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Enhanced absorption in all-
dielectric metasurfaces due to 
magnetic dipole excitation
Pavel D. Terekhov1,2,3,4, Kseniia V. Baryshnikova  4, Yakov Greenberg1,2,3, Yuan Hsing Fu5, 
Andrey B. Evlyukhin4,6,7, Alexander S. Shalin4 & Alina Karabchevsky1,2,3

All-dielectric nanophotonics lies at a forefront of nanoscience and technology as it allows to control 

light at the nanoscale using its electric and magnetic components. Bulk silicon does not experience any 

magnetic response, nevertheless, we demonstrate that the metasurface made of silicon parallelepipeds 
allows to excite the magnetic dipole moment leading to the broadening and enhancement of the 

absorption. Our investigations are underpinned by the numerical predictions and the experimental 

verifications. Also surprisingly we found that the resonant electric quadrupole moment leads to the 
enhancement of reflection. Our results can be applied for a development of absorption based devices 
from miniature dielectric absorbers, filters to solar cells and energy harvesting devices.

Absorbing and accumulating energy from light could enable smart sensors to work inde�nitely. �erefore, many 
groups are joining their e�orts in the academic and technological level to develop devices which will facilitate the 
energy absorption1–3. Even a few decades ago, silicon �lms have been used to construct solar cells and energy absorp-
tion devices4,5. Since then, there have been also discovered ways to use plasmonic6,7 and dielectric8–11 structures for 
the energy absorption and accumulation. �us, the energy can be absorbed in a wide spectral range using low-loss 
dielectric materials if just would be possible to change their optical properties. �e optical properties of dielectric 
metamaterials have been attracting signi�cant attention in recent years mainly because of their possibility to support 
the excitation of both electric and magnetic multipole resonances12–19. Owing to this e�ect, all-dielectric metasur-
faces are widely used for the controllable light manipulation, particularly to control phase20,21, polarization22–24 and 
transmission25–27. In addition, dielectric materials are in high demand due to their possibility to concentrate the 
electric �eld without Joule losses28,29. �e opportunity to control the light scattering can be widely applied to develop 
optical nanoantennas30–33, radiation sources34–37, antire�ective coatings38,39, cloaking techniques40, to improve MRI 
devices41,42, sensors29 and many others. �e multipole decomposition approach43,44 is one of the widely-used meth-
ods to analyse the optical properties of dielectric metamaterials12,45–49. We, therefore, use the multipole decomposi-
tion to understand the contribution of multipoles to the absorption e�ect of the metasurfaces that we study.

Here, we study the absorption of light in the silicon metasurfaces on the glass substrate depicted in Fig. 1. In 
our recent numerical studies we explored the properties of dielectric nanoparticles50,51. However, the behavior of 
particles in an array is not obvious even if their behavior as a single particle is well understood. �erefore, here 
we are taking a step forward and explore the optical properties of the collective response of the array of particles -  
the metasurfaces, to obtain the noticeable light absorption. In the current level of technology, the considered 
silicon parallelepipeds can be fabricated relatively easy using di�erent techniques. We built the numerical model 
to analyse the transmission and re�ection properties of such structures, as well as to calculate the multipole 
moments excited in every particle of the metasurface. During our analysis we found that the high-order multipole 
excitations directly a�ect the optical properties of the metasurface. �us, for the described structure, the electric 
quadrupole (EQ) moment can be associated with enhanced re�ection and the magnetic dipole (MD) moment 
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provides the extraordinary absorption. Moreover, the interference between the total electric dipole (TED) and 
MD moments leads to the realization of the Kerker-type e�ects in the considered metasurface. In addition to the 
numerical calculations, here we describe the experimental results at the nanoscale. We fabricated the periodic 
metasurface starting from an amorphous silicon thin �lm using the focused-ion beam (FIB) technique and ana-
lysed its properties. For this, we �rst deposited the amorphous silicon layer of the height of 214 nm and then cre-
ated the periodic metasurface of the parallelepipeds with the square base of D = 260 nm and the lattice constant of 
400 nm. �e transmission, re�ection, and absorption spectra of the fabricated metasurface were experimentally 
measured and explained by the multipole decomposition approach. In addition, the experimental results show 
the good agreement with theoretical predictions.

Theoretical Background
To analyse the multipole behavior in the periodic metasurface, we use the same theoretical background as for the 
single particles we considered in ref.44 however numerically we construct the model with the boundary conditions 
dictating the periodic nature of the metasurface. Here, we integrate the light induced polarization over a single 
element of the in�nite periodic metasurface to calculate the multipole contributions to the scattering electric �eld 
amplitude Esca

0 . In our multipole decomposition approach, we use the electric dipole (ED) moment p, the mag-
netic dipole (MD) moment m, the electric quadrupole (EQ) moment Q̂, the magnetic quadrupole (MQ) moment 
M̂, the toroidal dipole moment T and the electric octupole moment Ô44. �e electric and toroidal dipole moments 
which are the multipole moments of the �rst and third orders, respectively, can be treated as the total electric 
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where k0 and kd are the wave numbers in vacuum and in surrounding medium respectively, ε0 is the vacuum 
dielectric constant.

Considering the multipole decomposition spectrum with this approach, we can associate the multipole response 
of every particle in the array with the total optical response of the entire metasurface. Note that the Eq. 1 describes 
the scattering amplitude in homogeneous medium with εd. In the next sections, we present the numerical and exper-
imental results describing the broadband absorption e�ect obtained with the designed metasurface. For qualitative 
estimations of the multipole contributions to the transmission and re�ection spectra we use Eq. 1 with n = (0,0,1).

Figure 1. �e proposed metasurface for e�cient light absorption. It is constructed from silicon parallelepipeds 
with the height of 214 nm, the base edge of 260 nm and the lattice constant of 400 nm, on a substrate with 
refractive index of n = 1.51. �e metasurface is embedded in air and illuminated by polychromatic light at 
normal incidence as indicated by k.
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Results
Numerical results. To explore the wide-band absorption e�ect, we consider the metasurface which con-
sists of the parallelepipeds with the square base edge of 260 nm, the height of 214 nm and the lattice constant of 
400 nm. First, we calculate the transmission, re�ection, and absorption coe�cients (Fig. 2a). Second, we perform 
the multipole analysis (Fig. 2b). Here, the metasurface is illuminated from the superstrate. However, according 
to the numerical calculations, the change of illumination direction has a negligible e�ect on the transmission, 
re�ection, absorption spectra and multipole contributions to the scattered �led.

Figure 2 shows the calculated transmission, re�ection, and absorption spectra. �e absorption peak at the 
wavelength of λ = 800 nm corresponds to the dip in the transmission spectrum. At λ = 725 nm, there is the 
well-pronounced absorption gap which corresponds to the transmission peak around this wavelength. To analyse 
the contribution of the multipole moments in the absorption broadening e�ect, we calculated the multipole 
decomposition of the electric �eld amplitude Esca

0  presented in Fig. 2b. Figure 2c shows the calculated multipole 
phases of the total electric dipole D, magnetic dipole m and electric quadrupole Q moments in the considered 
structure. �e area of the broadband metasurface absorption is enclosed in the dashed bluish box.

Let us consider the region around λ = 725 nm. One can note that the TED and MD moments have similar 
contributions to the electric �eld amplitude Esca

0 , which leads to the transmission peak due to the well-known 
Kerker e�ect51,53. �e multipole phases are presented in Fig. 2c. �e phases of the TED and MD moments tend to 
merge starting from λ = 675 nm. �e similar phase of these moments is the second condition to achieve the 
Kerker e�ect. However, one can see the broad electric quadrupole resonance area around the same wavelength 
(λ = 675 nm). Due to the EQ excitation, the transmission in this range still does not increase crucially for this 

Figure 2. (a) �e calculated transmission  , re�ection  and absorption  coe�cients for the silicon 
metasurface on the borosilicate glass with the structure parameters as indicated in Fig. 1. �e contribution of 
the MD moment is presented (similar to the b) as the dashed line for the convenient comparison. (b) �e 
absolute values of the multipole contributions to the electric �eld amplitude E( )sca

0  scattered by the metasurface. 
(c) �e phase spectra of the absolute values of the contributions of the TED, MD and EQ moments calculated 
for n = (0, 0, 1). �e area of the broadband absorption by the metasurface (compared to the thin �lm) is 
enclosed in the blue box bounded by the dashed line.
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structure. �e re�ection coe�cient in Fig. 2 in the range of 600 nm ≤ λ ≤ 775 nm can be associated with the 
dominating EQ resonant contribution to the scattering process. �e MQ resonance in this area is not dominant 
enough to entail the strong interference and to provide the additional suppression of the backscattering in the 
considered structure54. In the region around λ = 775 nm, the transmission spectrum experiences a dip. �is dip 
appears together with the well-pronounced absorption peak in this area, so the re�ection does not crucially 
increase. It could be noted that the mentioned absorption peak is associated with the excitation of the MD 
moment resonance at the same wavelengths region as in Fig. 2. �e absorption in the region of the lower wave-
lengths appears due to the usual properties of silicon in the visible range. In the region of 825 nm ≤ λ ≤ 900 nm, 
the absorption decreases, and despite the magnitudes of the TED and MD moments become di�erent, their 
phases become similar. Together with the decrease in the EQ moment contribution, the Kerker-type e�ect is 
realized and therefore the transmission increases.

In�uence of the substrate. To study the in�uence of the glass substrate, we analysed the structure made of the 
same nanoparticles but in this case, they are embedded in air. In Fig. 3 one can note that the EQ moment res-
onant region experiences a blue shi� and hence the re�ection at 600 nm ≤ λ ≤ 750 nm dramatically decreases 
compared to the Fig. 2. Due to the lower contribution of the EQ moment to the light scattering process, the pro-
nounced transmission peak appears at λ = 675 nm. �is e�ect can be obtained due to the in-phase interaction of 
the TED and MD moments as one can see in Fig. 3c. However, the wide absorption peak due to the MD moment 
resonance remains almost unchanged at λ = 775 nm. It is interesting to note that the small MQ resonance at 
λ ≈ 630 nm also experiences the blue shi�.

Figure 3. (a) �e calculated transmission  , re�ection  and absorption  coe�cients for the silicon 
metasurface in air with the structure parameters as indicated in Fig. 1 (but the substrate here has n = 1). Athin �lm 
is presented to compare the metasurface absorption and the absorption of the thin �lm with the similar 
dispersion. �e contribution of the MD moment is presented (similar to the Fig. 3b) as the dashed line for the 
convenient comparison. (b) �e absolute values of the multipole contributions to the electric �eld amplitude 
Esca

0  scattered by the metasurface in air. (c) �e phase spectra of the absolute values of the contributions of the 
TED, MD, EQ and MQ moments calculated for n = (0, 0, 1). �e area of the broadband absorption of the 
metasurface (compared to the thin �lm) is enclosed in the dashed blueish box.
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We note that the presence of the substrate does not crucially in�uence the absorption peak at λ = 775 nm. In 
Fig. 3a, we also compare the absorption of the considered metasurface and the absorption of the thin silicon �lm 
with the same dispersion spectrum. It can be seen that the absorption of continuous silicon �lm does not experi-
ence dramatic changes in the considered wavelength range; however, it increases more than twice at λ = 775 nm. 
Importantly, the broadening of the absorption e�ect is realized entirely due to the metasurface parameters and 
it is not associated with the natural properties of silicon. Worth noting that spectral region of MD resonant 
excitation corresponds to the enhancement of electric �eld concentration inside each parallelepipedal particle 
constructing the metasurface (Fig. 4). Figure 4 con�rms that the electric �eld is more e�ciently concentrated 
inside the nanoparticle for MD resonant excitation. �us, such an increase in broadband absorption and electric 
�eld concentration inside the particle is an arti�cial property of the designed silicon metasurface.

Experimental results. To prove the concept of the engineered absorption to be enhanced and broad by the 
silicon metasurface, we milled the thin �lm silicon on the area of 20 × 20 µm and the thickness of 214 nm using 
the focused ion beam technique. �e scanning electron micrograph (SEM) of the fabricated metasurface shows 
the fabricated pattern (Fig. 5a). To perform the experimental measurements, we constructed the home-made 
setup at BGU shown in Fig. 5b. Schematics of the experimental setup is shown in Fig. 5c. �e transmission spec-
trum of the sample was measured in the wavelength range of 600–900 nm55 and shown in Fig. 6. For re�ection, 
the same objective lens (5x) was used for light incidence and collection.

We note that the transmission peaks and dips qualitatively coincident with the numerical predictions. �e 
higher transmission through the fabricated sample can be explained by weaker excitation of electric quadrupole 
moment EQ due to the fabrication tolerances and the imperfect parallelepipedal shape of the milled meta-atoms. 
�is reason also explains the lower re�ection in the area of resonant excitation of EQ moment (the comparison 
of the measured and calculated re�ection spectra is presented in Fig. 6b). �e re�ection measurements have been 
performed using the customized micro-spectrometer setup for the transmission and re�ection measurements. 
�e combination of the experimentally measured transmission and re�ection spectra also proves the realization 
of the absorption peak around λ = 775 nm.

Conclusion
To conclude, here we proposed the nano-scale metasurface for energy harvesting applications. We demonstrated 
that despite having no magnetic response as a bulk, the patterned silicon metasurface experiences magnetic 
response leading to the enhancement and broadening of the absorption. We found that the metasurface made of 
the parallelepipeds supports excitations of the multipole moments up to the third order. Comparing to nanodisk 
resonators, particles of rectangular shape ensure an additional degree of freedom in terms of the geometry to tune 
the optical properties of the whole structure. We noticed that the multipole behavior in the metasurface unit cells 
is related to the transmission properties of the whole metasurface. We showed that the excited electric quadrupole 
contributes to the abrupt decrease in overall transmission. However, the resonant magnetic dipole dictates the 
appearance of the absorption peak. It appears that the silicon metasurface absorbs up to 65% of light in the region 
where silicon is the low-loss material. In fact, as we showed the thin �lm experiences absorption twice lower in 
the same region. We also showed that the interference between the total electric dipole and the magnetic dipole 
moments leads to the enhanced transmission e�ect. Our results pave the road toward new generation of energy 
harvesting devices at the nanoscale just due to the light-manipulation with the high-order multipole excitations.

Methods
Numerical modelling. The numerical calculations have been performed with the RF module of the 
COMSOL Multiphysics commercial package using the �nite element method (FEM). �e substrate in�uence has 
been taken into account using the two-step numerical model. �e multipole excitations have been analysed using 
the multipole decomposition approach considering the irreducable Cartesian representations of the multipole 
moments.

Figure 4. �e calculated spectrum of average value of full electric �eld inside the nanoparticle for the silicon 
metasurface in air with the structure parameters as indicated in Fig. 1 (but the substrate here has n = 1).
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Fabrication. �e silicon �lm has been deposited in BGU using the system equipped with the 3 kW 4 pocket 
e-Gun, the thickness monitoring, the sample heater and the indirect temperature monitoring. The disper-
sion of n & k parameters measured with this system is presented in Fig. 7. �e metasurface has been milled at 

Figure 5. (a) �e scanning electron micrograph (SEM) of the parallelepipedal dielectric metasurface fabricated 
by a focused ion beam milling, top view. (b) �e photograph of the home-made experimental setup for the 
transmission measurements constructed in BGU. (c) �e schematics of the experimental apparatus. �e 
broadband source is coupled to the single mode optical �ber. �e �ber illuminates the metasurface with the 
divergence angle of 7.4°. �e transmitted light is split with the 50:50 beamsplitter for (1) the imaging of the 
metasurface and (2) the collection of transmitted light. �e collection is performed with the optical spectrum 
analyser connected to the multimode optical �ber (MMF). �e transmitted light was coupled into the MMF 
with the ×10 objective.

Figure 6. �e comparison of the experimentally measured (the smooth curves labeled by the superscript E) 
and the numerically calculated (the dashed curves labeled by the superscript N) transmission   and re�ection 
 spectra of the metasurface. E  represents the experimentally measured absorption, calculated as 
1 − T E  − RE .
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Technion-Israel Institute of Technology, using the the dual beam focus ion beam (FIB) machine “Helios nano-lab 
G3” manufactured by �ermo Fisher Scienti�c (FEI). �e sample was milled with gallium cations. Since it is 
known that the glancing incidence milling produces fewer larger e�ect on the silicon lattice strains as compared 
to the normal incidence milling, we milled our sample at normal incidence and at low energy to minimize the 
lattice damage. In addition, according to the numerical calculations, the slope angle due to the FIB milling does 
not crucially a�ect the properties of the structure, because the electric �eld mostly concentrates in the particle 
volume.

Experiment. �e ellipsometry measurements have been conducted in BGU with the QDI alpha-SE spec-
trosopic ellipsometer. �e experiment in BGU has been conducted with the home-made setup for the transmis-
sion measurements. �e sample was illuminated from the close distance dexp ≈ 0.05 mm through the single mode 
�ber using the supercontinuum white light source “Fianium WhiteLase”. Transmitted light has been collected 
with the x10 optical objective and coupled to the multimode �ber which is in turn was connected to the optical 
spectrum analyser “Yokogawa AQ6370D”. �e schematics of this home-made setup is shown in Fig. 5c. �e 
experimental measurements of the transmission and re�ection in DSI have been conducted with the customized 
micro-spectrometer setup.
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