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ENHANCED ACCURACY BY POST-PROCESSING FOR FINITE ELEMENT

METHODS FOR HYPERBOLIC EQUATIONS

BERNARDO COCKBURN�, MITCHELL LUSKINy, CHI-WANG SHUz, AND ENDRE S�ULIx

Abstract. We consider the enhancement of accuracy, by means of a simple post-processing technique,

for �nite element approximations to transient hyperbolic equations. The post-processing is a convolution

with a kernel whose support has measure of order one in the case of arbitrary unstructured meshes; if the

mesh is locally translation invariant, the support of the kernel is a cube whose edges are of size of the order

of the mesh size only. For example, when polynomials of degree k are used in the discontinuous Galerkin

(DG) method, and the exact solution is globally smooth, the DG method is of order k+1=2 in the L2 norm,

whereas the post-processed approximation is of order 2k+1; if the exact solution is in L2 only, in which case

no order of convergence is available for the DG method, the post-processed approximation converges with

order k + 1=2 in L2 over a subdomain on which the exact solution is smooth. Numerical results displaying

the sharpness of the estimates are presented.

Key words. post-processing, �nite element methods, hyperbolic problems

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. In this paper, we consider general �nite element methods for time-dependent linear

hyperbolic systems of the form

ut +

dX
j=1

Aj uxj +A0 u = 0; (x; t) 2 R
d � (0; T ];

u(x; 0) = u0(x); x 2 R
d ;

where fAjgdj=1 are real, constant coe�cient m�m matrices such that
Pd

j=1 Aj�j has real eigenvalues and

a complete set of linearly independent eigenvectors for all � 2 R
d , and the function u has range in R

m .

Our aim in this paper is to show how to exploit the inherently oscillatory nature of numerical solutions to

this problem computed by means of �nite element methods to enhance the quality of the approximation.

This enhancement is achieved by post-processing the approximate solution only once, at the very end of

the computation, at t = T . The post-processing considered here is completely independent of the partial

di�erential equation under consideration and can be performed for entirely arbitrary triangulations; however,

it takes a particularly simple and computationally e�cient form when the triangulation is locally translation

invariant.
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To illustrate the basic idea, let us consider the following simple model problem:

ut + ux = 0; in (0; 1)� (0; T ); u(x; 0) = sin(2�x) for x 2 (0; 1);

subject to periodic boundary conditions, and let us compute an approximation U to its solution u by using

the discontinuous Galerkin (DG) method with piecewise polynomials of degree one over uniform grids of

spacing h. We also consider the post-processed approximation U? = K4;2
h ? U , where the convolution kernel

K4;2
h (x) = 1

hK
4;2(x=h) is de�ned by

K4;2(y) = �
1

12
 (2)(y � 1) +

7

6
 (2)(y)�

1

12
 (2)(y + 1);

where  (2) is the B-spline obtained by convolving the characteristic function  (1) = � of the interval

(�1=2; 1=2) with itself once. In Fig. 1.1 we display, for T = 0:1 and h = 1=10 and h = 1=20, the er-

rors x 7! u(T; x)� U(T; x) and x 7! u(T; x)� U?(T; x). The time-step was chosen so small that the overall

accuracy of the method is dominated by the spatial error. We note the oscillatory nature of the error

x 7! u(T; x)�U(T; x) typical of �nite element methods and the apparent superconvergence of the numerical

solution at the two Gauss-Radau points, a fact discovered in 1995 by Adjerid, Ai�a, and Flaherty [2]; see

also their recent work [1]. In contrast with this behavior, we observe the complete absence of oscillations

from the error u(T )� U?(T ). This shows that convolving the approximate solution U with the kernel K4;2
h

�lters out the numerical oscillations around the exact solution. Moreover, the result of such a �ltering is

a new approximation U? that converges faster to u than U . Indeed, in Fig. 1.2, we display the functions

x 7! log( ju(T; x)�U(T; x) j ); for h = 1=10; 1=20; 1=40 and 1=80; we observe that each time h is halved, the

maximum of x 7! ju(T; x) � U?(T; x) j is divided by a factor not less than eight. This indicates that the

post-processed approximation is at least third-order convergent; the original approximate solution U exhibits

only second-order convergence.

In Figs. 1.3 and 1.4 we repeat the above experiment using polynomials of degree two. Again we observe

the oscillatory nature of the approximation and the superconvergence at the three Gauss-Radau points in

Fig. 1.3 (top), and that the oscillations are �ltered out upon convolution in Fig. 1.3 (bottom). This time,

the convolution kernel K6;3
h (x) = 1

hK
6;3(x=h) is de�ned by

K6;3(y) =
37

1920
 (4)(y � 2)�

97

480
 (4)(y � 1)�

437

320
 (4)(y)

�
97

480
 (4)(y + 1) +

37

1920
 (4)(y + 2);

where  (4) is the B-spline obtained by convolving the characteristic function  (1) = � of the interval

(�1=2; 1=2) with itself three times. In Fig. 1.4, we see that each time h is halved, the maximum error

decreases by a factor not less than thirty two. This shows that the error in the post-processed approxima-

tion is of �fth order.

In connection with this fact, we note here that in 1996 Lowrie [16] found analytical and numerical evidence

that when polynomials of degree k are used, a `component of the error' of the DG method converges with

order 2 k + 1 in the L2 norm; this fact stands in striking contrast with convergence of order k + 1=2 for

the underlying DG approximation (k + 1 for the one-dimensional case and special grids in several space

dimensions). In this paper, we provide a �rm mathematical basis for this observation, and show how to

compute the superconvergent approximation U? by a simple post-processing technique which is independent

of the equation and of the numerical method.
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Fig. 1.1. The errors u � U (solid line) and u � U? (dots) at T = 0:1 for h = 1=10 (top) and h = 1=20 (bottom). The

function u is the smooth exact solution, U is the approximation given by the DG method with polynomials of degree one, and

U? = K4;2
h

? U .
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Fig. 1.2. The errors log(ju�U? j) at T = 0:1 for h = 1=10 (top), h = 1=20, h = 1=40, and h = 1=80 (bottom). Each time

h is halved, the maximum error decreases by a factor not less that 8; the order of convergence is, therefore, not less than 3.

The paper is organized as follows. In Section 2, we present a brief account of the development of the ideas

behind this paper. In Section 3, we state and discuss our main theoretical results, and in Section 4 we present

their proofs. In Section 5, we display numerical experiments which not only verify our theoretical results but

also indicate how this kind of post-processing can be applied to convection-di�usion and non-linear problems.

We conclude, in Section 6, with some remarks.

2. A brief overview of the development of post-processing techniques. In order to introduce

the basic ideas of our work and to put them into proper perspective, we briey review the development of
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Fig. 1.3. The errors u � U (solid line) and u � U? (dots) at T = 0:1 for h = 1=10 (top) and h = 1=20 (bottom). The

function u is the smooth exact solution, U is the approximation given by the DG method with polynomials of degree two, and

U? = K6;3
h

? U .
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Fig. 1.4. The errors log(ju�U? j) at T = 0:1 for h = 1=10 (top), h = 1=20, h = 1=40, and h = 1=80 (bottom). Each time

h is halved, the maximum error decreases by a factor not less that 32; the order of convergence is, therefore, not less than 5.

post-processing techniques devised to improve the quality of numerical approximations. For further details,

the reader should consult the monograph of Wahlbin [21] on superconvergence in Galerkin �nite element

methods.

2.1. Finite di�erence and spectral methods for hyperbolic problems. In 1977, Majda and

Osher [18] considered formally high-order accurate dissipative di�erence schemes for hyperbolic problems.

They studied a one-dimensional model problem of a two-by-two hyperbolic system whose characteristics are

parallel to x = �t; the initial condition is a step function whose discontinuity is located at the origin. Majda
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and Osher showed that the rate of convergence on the region between the characteristics issuing from the

origin, jx=t j < 1 � �2, is independent of the numerical scheme. They pointed out that in 1962 Fedorenko

[11] and in 1969 Apelkrans [3] displayed numerical evidence that the order of convergence had to be one.

However, by selecting a suitable approximation of the initial datum, Majda and Osher showed that the order

of convergence can be increased to two. Moreover, they found that they could recover the full formal order

of accuracy of the scheme on the region jx=t j < 1 � �2 provided they preprocessed the initial data in an

appropriate way. In 1986, Johnson and Pitk�aranta [14] used a similar idea in the analysis of the DG method

for linear hyperbolic problems. The question of post-processing the initial data is considered in the book

of Brenner, Thom�ee and Wahlbin [5]; see also the work of Jovanovi�c, Ivanovi�c and S�uli [15] concerning the

use of convolution molli�ers with B-spline kernels for second-order hyperbolic boundary value problems with

non-smooth data.

In 1978, Mock and Lax [19] showed that for a di�erence scheme of any formal order of accuracy �, for

linear hyperbolic systems, the moments of the exact solution converge with order � provided that, again, the

initial data was suitably preprocessed. This result holds even if the exact solution contains discontinuities.

They also showed how to post-process the approximate solution by a simple convolution to enhance its

accuracy over regions of smoothness of the exact solution: if the solution was su�ciently smooth locally,

they could obtain nearly the full order of convergence � provided that the support of the kernel was of order

almost one. This seems to have been the �rst instance when the ideas of (i) preprocessing the initial data,

(ii) obtaining error estimates for the moments, and (iii) post-processing the approximation, appear clearly

delineated.

Later, in 1985, Gottlieb and Tadmor [12], motivated by the work of Mock and Lax [19], found a spectrally

accurate post-processing kernel for spectral methods; see also the 1978 paper by Majda, McDonough and

Osher [17]. Again, the full spectral accuracy could be recovered by using a convolution; the measure of the

support of the kernel had to be of order one.

2.2. Finite element methods for elliptic problems. Quite independently of the developments

reviewed above, in 1977 Bramble and Schatz [4] considered linear elliptic problems and showed how to

post-process the �nite element solution by means of a simple convolution to enhance the quality of the

approximation. They showed that the order of convergence could be doubled if the exact solution was

locally smooth. It is important to point out that, just like Mock and Lax, Bramble and Schatz proved a

negative-order norm error estimate (an error estimate of the moments in Mock and Lax's terminology) and

then showed how to use it to enhance the approximation by a convolution. However, unlike Mock and Lax's

convolution kernel, for locally translation invariant grids the Bramble{Schatz kernel has support in a cube

whose diameter is of order h only; this fact represents a considerable advantage from the computational

point of view.

Also in 1977, Thom�ee [20] extended the work of Bramble and Schatz [4] to include superconvergence of

the derivatives and gave an elegant proof of their approximation results by using Fourier analysis.

An application of the Bramble and Schatz technique to the simulation of miscible displacement was

devised and analyzed by Douglas [9]; other applications can be found in the book of Wahlbin [21].

2.3. The main ideas. In this paper, we apply the ideas of Mock and Lax [19] and Bramble and Schatz

[4] to enhance the accuracy of �nite element approximations to hyperbolic problems by post-processing.

We proceed as follows. First, we obtain an estimate of the error between the analytical solution u and the

post-processed numerical approximation U in terms of negative-order Sobolev norms of u� U . This result

does not depend on the partial di�erential equation under consideration or on the numerical scheme. Next,
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we obtain negative-order norm a priori estimates for the error between the exact solution of a hyperbolic

problem and its �nite element approximation U . The �nal error estimate is then obtained by combining the

above bounds.

3. The results. In this section, we present and discuss our main theoretical results.

3.1. An approximation result. We begin by presenting a result that relates negative-order norm a

priori estimates of the di�erence between u and an arbitrary approximation U for u to L2-error estimates of

the di�erence between u and the post-processed counterpart U .

Let us recall the de�nition of a negative-order Sobolev norm on an open set 
 � R
d . We denote by

ku k0;
 the standard L2-norm of u on 
. For any natural number `, we consider the norm and seminorm of

the Sobolev space H`(
), de�ned by

ku k`;
 =

� X
j�j�`

kD�u k20;


�1=2

; ju j`;
 =

� X
j�j=`

kD�u k20;


�1=2

:

Sobolev norms and seminorms for vector-valued functions from H`(
;Rm ) are de�ned analogously and are

denoted by the same symbol as in the scalar case. We then de�ne the negative order Sobolev norm k � k�`;
,

` � 1, by

ku k�`;
 = sup
�2C1

0
(
)

R

 u(x)�(x) dx

k� k`;

:

Negative-order norms can be used to detect the oscillations of a function around zero. For example, for


 = (�1; 1), ` � 1 and uN (x) = sin(2�N x), a simple computation gives kuN k�`;
 = 1=(2�N)`; indicating

that uN oscillates about zero in a very regular manner.

Next, we describe the type of post-processing to be considered following Bramble and Schatz [4]. We

post-process the approximate solution by convolving it with a kernel K�;`
H (x) = K�;`(x=H)=Hd which has to

satisfy three properties; the �rst of these is that K�;` has compact support. The second is that it reproduces

polynomials p of degree � � 1 by convolution, that is,

K�;` ? p = p:

This is the type of kernel used by Mock and Lax [19]. The kernels used by Bramble and Schatz [4] which

we shall next describe have the further property that they are linear combinations of B-splines. Let � be

the characteristic function of the interval (�1=2; 1=2) and let � denote the Dirac distribution concentrated

at x = 0. Then, we de�ne recursively the functions  (i) as follows:

 (0) = �;  (n+1) =  (n) ? �; for n � 0;

and, given an arbitrary multi-index � = (�1; : : : ; �d) and y = (y1; : : : ; yd) 2 R
d , we set

 (�)(y) =  (�1)(y1) : : :  
(�d)(yd):

We also set 1 = (1; : : : ; 1). The third, and �nal, property of the kernels considered here is that they are of

the form

K�;`1(y) =
X
2Zd

k�;`1  (`1)(y � ); (3.1)

6



where k�;`1 2 R. Note that since the support of K�;`1 has been assumed compact, there are only �nitely

many non-zero coe�cients k�;`1 in this sum.

The imposition of these hypotheses is motivated by the following observations: the compactness of the

support of the convolution kernel is advantageous from the computational point of view; the second property

ensures that accuracy of order � is not destroyed by post-processing; the third property allows us to express

derivatives of the convolution with the kernel in terms of simple di�erence quotients. Indeed, it is very easy

to verify that for multi-indices � and � such that �i � �i for i = 1; : : : ; d, we have

D�( 
(�)
H ? v) =  

(���)
H ? @�Hv; (3.2)

where  
(�)
H (x) =  (�=H)=Hd,

@�H := @�1H;1 : : : @
�d
H;d and @H;jv(x) =

1

H

�
v(x+

1

2
H ej)� v(x �

1

2
H ej)

�
:

This fact can then be exploited in the �nite element framework, as will be seen later. We are now ready to

state an approximation result which shows that local smoothness of u on the one hand and negative-order

norm estimates of divided di�erences of the error u�U on the other lead to a local bound on u�K�;`1
H ? U

in the L2-norm.

Theorem 3.1 (Bramble and Schatz[4]). Let � and ` be two natural numbers. Suppose, further, that

K�;`1
H (x) = K�;`1(x=H)=Hd where K�;`1 is a function of compact support which reproduces polynomials of

degree ��1 by convolution, and which is the linear combination of B-splines, as in (3.1). Let U be a function

in L2(
1), where 
1 is an open set in R
d , and let u be a function in H�(
1). Let 
0 be an open set in R

d

such that 
0 + 2 supp(K�;`1
H ) �� 
1 for all H � H0. Then, for H � H0, we have

ku�K�;`1
H ? U k0;
0

�
H�

�!
C1 ju j�;
1

+ C1 C2

X
j�j�`

k@�H (u� U) k�`;
1
;

where C1 =
P

2Zd j k
�;`1
 j and C2 depends solely on 
0, 
1, d, �, and `.

To illustrate the importance of this result, let us assume that there exist real numbers � � 0 and a 2 [0; `]

such that, for all H � H0, X
j�j�`

k@�H (u� U) k�`;
1
� C3 h

�H�a: (3.3)

Note that the number a measures how well it is possible to estimate the negative-order norm of the divided

di�erences of u � U . In the worst case, a = `; this is the case treated by Mock and Lax [19]. In the �nite

element framework, however, it is possible to take a to be di�erent from `, as Bramble and Schatz [4] showed

for second-order elliptic problems.

Inserting the inequality (3.3) in the inequality of Theorem 3.1, we get

ku�K�;`1
H ? U k0;
0

�
H�

�!
C1 ju j�;
1

+ C1 C2 C3 h
�H�a

� C1maxfju j�;
1
=�!; C2 C3g (H

� + h�H�a):

If we now de�ne Ĥ to be the solution of the equation H� = h�H�a, we obtain the following result.

Corollary 3.2. Let the hypotheses of Theorem 3.1 hold, and suppose that (3.3) is valid. Then, for

Ĥ = h�=(�+a) � H0, we have

ku�K�;`1

Ĥ
? U k0;
0

� C h� �;

7



where C = 2C1maxfju j�;
1
=�!; C2 C3g and � = �=(� + a).

Note that in the worst possible case, that is when a = `, this implies that

ku�K�;`1

Ĥ
? U k0;
0

� C h��;

with � = �=(� + `) < 1. The only possibility we then have for raising the order of convergence is to hope

that the function u is very smooth so that we can choose � large and positive. Unfortunately, even if this

were actually possible, the support of the convolution kernel would be contained in a cube whose diameter

is of order Ĥ = h�=(�+`) which converges to a quantity of order one as � increases to in�nity; this in turn

renders the evaluation of the convolution computationally ine�cient.

On the other hand, in the best possible case (that is when a = 0), taking � = � would permit choosing

� = 1, Ĥ = h and we would then have

ku�K�;`1

Ĥ
? U k0;
0

� C h�:

In other words, for a = 0 we obtain the same order of convergence for u�K�;`1
H ? U in the local L2 norm

as that of the local negative-order norm error estimate in (3.3). Moreover, this is achieved by using a

convolution kernel whose support is contained in a cube whose diameter is of the order Ĥ = h only; this

renders the evaluation of the convolution a very fast computation. The examples shown in the Introduction

correspond to this case with � = � = 2k + 1, where k is the degree of polynomials in the discontinuous

Galerkin method.

3.2. Negative-order norm error estimates for �nite element methods.

3.2.1. The weak solution. As stated in the Introduction, we consider the following Cauchy problem:

ut +
dX

j=1

Ajuxj +A0u = 0; (x; t) 2 R
d � (0; T ]; (3.4)

u(x; 0) = u0(x); x 2 R
d ; (3.5)

To make the presentation of the ideas as simple as possible, we reduce unessential technicalities by

assuming that the matrices in the equation (3.4) are independent of time and space and by taking the initial

data to be 1-periodic in each of the coordinate directions xi, i = 1; : : : ; d, and we seek a solution to the above

problem which is 1-periodic in each coordinate direction.

We suppose that the system of equations (3.4) is strongly hyperbolic, that is, there exists a family of

real m�m matrices fS(�) : � 2 R
dg and a constant K > 0 such that

S(�)
� dX
j=1

Aj�j
�
S�1(�)

is a diagonal matrix for all � 2 R
d ; and

sup
j�j=1

�
kS(�) k + kS�1(�) k

�
� K: (3.6)

Letting I = (0; 1)d, the weak solution, u(x; t), of (3.4) satis�es

(u; ')I (t) = (u0; '(0))I +

tZ
0

(u; 't +

dX
j=1

A�j'xj �A�0')I d� (3.7)

8



for all ' 2 C1([0; T ];H1
per(R

d ;Rm )) and t 2 [0; T ] where A�j is the transpose of Aj and in the above equation

and below

(u; ')I(t) =

Z
I

u(x; t)'(x; t) dx:

Here, H1
per(R

d ;Rm ) denotes the Sobolev space of 1-periodic functions de�ned as follows. Let C1per(R
d ;Rm ) be

the subset of C1(Rd ;Rm ) of 1-periodic functions. We then de�neH1
per(R

d ;Rm ) as the closure of C1per(R
d ;Rm )

for the H1(I;Rm )-norm.

It follows from (3.6) that the problem (3.7) is well posed in

L2per(R
d ;Rm ) =

�
f 2 L2loc(R

d ;Rm ) : f(x+ �) = f(x) for all x 2 R
d ; � 2 Z

d
	

with respect to the norm k � kL2(I); see Theorem 6.3.2. on p. 219 of [13].

3.2.2. The �nite element methods. Next, we describe the class of �nite element approximations

to (3.4). It includes the standard Galerkin method, the Galerkin method with arti�cial di�usion and the

discontinuous Galerkin method. With slight modi�cations we could have easily included, for example, the

streamline di�usion method and the stabilized discontinuous Galerkin method; however, in order to avoid

unnecessary technical complications, we have chosen not to consider these.

Let Th = fK g be a regular triangulation of Rd , invariant under translations by � 2 Z
d, whose elements

K are open and have diameter hK less than or equal to h. It will be assumed throughout that each K 2 Th

is contained either in I or in Rd n I . For a nonnegative integer k, we associate with the triangulation Th the

broken Sobolev space

Hk
per;h(R

d ;Rm ) = �K2ThH
k(K;Rm) \ L2per(R

d ;Rm ):

For k = 0, we shall write L2per;h(R
d ;Rm) = H0

per;h(R
d ;Rm ). We then consider two �nite element sub-

spaces Mh and Nh of H1
per;h(R

d ;Rm), and the broken L2 inner product (�; �)h de�ned on L2per;h(R
d ;Rm )�

L2per;h(R
d ;Rm ) by

(W;�)h =
X

K2Th;I

(W;�)K ; (3.8)

where Th;I = fK 2 T : K � Ig.

We de�ne the �nite element approximation U : [0; T ]!Mh as the solution to

(Ut(t); �)h +B(U(t); �) = 0; � 2 Nh; (3.9)

U(0) = Ph u0; (3.10)

where B(�; �) is a bilinear form de�ned onMh�H1
per;h(R

d ;Rm ), and the operator Ph : L
2
per(R

d ;Rm )!Mh

is the orthogonal projection in the norm of L2(I).

In Table 3.1, we describe di�erent choices of the form B that give rise to di�erent �nite element methods;

in each of these Mh = Nh, although this need not be the case in general.

The operator A and the bilinear form h�; �ih that appear in Table 3.1 are de�ned as follows:

A� =

dX
j=1

Aj�xj +A0�;

A�� = �
dX

j=1

A�j�xj +A�0�;

hAU; �ih =
X

K2Th;I

X
e2@K

hA � n bU; �ie;
9



Table 3.1

Examples of �nite element methods.

Method Mh � C0 B(U; �)

Standard Galerkin (SG) yes (AU; �)I

SG with arti�cial di�usion yes (AU; �)I + h (rU;r�)I ;  � 1 ;

Discontinuous Galerkin no (U;A��)h + hAU; �ih

where A � n = A1n1 + � � �+Adnd, n = (n1; : : : ; nd) is the unit outward normal vector to K on e � @K, andbU is the numerical ux of the DG method de�ned as follows. Given an element K and a face e 2 @K, let us

denote by Ke 2 Th the element sharing the edge e with K and denote by UK and UKe the traces of U on e

from K and Ke, respectively. We compute the m�m diagonal matrix diag(�1; : : : ; �m) = S(n) (A�n)S�1(n)

and set V = S�1(n)U and

bVj =
8<:(VK)j if �j > 0;

(VKe)j otherwise :

The numerical ux is de�ned as follows:

bU = S(n) bV : (3.11)

3.2.3. The negative-order error estimate. We now give su�cient conditions for the �nite element

method which ensure that, for a given time T , our approximate solution, U(T ), converges with high order

in a negative-order norm over a given subdomain 
0 �� I to the weak solution u(T ). Given that l � 0, we

wish to estimate

ku(T )� U(T )k�`;
0
= sup

�2C1
0
(
0)

�
u(T )� U(T );�

�
k� k`;
0

:

We begin by considering the solution to the dual problem: Find a function ' such that '(�; t) is 1-periodic

in each coordinate direction for all t 2 [0; T ) and

't +

dX
j=1

A�j 'xj �A�0 ' = 0; in Rd � (0; T ); (3.12)

'(x; T ) = �(x); x 2 R
d ; (3.13)

where � is an arbitrary function in C10 (
0).

�
u(T )� U(T );�

�
= (u; ')(T )� (U;')(T )

= (u0; '(0))� (U;')(T )

= (u0; '(0))� (U;')(0) +

Z T

0

d

dt
(U;') d�

= (u0 � Ph u0; '(0))�

Z T

0

�
(Ut; ') + (U;'t)

	
d�:

10



Since, by (3.9), for � : [0; T ]! Nh,Z T

0

(Ut; ') d� =

Z T

0

(Ut; '� �) d� +

Z T

0

(Ut; �) d�

=

Z T

0

(Ut; '� �) d� �

Z T

0

B(U; �) d�

=

Z T

0

�
(Ut; '� �) +B(U;'� �)

	
d� �

Z T

0

B(U;') d�;

we obtain that

(u(T )� U(T );�) = �M +�N +�C ; (3.14)

where

�M = (u0 � Ph u0; '(0));

�N = �

Z T

0

�
(Ut; '� �) +B(U;'� �)

	
d�;

�C = �

Z T

0

�
(U;'t)�B(U;')

	
d�:

Next, we introduce some general assumptions on Mh and Nh which will enable us to estimate these three

terms.

Let 
0 �� 
1 � I , r � 0, ` � 1, and suppose that u0 2 L2per(R
d ;Rm ) \ Hr(D
1;R

m ), where D
1

denotes the domain of dependence for the set 
1; see Fig. 3.1.

0

Ω0

t

x

T ________

DΩ1

Ω1

Fig. 3.1. Example of the domain of smoothness of u(T ), 
0, and of a domain 
1 �� 
0 and its corresponding domain

of dependence D
1.

We adopt the following hypotheses.

(i) Approximation properties of Mh and Ph. There exist constants �M , sM , with 0 � �M � ` and

0 � sM � r, and AM such that, for each function � in C10 (
0),

j(u0 � Phu0; '(0))j � AM h�M+sM ku0 kr;D
1
k� kH` ;

11



where ' is the solution to the dual problem (3.12), (3.13) with the initial data � for the dual problem.

(ii) Residual. Given that U is the solution to (3.9), (3.10), there exist constants �N , sN , with 0 � �N �

` and 0 � sN � r, and A N , such that for each function � in C10 (
0) there exists � 2 C1([0; T ];Nh)

with ���� Z T

0

(Ut; '� �)h +B(U;'� �) dt

���� � A N h�N+sN ku0 kr;D
1
k� kH` ;

where ' is the solution to the dual problem (3.12), (3.13) with the initial data � for the dual problem.

(iii) Consistency. Given that U is the solution to (3.9), (3.10), there exist constants sC 2 (0;1] and

A C 2 [0;1) such that���� Z T

0

(U;'t)h �B(U;') dt

���� � A C h
sC ku0 kr;D
1

k� k`;
0
;

where ' is the solution to the dual problem (3.12), (3.13) with the data � for the dual problem.

The next result is a trivial consequence of the decomposition (3.14) and conditions (i) { (iii).

Theorem 3.3. Suppose that u0 2 L2per(R
d ;Rm )\Hr(D
1;R

m ), with 
0 �� 
1 � I, r � 0, and assume

that conditions (i) { (iii) hold. Then, for ` � 1, we have

k (u� U)(T ) k�`;
0
� C4 h

s ku0 kr;D
1
;

where s = minf�M + sM ; �N + sN ; sCg and C4 = AM + A N + A C :

In Table 3.2 we display the parameters of the above result for some �nite element methods; for each of

the methods listed we have Mh = Nh and have assumed that 
1 = I (so that D
1 = I also).

Table 3.2

The parameters of Theorem 3.3 for �nite element methods using piecewise polynomials of degree k.

parameter SG SG with AD DG

�M minfk + 1; `g minfk + 1; `g minfk + 1; `g

sM minfk + 1; rg minfk + 1; rg minfk + 1; rg

�N minfk; `g minfk; `g minfk + 1=2; `g

sN minfk; rg minfk; rg minfk + 1=2; rg

sC 1  1

3.3. The error estimates. Now we combine the results obtained in the previous subsections.

Theorem 3.4. Let u be the exact solution of problem (3.4), (3.5); and let U be the approximation de�ned

by (3.9), (3.10) for which conditions (i) { (iii) are valid. Consider the convolution kernel K�;`1

Ĥ
of Theorem

3.1. Let each of the components of u(T ) be in H�(
1) and let 
0 be such that 
0 + 2 supp(K�;`1

Ĥ
) �� 
1.

Then, for general regular triangulations and Ĥ = hs=(�+`) � H0, we have

ku(T )�K�;`1

Ĥ
? U(T ) k0;
0

� C h� s;

where �, s and C are as in Theorem 3.3 with C3 = C4 ku0kr;D
1
and � = �=(� + `).

Moreover, if the triangulation is translation invariant on a neighborhood of the support of the solution

of the adjoint equation (3.12), (3.13) then, for Ĥ = h,

ku(T )�K�;`1

Ĥ
? U(T ) k0;
0

� C hs;

12



C3 = C4 ku0kr+`;D
1
.

Proof. The �rst inequality is a direct consequence of Corollary 3.2 and Theorem 3.3. The second

inequality also follows from the above results and from the fact that if the triangulation is translation

invariant in a neighborhood (of order Ĥ = h) of the support of the solution of the adjoint problem, then we

have

k @�
Ĥ
(u� U)(T ) k�`;
0

� C4 h
s k @�

Ĥ
u0 kr;D
1

:

This completes the proof.

Some important particular cases for which 
1 = I (and consequently D
1 = I) are collected in the table

below; these are in fact the estimates we can actually prove. The case in which 
1 6= I remains a challenging

open problem.

Table 3.3

Orders of convergence with piecewise polynomials of degree k when the analytical solution u is in C([0; T ];H�
per(I)).

triangulations � SG SG with AD DG

general 0 � k � � � (k + 1=2)

general 2 k + 2 � k � � � (k + 1=2)

locally invariant 0 k � k + 1=2

locally invariant 2 k + 2 2 k � 2 k + 1

4. Proofs.

4.1. The approximation result. In this subsection, for the sake of completeness, we sketch the proof

of Theorem 3.1 following Bramble and Schatz [4].

Consider the following quantity:

�H = ku�K�;`1
H ? U k0;
0

� �H;1 +�H;2;

where

�H;1 = ku�K�;`1
H ? u k0;
0

;

�H;2 = kK�;`1
H ? (u� U) k0;
0

:

To estimate �H;1, we denote the support of K
(�;`1) by I; we label the Taylor polynomial of degree � � 1 of

u around y by T �u(y; �); and we put R�u(y; �) = u(�)� T �u(y; �). We then easily deduce that

u(x)�K�;`1
H ? u(x) = R�u(y; x)�

Z
I

K�;`1(z)R�u(y; x�H z) dz;

by using the fact that the kernel K�;`1
H reproduces polynomials of degree � � 1 by convolution. For y = x,

the above expression becomes

u(x)�K�;`1
H ? u(x) = �

Z
I

K�;`1(z)R�u(x; x�H z) dz;

and we obtain

�H;1 � kK�;`1 kL1(Rd) sup
z2I

kR�u(�; � �H z) k0;
0

�
H�

�!
kK�;`1 kL1(I) ju j�;
0+H I :

13



On applying the triangle inequality to the expression of K�;`1 given by (3.1), we get

kK�;`1 kL1(I) �
X
2Zd

j k�;`1 j k `1��(� � ) kL1(Rd) =
X
2Zd

j k�;`1 j = C1;

since k `1��(� � ) kL1(Rd) = 1. This implies that

�H;1 �
H�

�!
C1 ju j�;
0+H I �

H�

�!
C1 ju j�;
1

:

Now, let us sketch the procedure to estimate �h;2. Take a set 
1=2 such that, for all H � H0,


0 + supp(K�;`
h ) � 
1=2;


1=2 + supp(K�;`
h ) � 
1:

Then, setting e(x) = u(x)� U(x), we get

�H;2 = kK�;`1
H ? e k0;
0

� C2

X
j�j�`

kD�(K�;`1
H ? e) k�`;
1=2

;

where C2 depends solely on 
0, 
1=2, d, �, and `, by Lemma 4.2 in Bramble and Schatz [4]. This is the

signi�cant step that allows us to pass from the L2-norm to a negative-order Sobolev norm.

Next, we exploit the fact that the kernel K�;`1
H is a linear combination of B-splines given by (3.1); this

is the only place in this proof where properties of B-splines are used. Thus, by the property (3.2) we have

that

D�(K�;`1
H ? e) = K�;`1;�

H ? @�He;

where

K�;`1;�(y) =
X
2Zd

k�;`1  (`1��)(y � ):

This implies that

�H;2 � C2

X
j�j�`

kK�;`1;�
H ? @�He k�`;
1=2

� C2

X
j�j�`

kK�;`1;�
H kL1(Rd)k @

�
He k�`;
1

:

Finally, since kK�;`1;�
H kL1(Rd) = kK�;`1;� kL1(Rd) � C1, we get

�H;2 � C1 C2

X
j�j�`

k @�He k�`;
1
:

This completes the proof of Theorem 3.1.

4.2. The conditions (i){(iii) for some �nite element methods. In this subsection, we justify the

results displayed in Table 3.2.

a. The SG method. Let us begin by considering property (i). For the L2-projection, it is well known

that �M = minfk + 1; `g and that sM = minfk + 1; rg for regular triangulations. Next, let us consider

property (iii). A simple calculation shows that we can take A C = 0; this allows us to take sC =1.

For property (ii), we proceed as follows:

� =

Z T

0

f(Ut; '� �)h +B(U;'� �)g dt

=

Z T

0

f( (U � u)t +A(U � u); '� �)hg dt:

14



Taking � as the L2-projection of ', we get (ii) with �N = minfk; `g, sN = minfk; rg and 
1 = I .

b. The SG with arti�cial di�usion. For this method, we only have to focus on property (iii). We

have,

� =

Z T

0

f(U;'t)h �B(U;')g dt =

Z T

0

h(rU;r') dt

� h krU kL2(0;T ;L2(I))kr' kL2(0;T ;L2(I)):

This means that property (iii) is satis�ed with sC = :

c. The DG method. For properties (i) and (iii), we proceed as in the two methods discussed above.

The veri�cation of property (ii) requires a more delicate argument. For a function W whose components

are in H1
per;h(R

d ;Rm ), we set [[AW ]](x) = A � n+W+(x) + A � n�W�(x) for every x 2 e, where W�(x) =

limz#0W (x � z n�) and n� is orthogonal to the face e of the element K at x. With this notation, we can

write that

� =

Z T

0

f(Ut; '� �)h +B(U;'� �)g dt

=

Z T

0

(
(Ut +AU;'� �)h +

X
e2E

h [[AU ]]; '� �ie

)
dt;

where we obtained the last step after a simple integration by parts; by E we denote the collection of faces e

of the elements K of the triangulation Th;I .

Now, taking � to be the L2-projection of ' onto Mh = Nh, we get,

� =

Z T

0

(X
e2E

h [[AU ]]; '� �ie

)
dt

�

(Z T

0

X
e2E

k [[AU ]] k2e;0 dt

)1=2(Z T

0

X
e2E

k'� � k2e;0 dt

)1=2

:

This implies that property (ii) is satis�ed with sN = minfk + 1=2; `g for regular triangulations. It remains

to obtain an estimate of the �rst term on the right; following Johnson and Pitk�aranta [14] or Cockburn [6],

it is easy to prove that (iii) is satis�ed with �N = minfk + 1=2; rg and 
1 = I .

5. Numerical experiments. In this section, we validate our theoretical results with an emphasis on

the case in which the doubling of the order of convergence is achieved. We also explore the performance

of the post-processing technique in situations not predicted by our analysis; thus, we display the L1-errors

in all our experiments, including an example of a linear convection-di�usion equation and an example of a

non-linear convection equation.

We consider the discontinuous Galerkin method with polynomials of degree k (denoted by P k) and use

a third order Runge-Kutta method to discretize in time; the time step �t is chosen small enough so that

spatial errors dominate. Results for P 1 to P 4 are shown.

The L1 error measures the maximum numerical error at the six Gaussian points in each element for all

elements. The L2 error is computed by the six-point Gaussian rule in each element.

Example 5.1. A linear scalar convection equation with smooth solution on the domain I = [0; 2�):

ut + ux = 0; in I � (0; T ); u(x; 0) = sin(x) x 2 I; (5.1)
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with periodic boundary conditions. The errors are computed at T = 12:5 which is about 2 periods in time.

In Table 5.1, we show the numerical errors for this problem. We can clearly see that both the L2 and

L1 error for P k elements is of (k+1)-th order before post-processing and of at least (2k+1)-th order after

post-processing. This is consistent with our theoretical results.

Table 5.1

Example 5.1, ut + ux = 0, smooth solution.

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 3.29E-02 | 5.81E-02 | 3.01E-02 | 4.22E-02 |

20 5.63E-03 2.55 1.06E-02 2.45 3.84E-03 2.97 5.44E-03 2.96

40 1.16E-03 2.28 2.89E-03 1.88 4.79E-04 3.00 6.78E-04 3.01

80 2.72E-04 2.09 8.08E-04 1.84 5.97E-05 3.00 8.45E-05 3.00

160 6.68E-05 2.03 2.13E-04 1.93 7.45E-06 3.00 1.05E-05 3.00

320 1.66E-05 2.01 5.45E-05 1.96 9.30E-07 3.00 1.32E-06 3.00

P 2

10 8.63E-04 | 2.86E-03 | 2.52E-04 | 3.57E-04 |

20 1.07E-04 3.01 3.69E-04 2.95 5.96E-06 5.40 8.41E-06 5.41

40 1.34E-05 3.00 4.63E-05 3.00 1.53E-07 5.29 2.16E-07 5.28

80 1.67E-06 3.00 5.78E-06 3.00 4.22E-09 5.18 5.97E-09 5.18

160 2.09E-07 3.00 7.23E-07 3.00 1.27E-10 5.06 1.80E-10 5.06

P 3

10 3.30E-05 | 9.59E-05 | 1.64E-05 | 2.31E-05 |

20 2.06E-06 4.00 6.07E-06 3.98 7.07E-08 7.85 1.00E-07 7.85

40 1.29E-07 4.00 3.80E-07 4.00 2.91E-10 7.92 4.15E-10 7.91

50 5.29E-08 4.00 1.56E-07 4.00 5.03E-11 7.87 7.24E-11 7.83

P 4

10 1.02E-06 | 2.30E-06 | 1.98E-06 | 2.81E-06 |

20 3.21E-08 5.00 7.30E-08 4.98 2.20E-09 9.82 3.11E-09 9.82

30 4.23E-09 5.00 9.66E-09 4.99 4.34E-11 9.68 6.66E-11 9.48

In Fig. 5.1, we plot the errors of the numerical solution before and after post-processing for P 2 and P 3

with 20 elements. We can clearly see that the errors before post-processing are highly oscillatory, and the

post-processing gets rid of the oscillation in the error and greatly reduces its magnitude.

In Fig. 5.2, we plot the errors, in absolute value and in logarithmic scale, of the numerical solution

before and after post-processing for P 2, with 10, 20, 40, 80, and 160 elements. We can clearly see that

the post-processed errors are less oscillatory and much smaller in magnitude, and approximately third and

�fth order accuracy for the pre-processed and post-processed errors, respectively, measured by the spacing
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between the errors when the number of elements doubles.
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Fig. 5.1. The errors before and after post-processing for 20 elements: P 2 (left) and P 3 (right).

1 2 3 4 5 6
x

10-12

10-10

10-8

10-6

10-4

10-2

|e
rr

o
r|

N=10

N=20

N=40

N=80

N=160

P2, before post-processing

1 2 3 4 5 6
x

10-12

10-10

10-8

10-6

10-4

10-2

|e
rr

o
r|

N=10

N=20

N=40

N=80

N=160

P2, after post-processing

Fig. 5.2. The errors in absolute value and in logarithmic scale, for P 2 with N=10, 20, 40, 80, and 160 elements. Before

post-processing (left) and after post-processing (right).

Example 5.2. A linear scalar convection di�usion equation with smooth solution on the domain I = [0; 2�):

ut + ux = uxx; in I � (0; T ) u(x; 0) = sin(x); x 2 I; (5.2)

with periodic boundary conditions. The errors are computed at T = 2, using the local discontinuous Galerkin

method [8], with alternating left and right uxes for u and the auxiliary variable q which approximates ux

(formula (2.9) in [8]).

Although not proven in this paper, we expect the same accuracy result to hold for the post-processed

solution as in Example 5.1. In Table 5.2, we show the results for this problem. We can clearly see that the

L1 errors for P k elements are of (k + 1)-th order before post-processing and of at least (2k + 1)-th order

after post-processing, both for the solution u and for the auxiliary variable q which approximates ux. The

results for the L2 errors are similar and are not shown to save space.

Example 5.3. The same linear scalar convection equation (5.1) with the same initial condition, except that

now I = [0; 5). The solution now has a discontinuity at x = 0 (or x = 5) and this discontinuity moves in

time with the characteristic speed 1. We compute the errors at T = 12:5, that is, after 2.5 periods in time.
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Table 5.2

Example 5.2, ut + ux = uxx, smooth solution.

Before postprocessing After postprocessing

u q for ux u q for ux

mesh L1 error order L1 error order L1 error order L1 error order

P 1

10 6.74E-03 | 5.82E-03 | 1.19E-03 | 1.18E-03 |

20 1.82E-03 1.89 1.71E-03 1.77 1.34E-04 3.15 1.41E-04 3.07

40 4.68E-04 1.96 4.56E-04 1.91 1.56E-05 3.05 1.69E-05 3.06

80 1.19E-04 1.98 1.17E-04 1.96 1.46E-06 3.02 2.07E-06 3.03

160 3.00E-05 1.99 2.98E-05 1.98 2.32E-07 3.03 2.57E-07 3.01

320 7.52E-06 1.99 7.50E-06 1.99 2.87E-08 3.01 3.20E-08 3.01

P 2

10 3.97E-04 | 3.38E-04 | 2.93E-05 | 2.96E-05 |

20 5.01E-05 2.99 4.61E-05 2.87 5.43E-07 5.75 5.46E-07 5.76

40 6.25E-06 3.00 6.02E-06 2.94 1.04E-08 5.71 1.05E-08 5.70

80 7.83E-07 3.00 7.68E-07 2.97 2.19E-10 5.57 2.26E-10 5.54

160 9.78E-08 3.00 9.69E-08 2.99 5.31E-12 5.37 5.63E-12 5.33

P 3

10 1.30E-05 | 1.13E-05 | 3.09E-06 | 3.09E-06 |

20 8.23E-07 3.98 7.73E-07 3.86 1.32E-08 7.87 1.32E-08 7.87

40 5.14E-08 4.00 4.99E-08 3.95 5.31E-11 7.96 5.31E-11 7.96

P 4

10 3.11E-07 | 2.93E-07 | 3.79E-07 | 3.80E-07 |

20 9.89E-09 4.97 9.54E-09 4.94 4.19E-10 9.82 4.19E-10 9.82

30 1.30E-09 5.00 1.27E-09 4.98 7.11E-12 10.05 7.11E-12 10.05

The discontinuity at this time is located at x = 2:5. The errors shown in Table 5.3 are calculated within

the \smooth region" [0; 1][ [4; 5], at distance 1:5 away from the discontinuity, namely excluding the interval

1 < x < 4.

The theory in this paper would only guarantee (k + 1)-th order accuracy for P k elements after post-

processing since our estimates hold for D
1 = I only and the initial condition displays a discontinuity.

However, Table 5.3 shows that both the L2 errors and the L1 errors are still at least (2k + 1)-th order

accurate for P k elements after post-processing. This indicates that it is reasonable to expect that a similar

result with a domain D
1 excluding the discontinuity should hold, see Fig. 5.4.

In Fig. 5.3 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution

before and after post-processing for P 2, with 10, 20, 40, 80 and 160 elements. We can clearly see that the

post-processed errors are less oscillatory and much smaller in magnitude away from the discontinuity.
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Table 5.3

Example 5.3, ut + ux = 0, discontinuous solution, errors in smooth regions

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 2.02E-02 | 6.46E-02 | 1.76E-02 | 2.80E-02 |

20 4.37E-03 2.21 1.21E-02 2.41 3.96E-03 2.15 1.18E-02 1.24

40 6.63E-04 2.72 1.89E-03 2.69 2.69E-04 3.88 6.77E-04 4.12

80 1.58E-04 2.07 5.24E-04 1.85 2.78E-05 3.27 4.31E-05 3.97

160 3.92E-05 2.01 1.36E-04 1.94 3.49E-06 3.00 5.31E-06 3.02

320 9.80E-06 2.00 3.47E-05 1.97 4.37E-07 3.00 6.63E-07 3.00

P 2

10 4.53E-03 | 1.08E-02 | 3.74E-03 | 1.15E-02 |

20 4.96E-04 3.19 1.98E-03 2.45 3.02E-04 3.63 1.07E-03 3.42

40 8.80E-06 5.82 2.51E-05 6.30 4.03E-06 6.23 2.74E-05 5.29

80 8.97E-07 3.29 2.91E-06 3.11 1.74E-09 11.18 1.32E-08 11.02

160 1.12E-07 3.00 3.64E-07 3.00 5.09E-11 5.09 8.75E-11 7.23

P 3

10 2.87E-03 | 1.24E-02 | 7.76E-04 | 1.81E-03 |

20 1.97E-04 3.87 1.03E-03 3.60 6.91E-06 6.81 2.92E-05 5.95

40 1.36E-06 7.18 7.21E-06 7.15 3.51E-08 7.62 1.88E-07 7.27

80 3.03E-09 8.81 1.01E-08 9.47 2.18E-11 10.65 6.89E-11 11.42

P 4

10 1.93E-03 | 6.32E-03 | 1.36E-03 | 2.91E-03 |

20 9.79E-05 4.30 5.42E-04 3.54 1.15E-07 13.53 8.37E-07 11.76

40 5.86E-07 7.39 4.70E-06 6.85 3.46E-11 11.70 2.11E-10 11.96

Example 5.4. A scalar nonlinear Burgers' equation with continuous and discontinuous solutions on the

domain I = [0; 2�):

ut +

�
1

2
u2
�
x

= 0; in I � (0; T ); u(x; 0) =
1

2
+ sin(x); x 2 I ; (5.3)

with periodic boundary conditions. The errors at T = 0:5, when the solution is still smooth, are given in

Table 5.4. It seems that in general, post-processed errors are still smaller, although the asymptotic orders

seem to show up later than for the linear case, as the mesh is re�ned. We remark that the theory in this

paper does not cover this nonlinear problem.

In Fig. 5.5, we plot the errors of the numerical solution before and after post-processing for P 2 and P 3

with 20 elements. From Table 5.4 we can see that in both situations the errors after post-processing are

actually larger than the errors before post-processing. Note in Fig. 5.5 that near the middle region, the

oscillations in the errors are not \uniform", apparently due to nonlinear e�ects, hence the post-processing

actually gives larger errors. Fortunately, for a larger number of elements the post-processing begins to be

e�ective and the errors after post-processing do become smaller, see Table 5.4 and the following Fig. 5.6.
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In Fig. 5.6 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution before

and after post-processing for P 2, with 10, 20, 40, 80, 160 and 320 elements. We can clearly see that the

post-processed errors are less oscillatory and much smaller in magnitude, especially for a large number of

elements. However, notice that due to non-linear e�ects not all oscillations in the errors have been removed

by the post-processing, especially for a large number of elements.

Table 5.4

Example 5.4, Burgers' equation with smooth solution.

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 1.95E-02 | 8.87E-02 | 1.37E-02 | 3.99E-02 |

20 5.31E-03 1.88 2.77E-02 1.68 1.63E-03 3.07 6.47E-03 2.63

40 1.33E-03 2.00 7.55E-03 1.87 1.28E-04 3.67 5.55E-04 3.54

80 3.33E-04 1.99 1.95E-03 1.95 1.03E-05 3.63 4.17E-05 3.73

160 8.37E-05 1.99 4.99E-04 1.97 1.12E-06 3.20 4.21E-06 3.31

320 2.10E-05 2.00 1.26E-04 1.98 1.42E-07 2.98 5.69E-07 2.89

P 2

10 3.46E-03 | 1.93E-02 | 1.12E-02 | 3.37E-02 |

20 4.81E-04 2.85 3.57E-03 2.43 9.25E-04 3.59 3.47E-03 3.28

40 8.00E-05 2.59 6.22E-04 2.52 3.63E-05 4.67 1.58E-04 4.46

80 1.30E-05 2.62 1.20E-04 2.37 8.43E-07 5.43 3.93E-06 5.33

160 2.04E-06 2.67 1.98E-05 2.61 1.67E-08 5.66 8.51E-08 5.53

320 3.06E-07 2.73 3.02E-06 2.71 3.60E-10 5.53 1.85E-09 5.52

P 3

10 4.33E-04 | 2.24E-03 | 1.12E-02 | 3.35E-02 |

20 4.16E-05 3.38 2.00E-04 3.48 8.08E-04 3.80 3.03E-03 3.46

40 2.43E-06 4.10 1.74E-05 3.53 2.06E-05 5.30 9.42E-05 5.01

80 1.46E-07 4.06 1.04E-06 4.07 1.96E-07 6.72 1.01E-06 6.54

160 1.03E-08 3.82 6.72E-08 3.95 1.10E-09 7.47 5.94E-09 7.41

P 4

10 1.75E-04 | 8.25E-04 | 1.15E-02 | 3.36E-02 |

20 4.19E-06 5.39 2.45E-05 5.07 7.63E-04 3.91 2.82E-03 3.58

40 1.70E-07 4.62 1.04E-06 4.55 1.48E-05 5.69 6.82E-05 5.37

50 6.45E-08 4.36 4.40E-07 3.87 3.09E-06 7.03 1.52E-05 6.74

Next, we compute the solution at T = 2, that is, after the shock has developed. We measure the errors

on the smooth region 0:5� away from the discontinuity and show the results in Table 5.5. The codes ran

stably only for P 1 and P 2; hence only these two cases are shown.

In order to stabilize the algorithm in the presence of shocks, we apply a TVB (total variation bounded)

limiter withM = 3, see [7]. This limiter has no e�ect on the numerical solution at T = 0:5 when the solution

is still smooth, but allows the scheme to run stably for P 3 and P 4 after the shock develops. We again
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Table 5.5

Example 5.4, Burgers' equation with discontinuous solution.

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 8.70E-03 | 3.56E-02 | 6.79E-03 | 1.99E-02 |

20 3.05E-04 4.83 1.47E-03 4.60 2.23E-04 4.93 8.61E-04 4.53

40 1.70E-05 4.16 8.14E-05 4.18 1.09E-05 4.36 2.25E-05 5.26

80 3.71E-06 2.20 2.07E-05 1.97 1.37E-06 2.99 2.86E-06 2.97

160 8.65E-07 2.10 4.67E-06 2.15 1.63E-07 3.07 3.43E-07 3.06

320 2.17E-07 2.00 1.19E-06 1.97 2.05E-08 3.00 4.31E-08 2.99

P 2

10 6.26E-03 | 3.29E-02 | 1.57E-03 | 7.05E-03 |

20 2.77E-04 4.50 1.44E-03 4.52 5.47E-05 4.84 1.52E-04 5.54

40 2.03E-05 3.77 1.68E-04 3.10 6.88E-06 2.99 2.62E-05 2.53

80 2.30E-06 3.14 2.17E-05 2.95 8.39E-07 3.03 4.61E-06 2.51

160 4.23E-07 2.44 4.75E-06 2.19 1.16E-07 2.86 7.95E-07 2.54

320 6.12E-08 2.79 7.77E-07 2.61 1.41E-08 3.04 1.29E-07 2.62

measure the errors on the smooth region 0:5� away from the discontinuity and show the result in Table 5.6.

In Fig. 5.7 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution before

and after post-processing for P 2 with a TVB limiter, at t = 2, with 10, 20, 40, 80, 160 and 320 elements. We

can clearly see that the post-processed errors are less oscillatory and much smaller in magnitude, especially

for a large number of elements, away from the discontinuity. Again, notice that not all oscillations in the

errors have been removed by the post-processing, especially for a large number of elements, due to non-linear

e�ects.

Example 5.5. A linear system with a smooth solution in the domain I = [0; 2�):8<:ut + vx = 0

vt + ux = 0
in I � (0; T );

8<:u(x; 0) = sin(x)

v(x; 0) = 0
x 2 I; (5.4)

with periodic boundary conditions. The errors are computed at T = 12:5 which is about 2 periods in time.

In Table 5.7, we show the results for this problem. The errors are the combined ones of u and v. We can

clearly see that both L2 and L1 errors for P k elements are (k + 1)-th order before post-processing and at

least (2k+1)-th order after post-processing. In fact, the errors are very similar to the scalar case in Example

5.1. This is consistent with our theoretical results.

Notice that this example and the next one with discontinuous solution for linear systems indicate that

the method is very suitable for long time simulation of linear systems as the post-processing needs to be

performed only at the �nal time. Examples include aeroacoustic problems when linear Euler equations must

be solved for a long time to propagate the pressure waves.

Example 5.6. The same linear system (5.4) with the same initial condition, except that now 0 � x < 5

and the boundary condition is 5-periodic. The solution now has a discontinuity at x = 0 (or x = 5) and this
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Table 5.6

Example 5.4, Burgers' equation with discontinuous solution. TVB limiters.

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 1.26E-03 | 4.44E-03 | 1.02E-03 | 2.28E-03 |

20 1.16E-04 3.44 4.38E-04 3.34 1.01E-04 3.33 1.94E-04 3.55

40 1.72E-05 2.76 8.33E-05 2.40 1.09E-05 3.22 2.26E-05 3.11

80 3.72E-06 2.20 2.08E-05 2.00 1.37E-06 2.99 2.87E-06 2.98

160 8.73E-07 2.09 4.75E-06 2.13 1.63E-07 3.07 3.44E-07 3.06

320 2.17E-07 2.01 1.19E-06 2.00 2.05E-08 3.00 4.32E-08 2.99

P 2

10 1.03E-02 | 5.83E-02 | 1.99E-03 | 7.66E-03 |

20 4.22E-04 4.60 3.36E-03 4.12 5.32E-05 5.22 1.50E-04 5.68

40 2.23E-05 4.24 1.99E-04 4.08 6.87E-06 2.95 2.53E-05 2.53

80 2.29E-06 3.28 2.16E-05 3.20 8.39E-07 3.03 4.61E-06 2.50

160 4.21E-07 2.44 4.72E-06 2.19 1.16E-07 2.86 7.95E-07 2.54

320 6.10E-08 2.79 7.75E-07 2.61 1.41E-08 3.04 1.29E-07 2.62

P 3

10 9.98E-04 | 6.64E-03 | 3.45E-03 | 1.35E-02 |

20 1.47E-04 2.76 1.38E-03 2.20 9.35E-06 8.52 5.18E-05 8.03

40 4.92E-07 8.22 5.43E-06 7.99 2.92E-08 8.32 2.08E-07 7.96

80 8.58E-10 9.16 1.43E-08 8.57 3.71E-10 6.30 8.73E-10 7.90

P 4

10 3.86E-01 | 9.90E-01 | 2.28E-01 | 3.78E-01 |

20 1.08E-01 1.84 2.16E-01 2.20 5.28E-02 2.11 1.34E-01 1.50

40 1.89E-03 5.83 2.25E-02 3.26 3.88E-04 7.09 3.97E-03 5.07

80 8.08E-08 14.52 6.11E-07 15.17 1.46E-08 14.70 7.42E-08 15.71

discontinuity moves in time with the characteristic speeds �1. We compute the errors at t = 12:5, after 2.5

periods in time. The two discontinuities at this time are both located at x = 2:5. The errors shown in Table

5.8 are calculated within the \smooth region" that lies a distance 1.5 away from the discontinuities, namely

excluding the interval 1 < x < 4.

The theory in this paper would only guarantee (k + 1)-th order accuracy for P k elements after post-

processing, since when we take D
1 = I , the initial condition has a discontinuity in this set. However, Table

5.8 shows that both the L2 errors and the L1 errors are still at least (2k + 1)-th order accurate for P k

elements after post-processing.

In fact, the behavior of the errors is very similar to that observed in the scalar case in Example 5.3. This

is not really surprising since our linear system is equivalent to the following two decoupled scalar equations:8<:(u� v)t � (u� v)x = 0

(u+ v)t + (u+ v)x = 0
in I � (0; T );

8<:(u� v)(x; 0) = sin(x)

(u+ v)(x; 0) = sin(x)
x 2 I:
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Table 5.7

Example 5.5, linear system with smooth solution

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 2.33E-02 | 5.20E-02 | 2.13E-02 | 4.16E-02 |

20 3.98E-03 2.55 8.55E-03 2.60 2.72E-03 2.97 5.36E-03 2.96

40 8.20E-04 2.28 1.89E-03 2.18 3.39E-04 3.00 6.74E-04 2.99

80 1.92E-04 2.09 4.77E-04 1.98 4.23E-05 3.00 8.43E-05 3.00

160 4.72E-05 2.03 1.20E-04 2.00 5.28E-06 3.00 1.05E-05 3.00

320 1.17E-05 2.01 2.99E-05 2.00 6.59E-07 3.00 1.31E-06 3.00

P 2

10 6.10E-04 | 1.67E-03 | 1.78E-04 | 3.53E-04 |

20 7.57E-05 3.01 2.08E-04 3.00 4.22E-06 5.40 8.42E-06 5.39

40 9.46E-06 3.00 2.60E-05 3.00 1.09E-07 5.28 2.17E-07 5.28

80 1.18E-06 3.00 3.24E-06 3.00 3.11E-09 5.13 6.20E-09 5.13

160 1.48E-07 3.00 4.06E-07 3.00 8.95E-11 5.12 1.77E-10 5.13

P 3

10 2.33E-05 | 5.73E-05 | 1.16E-05 | 2.30E-05 |

20 1.46E-06 4.00 3.61E-06 3.99 5.00E-08 7.85 9.98E-08 7.85

40 9.13E-08 4.00 2.27E-07 3.99 2.13E-10 7.88 4.25E-10 7.88

50 3.74E-08 4.00 9.29E-08 4.01 3.94E-11 7.56 7.84E-11 7.57

P 4

10 7.24E-07 | 1.37E-06 | 1.40E-06 | 2.79E-06 |

20 2.27E-08 5.00 4.33E-08 4.99 1.56E-09 9.82 3.11E-09 9.81

30 2.99E-09 5.00 5.72E-09 4.99 3.06E-11 9.69 6.16E-11 9.67

As a consequence, the domain of dependence D
1 does not include the discontinuity of the initial condition;

see Fig. 5.8 (top).

On the other hand, it is interesting to point out that this doubling of the order of accuracy does not

take place for the problem,8<:ut � ux = v

vt + vx = �u
in I � (0; T );

8<:u(x; 0) = sin(x)

v(x; 0) = 0
x 2 I; (5.5)

with periodic boundary conditions, since now the two scalar equations associated with the diagonalization of

the system are coupled through zero-order terms; as a consequence, the domain of dependence D
1 always

includes the discontinuity of the initial condition; see Fig 5.8 (bottom). This is the example treated in

the early work of Majda and Osher and [18] and Majda, McDonough and Osher [17]. Due to this lack of

regularity of the initial condition on D
1, post-processing with a kernel of support of order h does not yield

any signi�cant improvement; a kernel of support of order almost one is required, as predicted by our main

theorem; see also Mock and Lax [19].
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Table 5.8

Example 5.6, linear system with discontinuous solution

Before postprocessing After postprocessing

mesh L2 error order L1 error order L2 error order L1 error order

P 1

10 1.49E-02 | 4.00E-02 | 1.29E-02 | 4.27E-02 |

20 3.19E-03 2.22 9.35E-03 2.10 2.79E-03 2.21 7.69E-03 2.47

40 4.76E-04 2.74 1.37E-03 2.78 1.85E-04 3.91 4.82E-04 3.99

80 1.13E-04 2.08 3.04E-04 2.17 1.99E-05 3.22 4.28E-05 3.49

160 2.78E-05 2.02 7.59E-05 2.00 2.48E-06 3.00 5.31E-06 3.01

320 6.94E-06 2.00 1.90E-05 2.00 3.09E-07 3.00 6.63E-07 3.00

P 2

10 3.41E-03 | 6.93E-03 | 2.65E-03 | 9.29E-03 |

20 3.58E-04 3.25 1.30E-03 2.42 2.22E-04 3.58 6.40E-04 3.86

40 6.30E-06 5.83 2.42E-05 5.74 2.85E-06 6.28 1.39E-05 5.52

80 6.33E-07 3.32 1.64E-06 3.88 1.23E-09 11.17 7.52E-09 10.86

160 7.91E-08 3.00 2.05E-07 3.00 3.34E-11 5.20 5.54E-11 7.08

P 3

10 2.03E-03 | 6.43E-03 | 5.35E-04 | 1.77E-03 |

20 1.40E-04 3.86 5.41E-04 3.57 4.92E-06 6.76 2.27E-05 6.28

40 9.66E-07 7.18 3.64E-06 7.21 2.50E-08 7.62 9.60E-08 7.89

80 2.14E-09 8.82 6.00E-09 9.25 1.34E-11 10.87 4.89E-11 10.94

P 4

10 1.38E-03 | 3.26E-03 | 9.61E-04 | 2.90E-03 |

20 6.92E-05 4.32 2.72E-04 3.58 8.09E-08 13.54 6.31E-07 12.17

40 4.14E-07 7.39 2.36E-06 6.85 2.42E-11 11.71 1.03E-10 12.58

6. Extensions and concluding remarks. In this paper, we have shown how to enhance the approxi-

mation given by a �nite element method for linear hyperbolic equations by applying a simple post-processing

at the very end of the computations. Our theoretical results can be easily extended to the case in which the

matrices Aj ; j = 0; : : : ; d, are very smooth functions of (x; t). To do that, it is enough to mimic the induction

argument presented by Bramble and Schatz in [4].

The role of negative-order error estimates is crucial since it is the analytical tool that captures the

ocillatory nature of the error. For these negative-order norms of the error, upper bounds were obtained

which depend on a global norm of the initial data. Our numerical results suggest, however, that they should

depend only on a local norm of the initial data. In fact, a result of this type was obtained in 1998 for �nite

di�erence schemes by Engquist and Sj�ogreen [10]. To obtain such a result for, say, the discontinuous Galerkin

method is an challenging open problem.

Finally, let us end by pointing out that our numerical results seem to indicate that the post-processing

has a positive impact on the quality of the approximate solution even if the problem is non-linear. A

theoretical analysis of this case is yet another important open problem.
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Fig. 5.3. The errors in absolute value and in logarithmic scale, for P 2 with N=10, 20, 40, 80 and 160 elements. Before

post-processing (left) and after post-processing (right).
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Fig. 5.4. Sketch of the domain of smoothness 
0 of the exact solution, the domain 
1 and its corresponding domain of

dependence D
1. The pattern between the discontinuities t = x and t = x� 5 should be repeated periodically.

1 2 3 4 5 6
x

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

er
ro

r

P2 with 20 elements, Error

before post-processing (solid line); after post-processing (dashed line)

1 2 3 4 5 6
x

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

er
ro

r

P3 with 20 elements, Error

before post-processing (solid line); after post-processing (dashed line)

Fig. 5.5. The errors before and after post-processing for the smooth solution of Burgers equation and 20 elements: P 2

(left) and P 3 (right).
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Fig. 5.6. The errors in absolute value and in logarithmic scale, for P 2 with N=20, 40, 80, 160 and 320 elements. Smooth

solution of Burgers equation. Before post-processing (left) and after post-processing (right).
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Fig. 5.7. The errors in absolute value and in logarithmic scale, for P 2 with N=10, 20, 40, 80, 160 and 320 elements.

Discontinuous solution of Burgers equation. Before post-processing (left) and after post-processing (right).

28



0

Ω0

t

x

T ________

DΩ1

Ω1

DΩ1

0

t = -x t = x

0

Ω0

t

x

T ________
Ω1

DΩ1

0

t = xt = -x

Fig. 5.8. The domain of smoothness of u(T ), 
0, the domain 
1 �� 
0 and its corresponding domain of dependence

D
1 for the system (5.4) (top) and the system (5.5) (bottom). Note the discontinuity curves t = jx j.

29


	edoc_980255321.sf298.pdf
	Form SF298 Citation Data


