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Abstract— In the past few years, a number of image encryption
algorithms based on chaotic maps have been proposed. A recently
proposed Chaotic-Key Based Algorithm (CKBA) is based on
a one-dimensional Logistic map. However, it has been shown
that the current CKBA model is unavoidably susceptible to
chosen/known-plaintext attacks, and that the high security claims
against ciphertext-only attack were overestimated by the authors.
In addition, the chaotic Logistic map yields unbalanced output.
In this paper we enhance the CKBA algorithm three-fold: (1)–
we change the 1-D chaotic Logistic map to a piecewise linear
chaotic map (PWLCM) to improve the balance property, (2)–
we increase the key size to 128 bits, and (3)– we add two more
cryptographic primitives and extend the scheme to operate on
multiple rounds so that the chosen/known-plaintext attacks are
no longer possible. The new cipher has much stronger security
and its performance characteristics remain very good. A security
analysis for the proposed system is performed and presented.

I. INTRODUCTION

The security of digital images has become increasingly more

important in today’s highly computerized and interconnected

world. The media content must be protected in applications

such as pay-per-view TV, confidential video conferencing,

medical imaging, and in industrial or military imaging sys-

tems. With the rise of wireless portable devices, many users

seek to protect the private multimedia messages that are ex-

changed over the wireless or wired networks. Unfortunately, in

many applications, conventional encryption algorithms (such

as AES) are not suitable for image and video encryption

[1–3]. In order to overcome this problem, many fast encryp-

tion algorithms specifically designed for digital images have

been proposed [4–7]. Some video encryption algorithms are

applicable to still images as well as videos [4], [7]. However,

a number of these algorithms have been shown to be insecure

[8–10].
The image encryption methods based on chaotic maps

attract considerable attention recently due to their potential

for digital multimedia encryption [2]. In [6], Yen and Guo

proposed a chaotic key-based algorithm (CKBA) for image

encryption. Subsequently, Li and Zheng [10] showed that the

security claims for CKBA have been vastly overestimated.

Not only is the complexity of a ciphertext-only attack against

CKBA far lower than originally claimed, but chosen/known-

plaintext attacks described in [10] can be effectively ap-

plied. As discussed in [10], the security against ciphertext-

only attacks can be improved by increasing the key length.

However, such a simple countermeasure cannot improve the

security against known/chosen-plaintext attacks. In this paper,

we essentially propose a new cryptosystem that is based on

the ideas from the original CKBA.

Following the suggestions in [10] the new algorithm oper-

ates on an increased key size of 128-bits. We also replace

the 1-D Logistic map in the original CKBA with a 1-D

piecewise linear chaotic map (PWLCM) used in [14], [15],

in order to improve the statistical properties of the secret

bits generated by the chaotic map. Next, a pseudo-random

permutation generator (PRPG) based on the new chaotic map

is introduced as an additional component in the encryption

and decryption processes to create a permutation box (P-

box), and thus add a much needed diffusion to the system.

We also introduce the addition modulo the pixel value space

to build a more complex substitution box (S-box). Finally,

multiple rounds are employed in the encryption and decryp-

tion processes to build a stronger security wall. The new

cryptosystem is significantly more secure than the original

CKBA against both ciphertext-only attack and chosen/known-

plaintext attacks, with an acceptable loss in speed.

The paper is organized as follows. Section II briefly intro-

duces the original CKBA scheme and the cryptanalysis results

reported in [10]. The framework of our proposed algorithm

is described in Section III, with its security analysis and

experimental results given in Sections IV and V respectively.

The last section concludes this paper.

II. ON THE SECURITY OF THE ORIGINAL CKBA

In essence, CKBA is a value transformation cipher. The

encryption of an M × N image I by CKBA is realized as

follows. Without loss of generality, assume 8|MN . Select two

secret 8-bit keys k1 and k2, and a secret 16-bit initial condition



x(0) of a one-dimensional chaotic system. Iteratively run the

chaotic system MN/8 − 1 times to produce a sequence of

16-bit numbers {x(i)}MN/8−1
i=0 , with {b(i)}2MN−1

i=0 being its

binary representation. If I(x, y) is an 8-bit pixel value in the

plaintext image I , with 0 ≤ x < M and 0 ≤ y < N ,

the corresponding ciphertext pixel I ′(x, y) is defined by the

following rule:

I ′(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

I(x, y) ⊕ k1, if b′(x, y) = 3;

I(x, y) ⊕ k1, if b′(x, y) = 2;

I(x, y) ⊕ k2, if b′(x, y) = 1;

I(x, y) ⊕ k2, if b′(x, y) = 0,

(1)

where b′(x, y) = 2b(l) + b(l + 1) and l = 2(x + yM).

As a security requirement, although the keys k1 and k2 are

chosen at random, it is required that the Hamming distance

between them be 4. That is, k1 and k2 should differ at exactly

|ki|/2 positions, where i ∈ {1, 2} and |ki| denotes the bitsize

of ki.

Finally, a quick observation shows that the decryption

process is the identical mapping since XOR is an involution.

As Li and Zheng showed [10], the security of the aforemen-

tioned algorithm was highly overestimated in [6], where the

authors claimed that the key search space for the ciphertext-

only attack is 22MN . The chosen/known-plaintext attacks were

not even considered in [6]. In fact, the actual key space for

the ciphertext-only attack is

2|x(0)|+|ki| ×
(|ki|
|ki|
2

)
,

where i = 1 or 2, which for the original set of parameters

enumerates to only 224 × 70.

Furthermore, the original scheme is subject to well-defined

chosen/known-plaintext attacks [10]. That is, CKBA can be

completely broken if only one plaintext image and its corre-

sponding ciphertext image are known. Suppose we have the

images I and its CKBA encryption I ′ obtained by using secret

key (k1, k2, x(0)). By virtue of the algorithm’s definition, I ′

can be obtained from I by XOR-ing it with a particular image

mask Im. Consequently, the image mask Im can be obtained

simply by XOR-ing images I and I ′. This mask can then be

used to completely decrypt all other images of same or smaller

size for which the same keys k1, k2, and x(0) were used. Fig. 1

demonstrates chosen/known-plaintext attack on CKBA where

the same key is used to encrypt both 128 × 128 “Lena” and

128×128 “Barb”. The attacker can easily recover “Barb” from

unknown ciphertext in Fig. 1(d).

In addition, Li and Zheng constructed a O(MN) brute

force algorithm for the CKBA scheme that could be used to

completely recover the keys k1, k2, and x(0), provided that

Im is known, which makes it possible to recover all images

encrypted with the same key, regardless of the image size [10].

In applied cryptography, a cryptosystem that is susceptible

to chosen/known-ciphertext attacks is not recommended in

general. Having to change the key from image to image is a

big drawback for many applications. Additionally, such cipher

cannot maintain security when applied to videos (sequences

of images). Therefore a cipher that can resist these kinds of

attacks is much more preferable.

Li and Zheng [10] proposed an improvement to CKBA

based on increasing the key sizes, but as they noted, this only

improves the resistance to a ciphertext-only attack, and does

nothing to prevent the chosen/known-ciphertext attacks. Once

a mask image is obtained, everybody can decrypt all images

of same or smaller size that were encrypted with that same

key by a simple XOR operation. Images of larger sizes could

be decrypted partially, or fully when applying the brute force

key recovery method with O(MN) complexity as described in

[10]. The main drawback of value substitution approaches such

as CKBA is their susceptibility to chosen/known-ciphertext

attacks via the substitution mask. Therefore, performing a

substitution only, i.e, using only an S-box alone, is not

recommended from a cryptanalytic point of view. However, if

we change this simple substitution by a substitution followed

by a variable pseudo-random permutation of the bits within

each pixel value, we would have created an SP-network which

is much harder to cryptanalyze [11]. Note that performing only

a permutation transformation to pixel values is not sufficient

either, since the pixel values whose binary representation

consists of all zeros or all ones will not be changed at

all. For example, the encryption of an X-ray medical image

(a) “Lena” (b) Encrypted “Lena” (c) XOR mask (d) Unknown cipher-
text

(e) Cracked ciphertext
“Barb”

Fig. 1. Chosen/known-ciphertext attack on CKBA: the attacker calculates (c) by XOR-ing (a) and (b), and then (e) by XOR-ing (c) and (d).



would reveal too much visual information since such an image

contains large blocks of black and white pixels whose binary

representation consists of all zeros and all ones, respectively.

Fig. 2 clearly shows this undesired effect.

Fig. 2. Weak X-ray image encryption as a result of pixel value permutation
without the substitution step (S-box).

Furthermore, an additional weakness exist in the systems

where S-box consists of only one cryptographic primitive and

where only one iteration of SP-network is performed during

the encryption. Namely, such systems are subject to differential

cryptanalysis [11]. To resist the differential chosen-plaintext

attack, it is necessary to further enhance the SP-network and

to introduce multiple-round iteration.

III. THE ENHANCED CKBA (ECKBA)

Let I be an M ×N image with b-byte pixel values, where a

pixel value is denoted by I(i), 0 ≤ i < M×N×b, scanned in

the raster order. Let Cμ be a one-dimensional chaotic map with

a real coefficient μ obtained by normalizing a 32-bit integer

μI32 to a chaotic interval. Let x(0) be the initial condition for

Cμ obtained by normalizing a 32-bit integer x(0)I32 to a point

range defined for Cμ. For a given n-bit segment x, let l(x)
denote its low significant half and h(x) its high significant

half. In addition, we define an S-box transformation σr and

its inverse σ−1
r as follows:

σr(u, v) =
{

u ⊕ v, if r is even;

u + v mod 256, if r is odd,
(2)

σ−1
r (u, v) =

{
u ⊕ v, if r is even;

u − v mod 256, if r is odd,
(3)

where u and v are two bytes.

Finally, let πi, 0 ≤ i < 8! be a permutation of degree 8 whose

index in the full symmetric group S8 sorted in lexicographical

cartesian order is i. Without loss of generality assume that

4|r and r|MNb, where r specifies the number of rounds. The

proposed encryption scheme is realized by Algorithm 1. In

the algorithm we make use of the following notation: if xI32

denotes a 32-bit integer variable, then x automatically denotes

its normalized floating-point representation that corresponds to

the relevant real interval, and vice versa.

Algorithm 1 transforms an image I using an SP-network

generated by a one-dimensional chaotic map and a 128-bit

secret key. The algorithm performs r rounds of an SP-network

Data: An M ×N × b plain-image I , 128-bit key k and the
number of rounds r.

Result: An M ×N × b cipher-image I ′.
begin1

x(r/4− 1)I32 ← l(l(k)); αI32 ← h(l(k))2
y(r/2− 1)I32 ← l(h(k)); βI32 ← h(h(k))3
I ′(−1)← 04
for i ← 0 to r/4− 1 do5

z(i)← 06
end7
for i ← 0 to MNb− 1 do8

if i = 0 mod r then9
if i > 0 then10

for j ← 0 to r/4− 1 do11
t ← i− r + 4j12
z(j)I32 ←13
I ′(t)||I ′(t + 1)||I ′(t + 2)||I ′(t + 3)

end14
end15
for j ← 0 to r/4− 1 do16

x(j)← Cα(x(j − 1 mod r/4))17
x(j)← x(j) + z(j) mod 118
c(4j)← l(l(x(j)I32))19
c(4j + 1) ← h(l(x(j)I32))20
c(4j + 2) ← l(h(x(j)I32))21
c(4j + 3) ← h(h(x(j)I32))22

end23
for j ← 0 to r/2− 1 do24

y(j)← Cβ(y(j − 1 mod r/2))25
x(j)← x(j) + z(j mod r/4) mod 126
d(2j)← l(y(j)I32) mod 8!27
d(2j + 1) ← h(y(j)I32) mod 8!28

end29
end30
I ′(i) ← I(i)⊕ I ′(i− 1)31
for j ← 0 to r − 1 do32

I ′(i)← σj(I
′(i), c(i + j mod r))33

I ′(i)← πd(i+j mod 8!)(I
′(i))34

end35
end36

end37
Algorithm 1: ECKBA Encryption

on each pixel. Lines 10-30 are used to generate two pseudo

random (chaotic) sequences {x} and {y} that are respectively

used in the substitution step in line 33 and a permutation step

in line 34. In lines 11-14 the next iteration of the chaotic map is

controlled using the previous cipher-block, which improves the

resistance against both linear and differential cryptanalysis. In

addition to this, line 31 of the algorithm implements a cipher-

block chaining (CBC) encryption mode.

To decrypt an encrypted image, one has to perform the

sequence of inverse transformations. The decryption algorithm

differs very little from the encryption algorithm (Algorithm 1),

and the differences are summarized in the following list:

• Replace I ′ by I in lines 4 and 13.

• Replace line 31 by I ′(i) ← I(i).
• Reverse the iteration in line 32 (iterate i from r − 1 to

0).

• Insert a new line I ′(i) ← I ′(i) ⊕ I(i − 1) between lines

35 and 36.



Data: An M ×N × b cipher-image I , 128-bit key k and the
number of rounds r.

Result: An M ×N × b plain-image I ′.
begin1

x(r/4− 1)I32 ← l(l(k)); αI32 ← h(l(k))2
y(r/2− 1)I32 ← l(h(k)); βI32 ← h(h(k))3
I(−1)← 04
for i ← 0 to r/4− 1 do5

z(i)← 06
end7
for i ← 0 to MNb− 1 do8

if i = 0 mod r then9
if i > 0 then10

for j ← 0 to r/4− 1 do11
t ← i− r + 4j12
z(j)I32 ← I(t)||I(t+1)||I(t+2)||I(t+3)13

end14
end15
for j ← 0 to r/4− 1 do16

x(j)← Cα(x(j − 1 mod r/4))17
x(j)← x(j) + z(j) mod 118
c(4j)← l(l(x(j)I32))19
c(4j + 1) ← h(l(x(j)I32))20
c(4j + 2) ← l(h(x(j)I32))21
c(4j + 3) ← h(h(x(j)I32))22

end23
for j ← 0 to r/2− 1 do24

y(j)← Cβ(y(j − 1 mod r/2))25
x(j)← x(j) + z(j mod r/4) mod 126
d(2j)← l(y(j)I32) mod 8!27
d(2j + 1) ← h(y(j)I32) mod 8!28

end29
end30
I ′(i)← I(i)31
for j ← r − 1 to 0 do32

I ′(i)← π−1
d(i+j mod 8!)(I

′(i))33
I ′(i)← σ−1

j (I ′(i), c(i + j mod r))34
end35
I ′(i)← I ′(i)⊕ I(i− 1)36

end37
end38

Algorithm 2: ECKBA Decryption

• Replace σ by σ−1 and π by π−1 in lines 33-34.

• Interchange lines 33 and 34.

For clarity and completeness, we present the ECKBA decryp-

tion algorithm here as Algorithm 2.

In Algorithm 1 and Algorithm 2, we need to obtain a

permutation for a given index in the lexicographically sorted

permutation group S8. The fastest way to achieve this is

by using a table-lookup approach. This approach is fast, but

the memory requirements are considerably high. In applica-

tions where this is not acceptable, such as small wireless

devices with low memory capacity, a computational approach

is needed. In the Appendix section we present an efficient

algorithm for computing the permutation of a given index

(Algorithm 3).

Both CKBA and ECKBA use a one-dimensional chaotic

map C with a specified initial condition x(0). The original

CKBA uses the following map, known as the Logistic map:

x(n) = Cμ(x(n − 1))
= μx(n − 1)(1 − x(n − 1)),

where μ ∈ (0, 4] and x(i) ∈ [0, 1]. The Logistic map has been

well-studied in the past, and it had been shown that the positive

constant μ should be greater than the accumulation point

3.569945672 in order to maintain the highly chaotic state. This

is a desirable property in cryptographic applications, and the

implementations of ECKBA and CKBA should limit μ to the

real interval (3.569945672, 4.0]. Regardless of that, due to the

poor balance property of a Logistic map (see Section IV), we

recommend ECKBA (and CKBA) implementations to use the

following Zhou’s map with better balance property [13]:

x(n) = Cμ(x(n − 1))

=

⎧⎨
⎩

x(n − 1) · 1
μ , if x(n − 1) ∈ [0, μ);

(x(n − 1) − μ) 1
0.5−μ , if x(n − 1) ∈ [μ, 0.5];

Cμ(1 − x(n − 1)), if x(n − 1) ∈ [0.5, 1);

where the positive real constant μ ∈ (0, 0.5) and x(i) ∈ (0, 1).
This map was a typical PWLCM with four linear segments and

firstly used by Zhou in [13]. Its properties as a chaotic digital

pseudo random sequence generator were further studied in in

[14], [15]. In Section IV we show how the PWLCM map

exhibits much better chaotic properties than the Logistic map.

All of the computer calculations involving enumerations of

a chaotic map Cμ are done in some finite precision. Using

the finite precision to create a recursive sequence defined in a

real domain may cause losing some of the important pseudo-

random properties, such as the long periodicity. As reported

previously (see Sec. 2 of [15] for a survey), when a chaotic

system is created using smaller finite computing precision, the

cycle length of the chaotic orbits, or the periodicity, becomes

much smaller than the number of all finite states in the

precision. The original CKBA uses a 16-bit precision, which

is too small. For ECKBA, the double-precision (i.e., 64-bit)

floating-point output is approximated and mapped into a 32-bit

integer. The periodicity of the ECKBA is further investigated

in Section IV.

IV. SECURITY ANALYSIS

In this section, we analyze ECKBA from a security point

of view. Our ECKBA scheme is conceptually based on the

CKBA scheme from [6], however, we claim that the security

of our scheme is much higher than that of the original CKBA.

A. The Key Space

In ECKBA, the key space is vastly increased. Namely, the

Algorithm 1 works with a 128-bit secret key, as opposed to

the original CKBA which works with a limited 32-bit secret

key. By today’s standards, a key of at least 64 bits, and

preferably of 128 bits or 256 bits is required for symmetric-key

cryptosystems [11]. The white-box analysis of CKBA from

[10] reveals that its actual key-size is log2(224×70) bits, which

enumerates to about 30 bits. Since the ECKBA scheme does



Avg. Percentage of Zeros Avg. Percentage of Ones

SL
16 0.47618128 0.52381873

SL
32 0.48781678 0.51218322

SP
16 0.49995843 0.50004157

SP
32 0.49998275 0.50001726

TABLE I

AVERAGE PERCENTAGES OF ZEROS AND ONES FOR EACH SET.

not have any limitations on the secret key, the key space is 128
bits. Therefore, a ciphertext-only attack based on exhaustive

key search (brute-force attack) is not feasible.

B. Logistic map vs. PWLCM

Since the pseudo-random output of a one-dimensional

chaotic map is used for both confusion and diffusion, we

need a map with better statistical properties. In the ECKBA

framework, it is particularly desired that the chosen chaotic

map satisfy the balance property (or uniformity). That is, the

number of zeros and ones in both of the output sequences

{x} and {y} must be roughly equal for large sample sizes. In

addition, the map must also have sufficiently large periodicity.

In chaos literature, it is well known that the Logistic map

has a non-uniform invariant density function [12], that is, it has

a poor balance property. On the other hand, the PWLCM map

has a uniform invariant density function and resembles a much

better uniformity [15]. Our experiments further confirm that

PWLCM have much better balance property in comparison to

the Logistic map.

We generated a set of 100 sequences for each chaotic map

with 16-bit and 32-bit precision, denoted by SL
16, SL

32, SP
16,

and SP
32, where the superscript represents the chaotic map

(the superscript P stands for PWLCM and L for Logistic

map) while the subscript n indicates an n-bit precision. Each

sequence in Sm
n contained 100000 n-bit words, totaling in

100000 × n bits, and was computed using randomly selected

parameters μ and x(0). The constant μ was normalized to

the chaotic range [3.6, 4.0] for the Logistic map, and to the

chaotic range (0, 0.5) for PWLCM. By the balance property

of pseudo-random sequences, it is expected that the number

of ones and zeros for such large sequences be roughly the

same. As Fig. 3 and Fig. 4 show, the sequences based on the

Logistic map had a visibly larger percentage of ones. On the

other hand, PWLCM was well-balanced since the number of

ones and zeros were about the same (Fig. 5 and Fig. 6). Table

I shows the average percentage of zeros and ones for each set.

In addition, it is found that the Zhou’s PWLCM map has the

following cryptographically good properties [15]: it is highly

chaotic with large positive Lyapunov exponent; it is exact,

mixing and ergodic; and it has an exponentially decreasing

auto-correlation.

C. SP-Network of ECKBA

In Section II we have discussed that CKBA is extremely vul-

nerable to the chosen/known-plaintext attack. By introducing
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the multi-round iteration, an S-box with two primitives, and

the variable permutation component in the encryption process,

we eliminate the types of attacks discussed in [10].

Suppose we have three M × N images I , I ′, and J ′.
Furthermore, suppose we know that I ′ is the encryption result

of I using key k, and that a ciphertext image J ′ was encrypted

using the same algorithm with the same key k. For ECKBA,

since each pixel is uniquely substituted and permuted multiple

times, the mask image Im obtained by simply XOR-ing the

plaintext image I with its corresponding ciphertext image

I ′ cannot be directly applied to recover the unknown plain-

image J encrypted with the same key. Figure 7 demonstrates
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an unsuccessful chosen/known-plaintext attack on ECKBA,

which is the analog to the attack in Fig. 1.

In the case of CKBA the attack was possible because of the

following property. Let p = I(i+jN) be a pixel value of I at

coordinates (i, j). Then p′ = I ′(i + jN) can be expressed as

p′ = p⊕ x, for some 8-bit binary string x. By the framework

of CKBA, q′ = J ′(i + jN) = q ⊕ x, where q = J(i + jN).
If q is unknown and p, p′ and q′ are known, then q is easily

calculated by the following calculation:

p ⊕ p′ ⊕ q′ = p ⊕ (p ⊕ x) ⊕ (q ⊕ x)
= p ⊕ p ⊕ x ⊕ x ⊕ q = q.

In the case of ECKBA, the corresponding equation cannot

be solved. Namely, if p′ = I ′(i + jN) and p∗ = I ′(i +
jN − 1) then p′ = p(r) where p(0) = p ⊕ p∗ and p(i) =
π(i)(σi(p(i−1), x(i))), 1 ≤ i ≤ r, for some 8-bit binary strings

x(1), . . . , x(r) and some permutations π(1), . . . , π(r) ∈ S8.

Similarly, if q′ = J ′(i + jN) and q∗ = J ′(i + jN − 1) then

q′ = q(r) where q(0) = q⊕q∗ and q(i) = π(i)(σi(q(i−1), x(i))).
However, it is not clear how to combine p(0), p′, q∗ and q′ to

recover q without knowing the the permutations π(1), . . . , π(r)

and the values x(1), . . . , x(r).

An important security weakness of CKBA is that if the

images I and J are very similar, which is the case for

consecutive video frames, then I ′ and J ′ will be just as similar

since I(i + jN) = J(i + jN) implies that I ′(i + jN) =
J ′(i + jN) if the same key was used to encrypt I and J .

However, ECKBA is implemented in the cipher-block chaining

(CBC) mode. In addition, in ECKBA the previous cipher block

is used to control the next iteration of the chaotic map. As a

result, the SP-network itself is dependant on the ciphertext

(and also on the plaintext). Thus, in the case of ECKBA,

I(i + jN) = J(i + jN) does not imply that I ′(i + jN) =
J ′(i + jN) as long as there exist some 0 ≤ x < i and

0 ≤ y < j for which I(x + yN) �= J(x + yN).

D. On the Periodicity in ECKBA

The results from [14], [15] show that finite-precision quanti-

zation errors affect the periodicity of a chaotic map. Assuming

that some finite precision is used, let the periodicity of a

chaotic map Cμ with the initial condition x be P x
μ . The

ECKBA scheme uses two distinct chaotic maps, Cα and

Cβ , with corresponding periodicities P
x(0)
α and P

y(0)
β . By

the definition of the encryption transformation, for the key

to start repeating both periodicities must be synchronized.

However, this means that the effective periodicity of ECKBA

is lcm(P x(0)
α , P

y(0)
β ), which normally is of much larger mag-

nitude than either of the two periodicities. In addition to

this, the ECKBA encryption algorithm directly perturbs the

chaotic orbit of the one-dimensional chaotic map. Perturbing

a chaotic system usually prolongs the cycle length of a pseudo-

orbit [15]. In Sec. 6.1.3. of [15], it was argued that the

perturbation of the chaotic orbit has better performance than

the perturbation of the control parameter.

V. EXPERIMENTS

In Section IV we showed that ECKBA is much more secure

than the original CKBA from [6]. In this section, we run exper-

iments to evaluate the performance of ECKBA in comparison

to CKBA. Since ECKBA introduces additional steps, and it

uses higher precision and a more complex map than CKBA, its

is expected that the running time of the encryption/decryption

algorithm increases. We have implemented both ECKBA and

CKBA methods. ECKBA was implemented both using table-

lookup approach and the computational approach using Algo-
rithm 3 from the Appendix section. Both modes of ECKBA

(a) “Lena” (b) Encrypted “Lena” (c) XOR mask (d) Unknown cipher-
text (the original im-
age was “Barb”)

(e) Failed attempt to
crack the ciphertext of
“Barb”

Fig. 7. Unsuccessful chosen/known-ciphertext attack on ECKBA: the attacker calculates (c) by XOR-ing (a) and (b), and then (e) by XOR-ing (c) and (d).



used a PWLCM chaotic map iterated using a 64-bit double

floating-point precision, and the resulting sequence was further

clipped to a 32-bit precision. CKBA was implemented by

using the Logistic map, and the precision was kept at 16
bits in order to keep the original framework described in [6].

We measured performances for selected standard images of

different sizes, since the content of the image hardly affects the

execution time of both CKBA and ECKBA. The performance

experiments were run on a 1.3GHz Intel(R) Pentium(R) M

processor, and the results are summarized in Tables II, III

and IV. The experimental results suggest that the running

time of ECKBA implemented using a table-lookup approach

is relatively small. The encryption speed is still high, but the

security level is considerably improved, as shown in Section

IV. For larger images, the ECKBA implementation using the

computational approach for selecting random permutations

performs slower. However, such an approach is likely to be

used with small devices of limited memory capacity that usu-

ally deal with smaller images, due to the obvious restrictions

such as the small storage size, the small display size, etc. For

smaller images, ECKBA implemented using the computational

approach has a satisfactory performance.

VI. CONCLUSIONS

We proposed a novel image encryption algorithm, called

ECKBA, based on the previously proposed method by Yen

and Guo [6]. Our approach resembles some similarity to the

Yen-Guo approach, but attains a much higher security level.

The enhanced security comes from the following changes to

the original algorithm: a larger key space, a more chaotic one-

dimensional map, and the use of a multi-round SP-network.

As the experiments suggest, the speed of our algorithm is

still very good. There are other possible improvements that

could be considered. For example, the encryption process

could also include a transformation of blocks of pixels, or

preferably of the entire image. CKBA and ECKBA only

transform the pixel values. Improved confusion and diffusion

is expected when applying transformations on the positions

of pixels as well. It is preferred that the permutations that

reorder the pixel positions be of high degree. Currently, we

are investigating pseudo-random permutation generators based

on chaotic maps and group bases (logarithmic signatures) of

permutation groups [16], [17], that are capable of efficiently

producing permutations of much higher degrees.

APPENDIX

In the Appendix section we present an algorithm for com-

puting the permutation from the full symmetric group Sn

that corresponds to a given index in its lexicographically

sorted cartesian form. Permutations are usually given in their

standard form. Suppose π ∈ S8, and in its standard form π is

given by:

π =
(

1 2 3 4 5 6 7 8
6 3 8 5 7 1 4 2

)
.

Image M×N × b Encryption Time

boat 128 × 96 × 1 0.002 sec

mandril 176 × 144 × 1 0.004 sec

camera 256 × 256 × 1 0.008 sec

barb 512 × 512 × 1 0.01 sec

lena 1024 × 1024 × 1 0.03 sec

tulips 768 × 512 × 3 0.04 sec

TABLE II

PERFORMANCE OF CKBA ENCRYPTION

Image M × N × b Enc. time r = 4 Enc. time r = 8

boat 128 × 96 × 1 0.004 sec 0.008 sec

mandril 176 × 144 × 1 0.01 sec 0.02 sec

camera 256 × 256 × 1 0.04 sec 0.06 sec

barb 512 × 512 × 1 0.16 sec 0.27 sec

lena 1024 × 1024 × 1 0.65 sec 1.11 sec

tulips 768 × 512 × 3 0.73 sec 1.25 sec

TABLE III

PERFORMANCE OF ECKBA ENCRYPTION USING TABLE-LOOKUP

APPROACH

Image M × N × b Enc. time r = 4 Enc. time r = 8

boat 128 × 96 × 1 0.01 sec 0.02 sec

mandril 176 × 144 × 1 0.03 sec 0.04 sec

camera 256 × 256 × 1 0.09 sec 0.12 sec

barb 512 × 512 × 1 0.39 sec 0.49 sec

lena 1024 × 1024 × 1 1.57 sec 1.99 sec

tulips 768 × 512 × 3 1.77 sec 2.24 sec

TABLE IV

PERFORMANCE OF ECKBA ENCRYPTION USING COMPUTATIONAL

APPROACH

We can also represent π in its cartesian form, also called

the brackets form. When defined in the cartesian form, π looks

as follows:

π = [ 6 3 8 5 7 1 4 2 ].

Without the square brackets, this represents a more natural

way of storing permutations in a computer. The full symmetric

group S8 can be represented as an ordered set {πi}8!−1
i=0 of

permutations defined in their cartesian form and sorted in

a lexicographic order. In this set, each permutation have a

unique index x between 0 and 8! − 1, and πx denotes such a

permutation.
If π is a permutation of degree n and 0 ≤ i < n, let π[i]

denote a value at (i + 1)th position of π. For a given index

x the following algorithm could be used to computationally

retrieve a permutation πx in the ordered set {πi}n!−1
i=0 .

Algorithm 3 can be utilized for ECKBA encryption and

decryption in applications where a table-lookup is too memory

intensive or demanding for the particular device in use. Uti-

lizing such a computational approach decreases the amount of

needed memory, but affects the performance (see Section V

for experimental results).



Data: Index x satisfying 0 ≤ x < n!, and the permutation
degree n.

Result: Permutation πx.
begin1

m ← n− 12
τ ← the identity of Sn3
for 0 ≤ i < n do4

πx[i] ← τ [� x
m!
�]5

for � x
m!
� ≤ j < m do6

τ [j] ← τ [j + 1]7
end8
x ← x mod m!9
m ← m− 110

end11
end12

Algorithm 3: Computing the permutation for given index.
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