at ICLR 2018

c1 c2 ci

· · · · · ·
· · · · · ·

Word Representation
Layer · · · · · ·

r1 r2 rj rncm

Context Representation
Layer

· · ·
· · ·LS

TM

· · ·
· · ·LS

TM
ā
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Figure 1: A high-level overview of ESIM layout. Compared with the original one in (Chen et al.,
2017), the diagram addes character-level embedding and replaces average pooling by LSTM last
state summary vector.

and 6.

ma
i = [āi; ãi; āi − ãi; āi � ãi], 1 ≤ i ≤ m, (5)

mb
j = [b̄j ; b̃j ; b̄j − b̃j ; b̄j � b̃j ], 1 ≤ j ≤ n, (6)

where the difference and element-wise product are concatenated with the original vectors.

Matching Aggregation Layer. As in ESIM model, BiLSTM is used to aggregate response-aware
context representation as well as context-aware response representation. The high-level formula is
given by

va
i = BiLSTM(va

i−1,m
a
i ), 1 ≤ i ≤ m, (7)

vb
j = BiLSTM(vb

j−1,m
b
j), 1 ≤ j ≤ n. (8)

Pooling Layer. As in ESIM model, we use max pooling. Instead of using average pooling in
the original ESIM model, we combine max pooling and final state vectors (concatenation of both
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forward and backward one) to form the final fixed vector, which is calculated as follows:

va
max =

m
max
i=1

va
i , (9)

vb
max =

n
max
j=1

vb
j , (10)

v = [va
max; vb

max; va
m; vb

n]. (11)

Prediction Layer. We feed v in Equation 11 into a 2-layer fully-connected feed-forward neural
network with ReLu activation. In the last layer the sigmoid function is used. We minimize binary
cross-entropy loss for training.

3.2 METHODS FOR OUT-OF-VOCABULARY

Many pre-trained word embedding vectors on general large text-corpus are available. For domain-
specific tasks, out-of-vocabulary may become an issue. Here we propose algorithm 1 to combine
pre-trained word vectors with those word2vec (Mikolov et al., 2013) generated on the training set.
Here the pre-trainined word vectors can be from known methods such as GloVe (Pennington et al.,
2014), word2vec (Mikolov et al., 2013) and FastText (Bojanowski et al., 2016).

Algorithm 1: Combine pre-trained word embedding with those generated on training set.

Input : Pre-trained word embedding set {Uw|w ∈ S} where Uw ∈ Rd1 is embedding vector for
word w. Word embedding {Vw|w ∈ T} are generated on training set where Vw ∈ Rd2 . P
is a set of word vocabulary on the task dataset.

Output: A dictionary with word embedding vectors of dimension d1 + d2 for (S ∩ P ) ∪ T .

res = dict()
for w ∈ (S ∩ P ) ∪ T do

if w ∈ S ∩ P and w ∈ T then res[w] = [Uw;Vw];
else if w ∈ S ∩ P and w /∈ T then res[w] = [Uw;~0];
else res[w] = [~0;Vw];

end
Return res

where [; ] is vector concatenation operator. The remaining words which are in P and are not in the
above output dictionary are initialized with zero vectors. The above algorithm not only alleviates
out-of-vocabulary issue but also enriches word embedding representation.

4 EXPERIMENT

4.1 DATASET

We evaluate our model on the public Ubuntu Dialogue Corpus V2 2 (Lowe et al., 2017) since
this corpus is designed for response selection study of multi turns human-computer conversations.
The corpus is constructed from Ubuntu IRC chat logs. The training set consists of 1 million
< context, response, label > triples where the original context and corresponding response are
labeled as positive and negative response are selected randomly on the dataset. On both validation
and test sets, each context contains one positive response and 9 negative responses. Some statistics
of this corpus are presented in Table 1.

Douban conversation corpus (Wu et al., 2017) which are constructed from Douban group 3(a pop-
ular social networking service in China) is also used in experiments. Response candidates on the
test set are collected by Lucene retrieval model, other than negative sampling without human judg-
ment on Ubuntu Dialogue Corpus. That is, the last turn of each Douban dialogue with additional
keywords extracted from the context on the test set was used as query to retrieve 10 response can-
didates from the Lucene index set (Details are referred to section 4 in (Wu et al., 2017)). For the

2https://github.com/rkadlec/ubuntu-ranking-dataset-creator
3https://www.douban.com/group
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Train Validation Test

#positive pairs 499,873 19,560 18,920
#negative pairs 500,127 176,040 170,280
#context 957,119 19,560 18,920
Median #tokens in contexts 64 66 68
Median #tokens in responses 13 14 14

Table 1: Statistics of the Ubuntu Dialogue Corpus (V2).

performance measurement on test set, we ignored samples with all negative responses or all positive
responses. As a result, 6,670 context-response pairs were left on the test set. Some statistics of
Douban conversation corpus are shown below:

Train Validation Test

#context-response pairs 1M 50k 10k
#candidates per context 2 2 10
#positive candidates per context 1 1 1.18
Avg. # turns per context 6.69 6.75 6.45
Avg. #words per utterance 18.56 18.50 20.74

Table 2: Statistics of Douban Conversation Corpus (Wu et al., 2017).

4.2 IMPLEMENTATION DETAILS

Our model was implemented based on Tensorflow (Abadi et al., 2016). ADAM optimization algo-
rithm (Kingma & Ba, 2014) was used for training. The initial learning rate was set to 0.001 and
exponentially decayed during the training 4. The batch size was 128. The number of hidden units
of biLSTM for character-level embedding was set to 40. We used 200 hidden units for both context
representation layers and matching aggregation layers. In the prediction layer, the number of hidden
units with ReLu activation was set to 256. We did not use dropout and regularization.

Word embedding matrix was initialized with pre-trained 300-dimensional GloVe vectors 5 (Penning-
ton et al., 2014). For character-level embedding, we used one hot encoding with 69 characters (68
ASCII characters plus one unknown character). Both word embedding and character embedding ma-
trix were fixed during the training. After algorithm 1 was applied, the remaining out-of-vocabulary
words were initialized as zero vectors. We used Stanford PTBTokenizer (Manning et al., 2014) on
the Ubuntu corpus. The same hyper-parameter settings are applied to both Ubuntu Dialogue and
Douban conversation corpus. For the ensemble model, we use the average prediction output of
models with different runs. On both corpuses, the dimension of word2vec vectors generated on the
training set is 100.

4.3 OVERALL RESULTS

Since the output scores are used for ranking candidates, we use Recall@k (recall at position k in
10 candidates, denotes as R@1, R@2 below), P@1 (precision at position 1), MAP(mean average
precision) (Baeza-Yates et al., 1999), MRR (Mean Reciprocal Rank) (Voorhees et al., 1999) to
measure the model performance. Table 3 and Table 4 show the performance comparison of our
model and others on Ubuntu Dialogue Corpus V2 and Douban conversation corpus, respectively.

On Douban conversation corpus, FastText (Bojanowski et al., 2016) pre-trained Chinese embedding
vectors 6 are used in ESIM + enhanced word vector whereas word2vec generated on training set
is used in baseline model (ESIM). It can be seen from table 3 that character embedding enhances

4see tensorflow tf.train.exponential decay
5glove.42B.300d.zip in https://nlp.stanford.edu/projects/glove/
6https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

6



Under review as a conference paper at ICLR 2018

Model 1 in 10 R@1 1 in 10 R@2 1 in 10 R@5 MRR

TF-IDF (Lowe et al., 2017) 0.488 0.587 0.763 -
Dual Encoder w/RNN (Lowe et al., 2017) 0.379 0.561 0.836 -
Dual Encoder w/LSTM (Lowe et al., 2017) 0.552 0.721 0.924 -
RNN-CNN (Baudiš et al., 2016) 0.672 0.809 0.956 0.788
* MEMN2N (Dodge et al., 2015) 0.637 - - -
* CNN + LSTM(Ensemble) (Kadlec et al., 2015) 0.683 0.818 0.957 -
* Multi-view dual Encoder (Zhou et al., 2016) 0.662 0.801 0.951 -
* SMNdynamic (Wu et al., 2017) 0.726 0.847 0.961 -
ESIM 0.696 0.820 0.954 0.802
ESIM + char embedding 0.717 0.839 0.964 0.818
ESIMa (single) 0.734 0.854 0.967 0.831
ESIMa (ensemble) 0.759 0.872 0.973 0.848

Table 3: Performance of the models on Ubuntu Dialogue Corpus V2. ESIMa: ESIM + character
embedding + enhanced word vector. Note: * means results on dataset V1 which are not directly
comparable.

Model P@1 MAP MRR

TF-IDF (Wu et al., 2017) 0.180 0.331 0.359
RNN (Wu et al., 2017) 0.208 0.390 0.422
CNN (Wu et al., 2017) 0.226 0.417 0.440
LSTM (Wu et al., 2017) 0.320 0.485 0.527
BiLSTM (Wu et al., 2017) 0.313 0.479 0.514
Multi-View (Zhou et al., 2016; Wu et al., 2017) 0.342 0.505 0.543
DL2R (Yan et al., 2016a; Wu et al., 2017) 0.330 0.488 0.527
MV-LSTM (Wan et al., 2016; Wu et al., 2017) 0.348 0.498 0.538
Match-LSTM (Wang & Jiang, 2015; Wu et al., 2017) 0.345 0.500 0.537
Attentive-LSTM (Tan et al., 2015; Wu et al., 2017) 0.331 0.495 0.523
Multi-Channel (Wu et al., 2017) 0.349 0.506 0.543
SMNdynamic (Wu et al., 2017) 0.397 0.529 0.569
ESIM 0.407 0.544 0.588
ESIM + enhanced word vector (single) 0.433 0.559 0.607

Table 4: Performance of the models on Douban Conversation Corpus.

the performance of original ESIM. Enhanced Word representation in algorithm 1 improves the per-
formance further and has shown that the proposed method is effective. Most models (RNN, CNN,
LSTM, BiLSTM, Dual-Encoder) which encode the whole context (or response) into compact vec-
tors before matching do not perform well. SMNdynamic directly models sequential structure of
multi utterances in context and achieves good performance whereas ESIM implicitly makes use of
end-of-utterance( eou ) and end-of-turn ( eot ) token tags as shown in subsection 4.6.

4.4 EVALUATION OF SEVERAL WORD EMBEDDING REPRESENTATIONS

In this section we evaluated word representation with the following cases on Ubuntu Dialogue corpus
and compared them with that in algorithm 1.

WP1 Used the fixed pre-trained GloVe vectors 7.
WP2 Word embedding were initialized by GloVe vectors and then updated during the training.
WP3 Generated word2vec embeddings on the training set (Mikolov et al., 2013) and updated

them during the training (dropout).
WP4 Used the pre-built ConceptNet NumberBatch (Speer et al., 2017) 8.
7glove.42B.300d.zip in https://nlp.stanford.edu/projects/glove/
8numberbatch-en-17.06.txt.gz in https://github.com/commonsense/conceptnet-numberbatch
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WP5 Used the fixed pre-built FastText vectors 9 where word vectors for out-of-vocabulary words
were computed based on built model.

WP6 Enhanced word representation in algorithm 1.

We used gensim 10 to generate word2vec embeddings of dim 100.

Model 1 in 10 R@1 1 in 10 R@2 1 in 10 R@5 MRR

ESIM + char embedding (WP1) 0.717 0.839 0.964 0.818
ESIM + char embedding (WP2) 0.698 0.824 0.956 0.805
ESIM + char embedding (WP3) 0.708 0.836 0.962 0.813
ESIM + char embedding (WP4) 0.706 0.831 0.962 0.811
ESIM + char embedding (WP5) 0.719 0.840 0.962 0.819
ESIM + char embedding (WP6) 0.734 0.854 0.967 0.831

Table 5: Performance comparisons of several word representations on Ubuntu Dialogue Corpus V2.

It can be observed that tuning word embedding vectors during the training obtained the worse per-
formance. The ensemble of word embedding from ConceptNet NumberBatch did not perform well
since it still suffers from out-of-vocabulary issues. In order to get insights into the performance
improvement of WP5, we show word coverage on Ubuntu Dialogue Corpus.

Percent of #unique tokens Percent of #tokens

Pre-trained GloVe vectors 26.39 87.32
Word2vec generated on training set 8.37 98.8

eou and eot - 10.9
WP5 28.35 99.18

Table 6: Word coverage statistics of different word representations on Ubuntu Dialogue Corpus V2.

eou and eot are missing from pre-trained GloVe vectors. But this two tokens play an impor-
tant role in the model performance shown in subsection 4.6. For word2vec generated on the training
set, the unique token coverage is low. Due to the limited size of training corpus, the word2vec rep-
resentation power could be degraded to some extent. WP5 combines advantages of both generality
and domain adaptation.

4.5 EVALUATION OF ENHANCED REPRESENTATION ON A SIMPLE MODEL

In order to check whether the effectiveness of enhanced word representation in algorithm 1 depends
on the specific model and datasets, we represent a doc (context, response or query) as the simple
average of word vectors. Cosine similarity is used to rank the responses. The performances of the
simple model on the test sets are shown in Figure 2.
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Figure 2: Performance comparisons of the simple average model.

9https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
10https://radimrehurek.com/gensim/
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where WikiQA (Yang et al., 2015) is an open-domain question answering dataset from Microsoft re-
search. The results on the enhanced vectors are better on the above three datasets. This indicates that
enhanced vectors may fuse the domain-specific info into pre-built vectors for a better representation.

4.6 THE ROLES OF UTTERANCE AND TURN TAGS

There are two special token tags ( eou and eot ) on ubuntu dialogue corpus. eot tag is used
to denote the end of a user’s turn within the context and eou tag is used to denote of a user
utterance without a change of turn. Table 7 shows the performance with/without two special tags.

Model 1 in 10 R@1 1 in 10 R@2 MRR

ESIM + char embedding (with eou and eot tags) 0.717 0.839 0.818
ESIM + char embedding (without eou and eot tags) 0.683 0.812 0.793

Table 7: Performance comparison with/without eou and eot tags on Ubuntu Dialogue Corpus
(V2).

It can be observed that the performance is significantly degraded without two special tags. In order
to understand how the two tags helps the model identify the important information, we perform a
case study. We randomly selected a context-response pair where model trained with tags succeeded
and model trained without tags failed. Since max pooling is used in Equations 9 and 10, we apply
max operator to each context token vector in Equation 7 as the signal strength. Then tokens are
ranked in a descending order by it. The same operation is applied to response tokens.

It can be seen from Table 8 that eou and eot carry useful information. eou and eot
captures utterance and turn boundary structure information, respectively. This may provide hints to
design a better neural architecture to leverage this structure information.

context positive response

Model with tags
i ca n’t seem to get ssh to respect
a changes(0.932) authorize keys file

eou (0.920) is there anything i should do
besides service ssh restart ? eou (0.981)

eot (0.957) restarting ssh should n’t be
necessary . . sounds like there ’s(0.935) a
different problem . are you sure the file is
only readable by the owner ? and the . ssh
directory is 700 ? eou eot (0.967)

yeah , it was set up initially by ubuntu/ec2
, i(0.784) just changed(0.851) the file(0.837)
, but it ’s neither(0.802) locking out the old
key(0.896) nor(0.746) accepting the new one

eou

Model without tags
i ca n’t seem to get ssh to respect a
changes authorize keys file is there anything
i should do besides service ssh restart ?
restarting(0.930) ssh should n’t be necessary
.(0.958) . sounds like there ’s a different
problem . are(0.941) you sure(0.935) the
file(0.973) is only readable by the owner ?
and the . ssh(0.949) directory is 700 ?

yeah , it was set up(0.787) initially by
ubuntu/ec2 , i just changed the file(0.923) ,
but it ’s neither locking(0.844) out the(0.816)
old key nor(0.846) accepting(0.933) the new
one

Table 8: Tagged outputs from models trained with/without eou and eot tags. The top 6 tokens
with the highest signal strength are highlighted in blue color. The value inside the parentheses is
signal strength.
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5 CONCLUSION AND FUTURE WORK

We propose an algorithm to combine pre-trained word embedding vectors with those generated on
training set as new word representation to address out-of-vocabulary word issues. The experimental
results have shown that the proposed method is effective to solve out-of-vocabulary issue and im-
proves the performance of ESIM, achieving the state-of-the-art results on Ubuntu Dialogue Corpus
and Douban conversation corpus. In addition, we investigate the performance impact of two special
tags: end-of-utterance and end-of-turn. In the future, we may design a better neural architecture to
leverage utterance structure in multi-turn conversations.
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