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ABSTRACT

Spatially and temporally varying adaptive inflation algorithms have been developed to combat the loss of

variance during the forecast due to various model and sampling errors. The adaptive Bayesian scheme of

Anderson uses available observations to update the Gaussian inflation distribution assigned for every state

variable. The likelihood function of the inflation is computed using model-minus-data innovation statistics. A

number of enhancements for this inflation scheme are proposed. To prevent excessive deflation, an inverse

gamma distribution for the prior inflation is considered. A non-Gaussian distribution offers a flexible

framework for the inflation variance to evolve during the update. The innovations are assumed random

variables, and a correction term is added to the mode of the likelihood distribution such that the observed

inflation is slightly larger. This modification improves the stability of the adaptive scheme by limiting the

occurrence of negative and physically intolerable inflations. The enhanced scheme is compared to the original

one in twin experiments using the Lorenz-63model, the Lorenz-96 model, and an idealized, high-dimensional

atmospheric model. Results show that the proposed enhancements are capable of generating accurate and

consistent state estimates. Allowing moderate deflation is shown to be useful.

1. Introduction

The ensemble Kalman filter (EnKF) is an efficient es-

timation tool that has been used extensively in many

geophysical applications during the last two decades

(Evensen 2009). It operates sequentially by combining

information from a prior state of a system and its associ-

ated variance with noisy observations to produce an ana-

lyzed posterior statewith an updated uncertainty (Evensen

2003). Inflation has been introduced into stochastic (e.g.,

EnKF) and deterministic (e.g., Anderson 2001; Hoteit

et al. 2002; Whitaker and Hamill 2002; Hunt et al. 2007;

Sakov and Oke 2008) ensemble filters as a way to coun-

teract the underestimation of the true variance. Large

portions of the variance are often lost during the forecast

step, but the inherent bias of the EnKF, in the form of

sampling errors, is in the analysis step (Bocquet 2011; van

Leeuwen 1999). A separate issue is whether there are

sufficientmembers to track all the directions of uncertainty

growth (Bocquet and Carrassi 2017). Other reasons for

variance underestimation can be related to the simplified

model dynamics and wrong parameterizations that may in-

troduce large biases in addition to neglected model errors.

Systematic observational and representativeness errors

within the analysis step are also expected to lead to un-

derestimates of the ensemble variance (Furrer and

Bengtsson 2007).

Studies within the data assimilation (DA) literature

have proposed a number of techniques that deal with all

kinds of system errors. Themajority of these techniques,

apart from localization, which removes spurious correla-

tions from the prior covariance, can be seen as a form of

inflation. These can be split into four distinct categories.

The first category is background covariance inflation,

which itself is divided into additive and multiplicative in-

flation. Additive inflation (Mitchell and Houtekamer

2000) adds a random perturbation drawn from a specific

error distribution to each ensemble member during the

forecast step. Additive inflation can be applied to the prior

ensemble in different forms (Raanes et al. 2015) and also

within the update step (Hoteit et al. 2015). Multiplicative

inflation (Anderson and Anderson 1999; Zheng 2009), on

the other hand, increases the prior ensemble spread by a

specific factor while pushing all members away from the

mean. It has been reported that multiplicative inflation can

help deal with observation network-related sampling er-

rors, while additive inflation can help mitigate the model-

ing errors (Whitaker and Hamill 2012). In the current

study, we only look into multiplicative inflation and its
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spatial and temporal adaptive formulations. Observation

error variance inflation falls within the second category.

The idea behind inflating the observation error variance is

to compensate for a wrongly specified error distribution on

the observations (Liang et al. 2012) and, in other scenarios,

to limit the impact of theKalman update. Such an inflation

procedure, which is often referred to as observation error

moderation, has been applied in a number of ocean (e.g.,

Sakov et al. 2012; Karspeck 2016) and atmosphere (e.g.,

Li et al. 2009;Minamide andZhang 2017)DA studies. The

third inflation category includes the relaxation-to-prior

perturbations (RTPP) (Zhang et al. 2004), and spread

(RTPS) (Whitaker and Hamill 2012; Ying and Zhang

2015). The core of the relaxation method can be seen

as a multiplicative inflation; however, it is applied only

to the posterior ensemble, given the amount of en-

semble spread reduction by the observations. In a re-

cent study, Kotsuki et al. (2017) found that the adaptive

versions of the RTPP and RTPS often lead to over-

dispersive (underdispersive) ensemble in sparse (dense)

observation networks when compared to multiplicative

prior inflation. The sampling error correction byAnderson

(2012) can also be seen as a relaxation, in some sense. The

fourth inflation category includes techniques that modify

the ensemble by changing its size (Uzunoglu et al. 2007) or

its physical andmodel-based nature (e.g.,Meng andZhang

2007; Berner et al. 2009). In addition to these four inflation

categories, a few studies have focused on developing

ensemble-based filters that do not require an explicit use of

inflation. These methods, such as the ensemble time-local

H‘ filter (EnTLHF; Luo and Hoteit 2011) and the finite-

size EnKF (EnKF-N; Bocquet 2011), have some sort of a

built-in inflation by design.

Anderson (2009, hereafter A09) proposed an adaptive

(multiplicative) inflation algorithm that is fully based

on a Bayesian approach. The algorithm deals with in-

flation as a spatially heterogeneous random variable

following a multivariate Gaussian distribution. As we will

see in the next sections, the inflation likelihood—that is not

Gaussian in terms of the inflation—often peaks at values

that are smaller than 1 (sometimes negative). This may

cause a deflation of the ensemble, producing poor esti-

mates, and may possibly yield filter divergence over a long

assimilation run. A common strategy for countering ex-

cessive deflation (e.g., Wang et al. 2007) is to bound the

inflation by rejecting values that are smaller than 1. Here,

we derive a new form for the likelihood function. The new

form is similar to the one proposed in A09, with an addi-

tional correction term.The correction termhelps reduce the

probability for deflation, particularly for small ensemble

sizes. Moreover, a Gaussian inflation prior does not respect

the positivity constraint, such that drawing a negative in-

flation value is possible. As a more suitable alternative,

Raanes (2016) recently proposed the use of an inverse chi-

square distribution for the inflation prior. In this study, we

use an inverse gamma distribution for the prior, and we

present an efficient computational procedure to switch back

and forth betweenGaussian and inverse gamma probability

density functions (pdfs).

Section 2 briefly introduces the adaptive inflation algo-

rithm and also provides a useful geometrical interpretation

for the problem. Section 3 discusses the enhancements to

the prior and likelihood distributions. Section 4 presents

results from two low-order models and an idealized 3D

atmospheric system. Results from A09 are compared to

the ones using the proposed enhanced inflation algorithm.

Section 5 provides the discussion and conclusions.

2. Adaptive inflation review

a. Definitions, background, and innovation statistics

Consider a state vector x of sizeNx, representing a 3D

geophysical field such as temperature. In the ensemble

framework, the probability density function of the

model’s state at any forecast time is approximated by an

ensemble of realizations. For any kth element xk, in the

state vector, the first and second moments are approxi-

mated as

x
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Here, xb denotes the background ensemble mean, exi
is the ith background ensemble perturbation, Ne is the

ensemble size, andcsb
2
is the associated sample variance.

Suppose that the true value of this state element is xt and

that an observation y is available through

y5 x
t
1 «

o
, (3)

where «o is the observation error, assumed Gaussian

with zero mean and variance s2
o. From the definition of

the innovation (Desroziers et al. 2005), the following

relations can be derived:
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b
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5s2
o 1s2

b , (7)

where «b is the background error following N(0, s2
b),

and s2
b is the true background variance; d is an
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observation-minus-background-type innovation. Equa-

tion (7) assumes that the observation and background

errors are uncorrelated (Lorenc 1986; Daley 1993). We

assume that the ensemble mean xb coincides with the

true mean that one may obtain using a very large

ensemble size.

The idea is to match the true variance by modifying

the sample variance from the ensemble. One possible

way is to impose the linear relation s2
b 5 locsb

2
, and,

assuming a correctly specified observational error vari-

ance, the following result can be obtained from Eq. (7):

l
o
5
E(d2)2s2

o

cs
b

2
, (8)

where lo is a variance scaling factor, or inflation factor

(Anderson 2007). This is a very well-known result that

has been used in many atmospheric and oceanographic

DA studies (e.g., Wang and Bishop 2003; Wang et al.

2007; Li et al. 2009; Miyoshi 2011; Karspeck et al. 2013).

Given the limited ensemble size, csb
2
is often under-

estimated, and, thus, lo . 1. In cases where E(d2),s2
o,

the scaling becomes negative, and Eq. (8) is no longer

useful. This often happens when the observation is

highly uncertain or when it is very close to ensemble

mean. Furthermore, if the numerator in Eq. (8) is

smaller than the background sample variance, lo be-

comes smaller than 1, and, thus, a shrinkage or deflation

of the ensemble spread is expected.

b. Geometrical interpretation

We have seen that in an error-free (ideal) system, Eq.

(7) must be fulfilled. Given that the background and the

observational errors are uncorrelated, their projections

on a 2D plane are orthogonal. The orthogonality of «o
and «b is only true from a statistical point view; that is,

h[«b], [«o]i5 05 E(«b«o), in which [«b] and [«o] are two

random background and observation errors, re-

spectively. Assuming that the background error is pro-

jected on the positive x axis and that the observation

error is projected on the positive y axis, there exists a point,

say A, with coordinates (sb,so) that lies on the circum-

ference of a circle with radius
ffiffiffiffiffiffiffiffiffiffiffi
E(d2)

p
and origin 0 [reader

may refer to Fig. 1 in Desroziers et al. (2005)]. When prior

inflation is applied, Eq. (8) can be rearranged to obtain

s2
o

ffiffiffiffiffiffiffiffiffiffiffi
E(d2)

ph i2 1
cs
b

2

ffiffiffiffiffiffiffiffiffiffiffi
E(d2)

p ffiffiffiffiffi
l
o

p. i2
5 1,

� (9)

such that a new point, say B, with coordinates (csb, so)

can be shown to live on an ellipse with origin 0, semi-

major axis
ffiffiffiffiffiffiffiffiffiffiffi
E(d2)

p
, and semiminor axis

ffiffiffiffiffiffiffiffiffiffiffi
E(d2)

p
/
ffiffiffiffiffi
lo

p
(if

lo . 1). Recall here that pointA represents the truth, or the

ideal system statistics, and pointB is what we have from the

ensemble and the imperfect observations. The eccentricity

0, e, 1 in Eq. (10) can be used as ameasure of howmuch

our elliptic shape deviates from being a circle1:

e5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 l21

o

q
. (10)

Thus, in the worst case scenario, that is, an ensemble

collapse withcsb/ 0 (lo/‘), the eccentricity becomes

1. On the contrary, as e approaches 0, we are close to a

circle situation and, hence, almost recovering the true

background variance. In practice, e can be utilized as an

elegant bounded parameter to comment on the status of

the background ensemble, whether it is slightly (e/ 0)

or severely (e/ 1) underestimated. In Fig. 1, a geo-

metrical illustration of the inflation is shown. As can be

seen, the background ensemble poorly delineates the

true model forecast variance, with an eccentricity of

0.87. It is further interesting to note that in case of

FIG. 1. Geometrical representation of the prior multiplicative

inflation. The circle and point A describe the true background and

observation error variances. Point B and its associated ellipse de-

scribe the statistics given by the ensemble. The parameters for the

ellipse and the circle are displayed at the top of the graph. The

horizontal axis represents the projections of the background errors,

while the vertical axis represents those of the observation errors.

The eccentricity e of the ellipse is computed based on Eq. (10).

1The eccentricity of an ellipse is measured as the ratio of the

distance between the center of the ellipse and each focus to the

length of the semimajor axis.
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deflation, the major and minor axes are switched, and

the eccentricity equation becomes e5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12lo

p
.

c. Anderson’s adaptive inflation

The spatially and temporally adaptive inflation algo-

rithm outlined by A09 is based on a Bayesian formula-

tion, such that at any analysis time,

p(lkjd)} p(djlk) p(lk) , (11)

where p(lk) is the inflation prior for the kth inflation ele-

ment, p(djlk) is the inflation likelihood given the dis-

crepancy between the observation and the background,

and p(lkjd) is the posterior inflation density. For brevity,

the time indexing has been removed. Here, the inflation is

considered a random variable, and a different inflation

value is assigned for every grid point in the domain, that is,

l5 [l1, . . . ,lk, . . . , lNx ]. (12)

Equation (11) and the majority of the derivations in this

paper are written, without loss of generality, in a scalar

form for simplicity and to allow for an efficient serial

processing of the observations (Anderson 2003). The

prior marginal distribution for this kth inflation element

is assumed Gaussian, with mean lk
b and variance s2

lb ,k
.

For the likelihood to be unbiased (Dee 1995), the in-

novation is assumed to be drawn from a normal distri-

bution with zero mean and variance u2 5 lk
ocsb

2
1s2

o.

As a way to spread the information spatially across all

variables, A09 proposed equal correlation structure

between the state variables and the inflation, such that

r5 corr(xo, xk) k5 1, 2, . . . ,N
x
, (13)

lk
o 5 g(

ffiffiffiffiffi
lk

p
2 1)1 1

h i2
. (14)

Here, xo refers to the observed variable. The notation xo

assumes an identity observational operator to simplify

the equations. Parameter g5 kjrj and k is a localization

factor applied to limit the impact of observation on the

update of state variable xk. Accordingly, the posterior

distribution in Eq. (11) becomes

p(lkjd)} 1

2ps
lb ,k

u
exp

"
2
(lk

2 lk
b)

2

2s2
lb,k

2
d2

2u2

#
. (15)

[This is Eq. (12) in A09.] The updated inflation value

(i.e., lk
u) is obtained as the mode of p(lkjd). This is done

by first approximating the likelihood with a Taylor ex-

pansion and keeping only on the linear terms. The de-

rivative of the resulting approximate posterior is then set

to zero, leading to a quadratic equation in lk. Two so-

lutions are obtained, and the one that is closest to the

prior is selected. The reader may refer to appendix A in

A09 for a detailed computation of the posterior inflation

and its associated variance.

3. Enhanced adaptive inflation algorithm

a. The likelihood

In practice, studies have shown that the result of Eq.

(8) is not always positive. This often happens because

of a misspecification of the observational error variance

[note that Eq. (8) is derived based on the assumption

that s2
o is true]. In fact, when lo , 0, this is an indication

that the components
ffiffiffiffiffiffiffiffiffiffiffi
E(d2)

p
,

ffiffiffiffiffi
lo

p csb, and so cannot

combine to form a triangle. Recall that for these sides to

form a triangle, the magnitude of the sum of any two

sides should be larger than the remaining third side. One

way to satisfy such a triangle relation is to scale the

observation error variance in addition to that of the

background. For instance, Li et al. (2009) used different

innovation statistics (Desroziers et al. 2005) to estimate

both s2
b and s2

o. On the other hand, Wang et al. (2007)

approximated E(d2) by averaging the innovations ob-

tained over short periods of time. Such a time average

often yields values that are closer to the expectation.

In the following, we propose a different form for

Eq. (8). The derivation takes into account the entire

prior ensemble and not just the mean when calculating

the innovation statistics. A sample distance (innovation)

can be expanded in terms of the underlying observation

and background errors and ensemble perturbations as

follows:

d
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Squaring both sides leads to
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Now, average over all ensemble members, and further

simplify:
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noting that the average of the ensemble perturbations is

zero. Further, we take the expectation of both sides and

impose a biased assumption of the ensemble innovations.2

The equation form can then be simplified as follows:

E(d2)1cs
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2
5s2

o 1s2
b 1

N
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2 1

N
e

cs
b

2
, (23)

where the variance of the innovations ensemble is equal

to that of the prior. Introducing a new inflation factor lo*

and substituting s2
b 5 lo*csb

2
, we obtain

l
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*cs
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The constant 1/Ne can be thought of as a correction term

to the original scaling factor in Eq. (8). Using Eq. (25),

the peak for the likelihood function is shifted slightly to

the right, as in Eq. (26). This behavior is pronounced

when a very small ensemble size is used. Note that this

term does not always guarantee a positive value; how-

ever, intuitively, it does reduce the occurrence of de-

flation and negative values:
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b. The prior

Instead of a Gaussian, we will explore representing

the inflation prior by an inverse gamma (IG) distribution

(Stroud and Bengtsson 2007). Such a choice is important

and can be useful in two ways. First, it would prevent

negative and very tiny inflation values that often de-

teriorate the quality of the forecasts. Second, from a

coding and computational perspective, this ensures a

clean algorithm without lengthy checks on the sign and

magnitude of the inflation factor.

The IG prior distribution for the kth inflation element

(for brevity, we have dropped the superscript k) can be

written as follows:

p(l)5
ba

G(a)
l2a21 exp

�
2

b

l

	
, (27)

where G is the gamma function. The constants a and b are

shape and rate parameters of the distribution, respectively.

To apply Bayes’s rule, as in Eq. (11), we first need to

specify botha andb. This is not a straightforward exercise,

considering that these two parameters are quite different

from the Gaussian mean and variance. To make things

easier, we assume that a Gaussian inflation prior is avail-

able, and all we have to do is to use the parameters of the

Gaussian to try and find an appropriate a and b. To this

end, we first use the mean (mode) of the Gaussian and

equate it with the mode of the IG as follows:

l
b
5

b

a1 1
. (28)

Next, the variance of the Gaussian is assumed equal to

that of the IG. Then, by using Eq. (28), we get the fol-

lowing relation:

s2
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5
b2

(b/l
b
2 2)2(b/l

b
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where Eq. (29) is the IG variance formula. After re-

arranging and simplifying Eq. (30), a cubic equation in

b is obtained:
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To find its roots, we first compute the discriminant D, as

shown below:

D52

16(s4
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b 1 3l4

b)

s6
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b

. (32)

Because D, 0, Eq. (31) has one real solution and two

nonreal, complex conjugate roots. The real solution is

selected and assigned to the rate parameter:

a5
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2The left-hand side of Eq. (22) is approximated as 1/Ne�
Ne

i51d
2
i ’�

1/Ne�
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i51di

�2
1V(d)5E(d2)1csb

2
, where V(d) denotes the var-

iance of the innovation sample. In other words, the constant

Ne/(Ne 2 1) in front of csb
2
is omitted. This, generally, becomes a

valid assumption when the ensemble size is large.
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Consequently, the shape parameter can then be deduced

using Eqs. (35) and (28). As an alternative, and instead

of equating the mean of the Gaussian prior with the

model of the IG distribution, one may choose to set the

means of both distributions to be equal. This yields

significantly simpler relations; however, because the

posterior is approximated through the mode, as we will

see next, this might, therefore, be unsuitable.

c. The posterior

Using the likelihood and the prior from the previous

sections, the new posterior distribution p(ljd) takes
the form

bal2a21

ffiffiffiffiffiffi
2p

p
uG(a)

exp

�
2

d2

2u2
2

b

l

	
, (36)

where both a and b are given as functions of lb and s2
lb
.

The variance of the likelihood u2 is given by Eq. (26) as a

function of Ne, l, g, csb
2
, and s2

o. To find the updated

inflation or the mode of this distribution (i.e., lu), we

follow A09 and first expand the likelihood density

around the prior inflation lb using a Taylor expansion:

p(djl) ffi p(djl
b
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This approximate likelihood is then multiplied with the

IG prior in Eq. (27). We take the derivative of the re-

sulting function with respect to l and obtain the fol-

lowing quadratic equation:
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b 2
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Equation (38) has two real roots, and the one closest to

lb is selected.

To find the updated rate and shape parameters (i.e.,

bu and au), we first evaluate the ratio R of the posterior

in Eq. (36) at point j1 5 lu 1slb to that at point j2 5 lu

as follows:

R5

p(ljd)j
l5j1

p(ljd)j
l5j2

. (39)

We note that the posterior in Eq. (36) is not exactly IG;

however, from a series of experiments, we found out that

it does behave like an IG distribution. Based on this, if

one imposes an IG assumption of the posterior,R, which

has already been obtained in Eq. (39), would be equiv-

alent to

R[
b
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Using Eq. (28) for the mode, we substitute

a1 15bu/lu, and after taking the logarithm of both

sides, we get

b
u
5v21 log(R) , (41)

a
u
5

b
u

l
u

2 1, (42)

where v5 j21
2 log(j2/j1)1 j21

2 2 j21
1 .

We can also find the associated Gaussian distribution,

given themean lu and a variance s
2
lu
, as in Eq. (43) below.

This provides a simple framework to switch between the

Gaussian and the IG distributions for the inflation:

s2
lu
5

b2
u

(a
u
2 1)2(a

u
2 2)

. (43)

Under the non-Gaussian assumption, the variance of the

IG posterior is self-adapting, meaning that it can both

increase and decrease after the update. This is empiri-

cally shown to prevent collapse in the spread of the

inflation pdf.

d. Implementation

The enhanced adaptive inflation algorithm is imple-

mented in the Data Assimilation Research Testbed

(DART) at NCAR (www.image.ucar.edu/DAReS/

DART/; Anderson et al. 2009). Listed below are some

characteristics about the algorithm and its imple-

mentation procedure.

d The algorithm is coded in such a way that the user only

deals with Gaussian inflation distributions. The motiva-

tion for this is to facilitate the choice of the initial

inflation parameters and impose only marginal changes

to old versions ofDART.The algorithmoperates by first

transforming the Gaussian input into an inverse gamma,

and then it applies the Bayesian update. The outputs are

the corresponding Gaussian mean and variance.
d For computational reasons, and as outlined in A09,

one may choose to keep the inflation variance un-

changed during the update. One can also refrain from

letting the variance increase in time and instead only

accept updates that decrease the inflation variance.
d The algorithm, by construction, does not require

enforcing the inflation to be nonnegative, given the

IG assumption. This further simplifies the code and

the list of the input parameters.
d The algorithm also features a damped inflation version to

avoidoverdispersion.Thedamping (Andersonet al. 2009),
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which takes place right before applying
ffiffiffi
l

p
to the state, is

done according to
ffiffiffiffiffi
lb

p
5 11 r(

ffiffiffiffiffi
lu

p
2 1), where r is a

user-defined parameter, often close to 1.

4. Numerical experiments

The enhanced spatially and temporally varying adaptive

inflation scheme is compared to the algorithm of A09. The

comparison is performed using (i) the Lorenz-63 (L63;

Lorenz 1963), (ii) the 40-variable model of Lorenz (L96;

Lorenz 1996), and (iii) a low-resolution atmospheric GCM

with more than 105 variables. All experiments use the

ensemble adjustment Kalman filter (EAKF; Anderson

2003). The Kalman update is done serially using DART.

All experiments use damped adaptive inflation versions of

A09 and the proposed scheme (r5 0:9). The root-mean-

square (RMS) errors and average ensemble spread (AES)

metrics are used to comment on the accuracy of the esti-

mates. For theL63model, the ensemble size is set to 5. The

experiments with the two other models use 20 members.

a. Lorenz 63

For this model (see the appendix), we assume perfect

modeling conditions, and we refrain from using localization.

The goal is to study how well the inflation schemes can mit-

igate sampling errors in a strongly nonlinear regime and

using a very small ensemble size. To this end, we also include

results fromtheEnKF-N(Raanes2016) as abenchmark.The

EnKF-N accounts for errors in the prior ensemblemean and

its associated covariance and is expected to outperform an

EnKF with optimally tuned inflation (Bocquet 2011). Given

its computational efficiency, only the dual formulation of the

EnKF-N is implemented. The initial state of the model,

consisting of three variables, fx, y, zg, is set to [20, 28, 8/3],

with an observational error variance of s2
o 5 2 [following

Harlim and Hunt (2007)]. A reference (truth) run is gener-

ated for 10000 time steps, from which pseudo-observations

are sampledevery10model steps (i.e.,Dt5 0:1).Weconduct

three assimilation experiments by changing the observation

network. For the adaptive inflation schemes, the inflation

lower bound is set to 1, and the inflation standard deviation is

kept fixed in time and equal to 0.1. We plot in Fig. 2 the

time-averaged forecast RMSE values obtained using the

three schemes, evaluated only over the last 5000 steps. As

can be seen, the EnKF-N outperforms the adaptive in-

flation schemes for all three observational scenarios.When

only one variable is observed (here, x), the difference be-

tween the performances is only marginal. When two or

three model variables are observed, the enhanced scheme

demonstrates a better mitigation of sampling errors and

suggests an average of 12% improvement in prediction

accuracy overA09.With increasing nonlinearity (i.e., using

observation frequencies such as Dt5 0:25 and Dt5 0:50),

the performance (not shown) of the enhanced scheme was

found closer to the EnKF-N, compared to A09. We note

here that in the presence of model errors, the EnKF-N

performance deteriorates strongly.

b. Lorenz 96

Forty state variables are defined as equally spaced on a

[0, 1] periodic domain. A truth integration run of the L96

model is performed, starting from a point on the attractor

with a time step of 0.05. We assume that every other vari-

able is observed, for a total of 20 observations. A random

draw fromN(0, 1) is added to the observations as a way to

simulate the observation error. The observations are avail-

able every time step for a total of 100000 steps. The results

are reported using the last 90000 steps to avoid any tran-

sient behavior. The initial ensemble members are random

draws from the model climatology created by taking the

5000th step in a long free integration of themodel. The true

forcing of the model is set to 8. For localization, a 5th-order

polynomial function of Gaspari and Cohn (1999) is used.

The inflation is initialized by setting lb 5 1 (i.e., no in-

flation) and slb 5 0:6 for all 40 variables. The inflation

variance here is kept fixed at 0.6 for the entire DA cycle.

1) INFLATION CAP

In the following tests, perfect model conditions are

assumed, and the performance is assessed based on a

changing inflation lower bound (LB): either 0 or 1. The half-

width c for localization is set to 0.2. In Fig. 3, the spatial

average of the prior and posterior RMS and spread

are plotted. Because every other variable is observed, a

FIG. 2. Time average of forecast RMS errors and spread obtained

using the L63 model for three observational network scenarios.

The adaptive inflation of A09 is compared to the proposed en-

hanced scheme, in addition to the EnKF-N.
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saw-shaped behavior is obtained. As can be seen, when

LB 5 1, both algorithms suggest equivalent prior and pos-

terior accuracy. The enhanced algorithm is around 8%

more accurate than A09 when LB is set to 0. The overall

prior and posterior RMS errors for both schemes are

smaller when the LB is 1. In terms of the spread, the

enhanced algorithm yields better consistency3 in the esti-

mates. Apparently, when the LB is 1, A09 displays a slight

overdispersion in the prior estimates, with dRMSb/dAESb 5

1:10. On the other hand, the consistency ratio for the priors

and the posteriors using the enhanced algorithm is 0.99 and

0.98, respectively. When the LB is 0, the prior and posterior

RMS obtained using A09 are larger than the spread.

In Fig. 4, we plot the temporal evolution of the inflation

obtained using both algorithms during the last 1000 steps.

The adaptive procedure in A09 (blue crosses) yields a

wider inflation range, compared to the enhanced algorithm

(red triangles). This explains the over- and underdispersed

ensemble behavior suggested by A09 in Fig. 3. In space,

A09’s inflation structure was found more heterogeneous,

in the sense that the difference between inflation for ob-

served and unobserved cells is quite big. The enhanced

scheme produced a smoother inflation field. Note that

large ensemble variations between neighboring cells might

create instabilities in some cases.4 Related to inflation, we

assessed the behavior of the eccentricity in Eq. (10) and

FIG. 3. The temporal average of total RMS errors and AES obtained using (left) A09 and (right) enhanced inflation

algorithms. The top and bottompanels use an inflation lower bound (i.e., Inf-LB) of 0 and 1, respectively. Reported in the

legends are the prior and posterior overall RMS and spread average. The ratio between the overall average RMS to

spread is given for both the prior and the posterior estimates in the top-right corner of the panels.

3The consistency in the estimates is measured here using the

ratio between the overall RMS to spread averages.

4We have observed similar issues when assimilating into large

ocean models. Big differences in the ensemble variance can lead to

CFL violations, eventually causing failure of the barotropic solver.
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found that the value for e suggested by the enhanced

scheme is closer to 0. On average, it is around 32% smaller

than that of A09.

2) LOCALIZATION AND MODEL ERROR

SENSITIVITY

The goal of the following experiments is to test the

robustness of the schemes under challenging modeling

and assimilation scenarios. For the localization sensi-

tivity, the forcing is kept at 8, and the half-width pa-

rameter is varied between 0.1 and 0.8 with a step of 0.1.

We tabulate the overall RMSE mean obtained using

both algorithms in Table 1. As shown, the enhanced

scheme suggests smaller RMSE values for all tested

half-widths. For instance, when c5 0:4 and LB 5 0, the

enhanced inflation scheme yields estimates that are 9%

more accurate than those ofA09. The largest differences

between the schemes happen for c5 0:2, 0:3, and 0:4.

Next, 14 experiments are conducted with different

forcing values in the forecast model, fF5 1, 2, . . . , 15g
(excluding the true value; i.e., F5 8). Without using

inflation, a 20-member ensemble diverges quickly after

few updates. Both A09 and the enhanced scheme sug-

gest inflation values as high as 1.60 in order to com-

pensate for strong modeling errors. Comparing the

average RMSE values in Table 2, the enhanced scheme

is found more accurate for all 14 tests. On top of the

accuracy, few rank histograms (not shown) for randomly

selected variables were assessed. We found that both

algorithms generate relatively flat-shaped histograms

for 3,F, 13. When the model error is very large (i.e.,

F5 f1, 2, 3, 13, 14, 15g), U-shaped histograms start to

become more dominant.

Overall, the proposed enhanced algorithm performed

well against A09’s scheme, suggesting high robustness to

changes in model error and localization length scale.

When the LB5 0, A09 performed poorly. Under perfect

modeling conditions, the enhanced scheme generated

small inflation values that were slightly larger than 1. In

the presence of modeling errors, the scheme adequately

responded and assigned necessary large inflation. We

noticed that the occurrence of deflation, as compared to

A09, has decreased by around 6%. These features can be

attributed to the small right shift introduced to the

likelihood probability density function. The IG en-

hancement to the prior leads to a decreased deflation

and, consequently, less inflation, when compared to A09.

In general, the performance with no deflation was found

more accurate. This, however, cannot be generalized be-

cause it could only be a characteristic of the L96model. As

we will see in the next model results, we experience a

different behavior when capping the inflation.

c. Idealized global atmospheric model

The model is a modified version of the dynamical core

used in the Geophysical Fluid Dynamics Laboratory

(GFDL) climate model (Anderson et al. 2004). The

model (B grid) has no moisture and topography and no

parameterizations for radiation, turbulence, and convec-

tion. To represent these, the model uses Held and Suarez

(1994) forcing instead, which consists of Newtonian re-

laxation of the temperature field to a prescribed radiative

FIG. 4. Temporal evolution of the inflation (all 40 variables of L96) using A09 and the

proposed enhanced algorithms over the last 1000 model time steps. Results are displayed for

both LBs (0 and 1). The maximum value, minimum value, and the spatiotemporal average of

inflation are given in the legend.
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equilibrium solution and Rayleigh damping of winds near

the surface for dissipation. The prognostic variables in the

model are surface pressure (PS), temperature T, zonal U,

and meridional V wind components.

The B-grid model is configured with the minimum

horizontal and vertical resolution required to generate

baroclinic instabilities. The grid domain consists of 30

latitude and 60 longitude grid points and five levels

spaced equally in pressure (level 1 being the highest),

resulting in a total of 28 200 state variables. The time

step in the model is 1 h. For more details, the reader may

refer toAnderson et al. (2005). Thismodel is available in

theDART package under the name ‘‘bgrid-solo.’’ In the

following set of DA experiments, we test the perfor-

mance of the inflation algorithms for constant and varying

inflation variance scenarios. We use a predefined clima-

tological state as an initial starting point to perform the

truth run over a period of 400 days; however, we only use

the last 200 days for assessment of the results. Three

hundred PS observations, randomly distributed in the do-

main, are sampled every day with a Gaussian observation

error variance of 1hPa. All results reported here are based

on the prior state (and inflation) estimates. The localiza-

tion half-width is set to c5 0:2 rad.

1) FIXED sl

In this section, the inflation is initialized with lb 5 1.

The standard deviation slb 5 0:6 is kept fixed for all DA

cycles. The RMS errors for all variables obtained using

A09’s and the enhanced inflation algorithms are dis-

played in Fig. 5. The RMS errors for T, U, and V are

averaged over all model levels. The best performance is

obtained using the enhanced scheme with LB5 0. A09’s

scheme fails to generate accurate estimates when de-

flation is allowed in the adaptive procedure. On average,

the enhanced scheme (LB5 0) outperformsA09 (LB5 1),

suggesting an increased accuracy for PS, T, U, and V by

29.4%, 36.4%, 34.4%, and 34.3%, respectively. When

the LB 5 1, the improvements over A09 are 11.8%,

9.1%, 12.5%, and 14.3%. To make sense of these sta-

tistics, the temporal average of the bias (LB 5 0) for all

variables is displayed in Fig. 6. Themaps suggest that the

largest biases are concentrated in ‘‘no observation’’ lo-

cations (e.g., central and north Asia) and dense obser-

vation areas (e.g., west of Australia). The absolute bias

resulting from A09 grows up to 0.2 hPa, 0.04K, and

0.3m s21, for PS, T, and U 1 V, respectively. The esti-

mates generated by the enhanced scheme are less biased.

Given the instabilities in the B-grid model, most of the

wind biases appear in midlatitudes (top-right panel).

Next, we plot in Fig. 7 PS inflation snapshots after

200 days (top panels), in addition to the temporal av-

erage (bottom panels) for LB 5 0. At day 200, strong

deflation areas in the high upper latitudes dominate

A09’s map. It is surprising to see that deflation happens

mostly in places where observations are available (e.g.,

south of Australia). The enhanced scheme, on the con-

trary, yields reasonable inflation patterns, such that no-

observation locations are assigned l’ 1, and locations

with dense data points have inflation values as high as 2

(e.g., North Pacific). Deflation, using the enhanced

scheme, is rarely observed and almost nonexistent. This

could be attributed to the inclusion of the inverse

gamma density in the prior. Averaging over 400 days,

the enhanced scheme yields inflation patterns that spa-

tially match the observation clusters in the domain. To

illustrate, areas dominated with observations are gen-

erally bluish in color (i.e., l. 1), while the rest of the

domain is more reddish with almost no inflation. A09’s

inflation map is more heterogeneous, and no clear data-

matching patterns are detected. Furthermore, inflation

values in locations such as South Asia and the Indian

Ocean are almost 25% larger than those suggested by

TABLE 1. The average forecast RMSE resulting from A09 and

the enhanced inflation algorithms for two scenarios on the lower

bound for inflation, namely, LB 5 0 and LB 5 1. The results are

shown for eight different localization length scales.

Half-width: c

A09 Enhanced

LB 5 0 LB 5 1 LB 5 0 LB 5 1

0.10 0.4283 0.4032 0.4164 0.4015

0.20 0.3681 0.3436 0.3408 0.3315

0.30 0.3644 0.3267 0.3329 0.3191

0.40 0.3703 0.3260 0.3372 0.3200

0.50 0.3728 0.3211 0.3415 0.3210

0.60 0.3881 0.3302 0.3642 0.3288

0.70 0.3887 0.3336 0.3750 0.3315

0.80 0.3951 0.3411 0.3687 0.3361

TABLE 2. As in Table 1, but, here, the sensitivity is given in terms

of 14 different forcing parameters.

Forcing: F

A09 Enhanced

LB 5 0 LB 5 1 LB 5 0 LB 5 1

1 2.2170 2.2080 2.1522 2.1318

2 1.9676 1.9560 1.8934 1.8900

3 1.7435 1.7463 1.6486 1.6503

4 1.5295 1.5200 1.4343 1.4301

5 1.3179 1.3129 1.2234 1.2168

6 1.0904 1.0888 0.9989 0.9868

7 0.8078 0.8030 0.7414 0.7111

9 0.8486 0.8319 0.7900 0.7437

10 1.2083 1.2085 1.1121 1.0993

11 1.5322 1.5244 1.4113 1.3978

12 1.8553 1.8527 1.6916 1.7217

13 2.1493 2.1666 1.9809 2.0519

14 2.5317 2.4765 2.3138 2.2953

15 2.8118 2.7636 2.6068 2.5739
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the enhanced scheme. Consistent with the stability analysis

described before, a number of no-inflation spots (red in

color) in the domain are observed within large inflation

zones (blue in color), as in the North and South Pacific.

This strong inflation heterogeneity is one factor causing the

degradation in the performance of A09 when LB 5 0.

In addition to PS, we also analyze the behavior of the

inflation along the vertical direction in the model. Figure 8

plots the average inflation maps for T at levels 1 and 5.

Similar to PS, the enhanced scheme is shown to generate

more reliable maps with consistent data-matching struc-

tures. Closer to the surface at L5, the inflation values are

large, given the higher impact from PS observations. The

maps produced by A09 consist of very large inflation re-

gions, especially near the surface.Within these regions, few

tiny no-inflation spots are observed. To better understand

this behavior, we study in Fig. 9 the temporal change in the

inflation’s overall minimum and maximum values, in ad-

dition to the spatial average. Both schemes yield com-

parable inflation average with l’ 1:2. The results are

different for theminimum andmaximum inflation values.

For instance, the minimum values obtained using the

proposed algorithm tend to vary between 0.5 and 0.8,

whereas most of the inflation minima obtained using A09

are equal to 0.1.5 This explains the behavior observed in

Figs. 7 and 8, in which A09 assigns very large inflation to

combat such a strong deflation. Accordingly, the inflation

range suggested byA09 is around 30%wider than that of

the proposed scheme. Small inflation values are artifacts

resulting from (i) the use of Gaussian priors and (ii) the

inflation likelihoods peaking at very small values. Both of

these issues seem to be partially, if not fully, resolved in

the new inflation scheme.

2) DISCUSSION

When the inflation variance is fixed in time, the en-

hanced scheme with LB 5 0 was shown to be the most

reliable, providing accurate estimates. The results of the

enhanced scheme with LB5 1 are, on average, 25% less

accurate. Onemight argue that themain reason for using

FIG. 5. Evolution of spatially averaged prior RMS in time for all variables of the dry dynamical core. Except for PS, the

averaging isdoneforallmodel levels.Thesolid linesare results fromexperimentswith inflationLB5 0.Thedash–dotted lines,on

the other hand, use LB5 1. The overall RMS averages (both in space and time) are reported in the legends of each panel.

5Note that the smallest inflation values are 0.1 and not 0 because of

damping.With no damping, these become 0, and the assimilation fails.
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inflation is to avoid prior variance underestimation, and,

thus, deflation should not be part of the scaling procedure.

This is true to a certain extent; however, a more detailed

and in-depth analysis is needed here.

(i) Preventing deflationmeans that Eq. (8), or Eq. (25)

in our enhanced context, is no longer satisfied. As

such, the innovation statistics in the following

assimilation cycles, whether indicating inflation or

deflation, may be incorrectly interpreted. Ignoring

the likelihood information at one cycle may have

consequences on future assimilations.

(ii) The process of inflation inserts an artificial spread

in the ensemble that the model is unaware of. For a

biased model, this can be extremely large. This may

FIG. 7. (top) PS inflation maps after 200 days of assimilation resulting from (left) A09 and (right) the enhanced

schemes. (bottom) As in (top), but displaying the overall time average (entire 400 days) instead. The green circles

denote the PS observations locations.

FIG. 6. Maps of time-averaged bias resulting from (top) A09 and (bottom) the enhanced adaptive inflation schemes. Shown on the maps

with green circles are the location of the PS observations.
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require long cycles and successive Kalman updates

before it can be removed, during which the accuracy

of the forecast might be degraded. To better fit the

data, deflation can be applied to get rid of the extra

artificial spread. If the spreadwas to grow naturally in

the ensemble due to the dynamics of themodel alone,

then deflation should not be utilized, and the Bayes-

ian update can minimize the variance.

(iii) A strong deflation, as we experienced with A09,

can be very unhealthy, producing poor estimates.

The use of deflation should be moderate—hence

the introduction of the IG instead of a Gaussian.

Moreover, deflation was applied using A09’s adap-

tive scheme 7489 times. This number was greatly

reduced to 1144 times using the enhanced scheme,

given the modified likelihood variance [Eq. (26)].

3) VARYING sl

To test the functionality of the inflation variance, we

now start the assimilation by setting sl(t0)5 0:9 and

allow it to change in time. The minimum allowable

variance is set to 0.01, such that after the update, if slb

becomes smaller than 0.1, it is kept unchanged. Here, we

only test with LB 5 1 for inflation, given the poor per-

formance of A09 in the presence of deflation. The time

evolution of slb for PS and T is plotted in Fig. 10. The

variance reduction for T, as shown, is smaller than that

of PS. This is because PS is directly observed, and T is

averaged over model levels that are far from the surface,

and, thus, the impact of the updates is weaker. Given the

Gaussian assumption, the inflation variance obtained by

A09 monotonically decreases, eventually reaching 0.01

after 300 days. The enhanced scheme takes on a de-

creasing trend but with obviously a slower rate; slb is

seen to equilibrate at around 0.35 and 0.50 for PS and T,

respectively. Furthermore, the variance suggested by

the enhanced algorithm is shown to slightly increase at

different times due to the IG assumption.

The effects of this behavior from both schemes are il-

lustrated in Fig. 11, in which the RMS and AES of the

estimates are displayed over time. Given the rapid de-

crease in the inflation variance, A09’s performance tends

to degrade, as shown in the last 50 days.When the inflation

variance becomes very small, the effects of the Bayes-

ian update decrease. For a longer simulation period

(i.e., .400 days), the estimates are expected to get

worse as the inflation algorithm becomes technically in-

effective. For all variables, theRMSE suggested byA09 is

almost double that of the spread, probably indicating an

ensemble collapse (divergence). On the other hand, the

enhanced scheme estimates are more accurate, further

suggesting a consistency of ;1 over the entire assimila-

tion period. Finally, we show the spatial maps for inflation

FIG. 8. (top) Time-average inflation maps for temperature from model level 1, resulting from (left) A09 and (right) the

enhanced schemes. (bottom) As in (top), but for level 5. The green circles denote the PS observations locations.
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standarddeviation after 50, 200, and 400days inFig. 12.A09

quickly decreases slb in the vicinity of the observation

points from 0.9 to 0.2 after 50 days.At day 400, the standard

deviation becomes almost homogenous across the domain

and equal to 0.1. The behavior of slb suggested by the en-

hanced scheme is quite different. As can be seen, the major

updates happen around the observation locations. More-

over, the inflation variance is reduced in time at a slower

pace. The spatial patterns of slb are comparable to the in-

flation structure observed in Fig. 7 (left panels), unlike what

we obtained from A09. After 400 days, slb 5 0:2 in the

vicinity of the observations and 0.9 for unobserved loca-

tions. This feature can be quite useful in realistic scenarios

when the observation network changes constantly in time.

5. Summary and discussion

This paper studies the spatially and temporally vary-

ing adaptive prior covariance inflation for ensemble

filters. Several enhancements are introduced to the

previously documented algorithm of A09. The distance

between the model forecast and the data points is as-

sumed to be a random variable. This modifies the vari-

ance of the inflation likelihoodwith a factor of 1/Ne, such

that the distribution is slightly shifted to the right. Fur-

thermore, the inflation prior is assumed inverse gamma

instead of Gaussian. This restricts the sampling of the

inflation to positive values only. The benefits of these

enhancements are twofold. The modified likelihood is

expected to behave better in the case of a very sparse

observational network and/or assimilating observations

with large uncertainties. ‘‘Better’’ here means that the

occurrence of negative or small inflation values is re-

duced. The use of an inverse gamma prior limits the

magnitude of deflation, should it occur. The enhanced

scheme is compared to the original algorithm of A09 in

twin experiments, using a low-dimensional Lorenz-96

and a high-dimensional idealized atmospheric model.

FIG. 9. Inflation values averaged in space, in the vertical, and over all prognostic variables ob-

tained using A09 and the enhanced inflation schemes. The minimum, mean, and maximum values

for these inflation values are plotted in time. The LB here is 0. The y axis is shown in log scale.
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Under perfect modeling conditions, the enhanced

scheme proved its efficiency in mitigating sampling er-

rors, as compared to A09. This was verified by com-

paring the assimilation results to those of the EnKF-N

benchmark. When the inflation is bounded below by 1,

the accuracy suggested by the enhanced scheme is only

marginally higher than that of A09. Moving the cap to 0,

the enhanced scheme efficiently decreases both the

magnitude and the frequency of deflation. This pro-

duced the most accurate and most consistent estimates

in the atmospheric model. The performance of A09’s

algorithm, on the other hand, degraded strongly because

the Bayesian update leads to extremely tiny and large

inflation values. We note here that A09’s algorithm was

almost always used (at least byDART users) with an LB

of 1. Allowing the inflation variance to change, the en-

hanced scheme offered more room for the inflation to

evolve in time, and, thus, a better fit to the data was

obtained. For A09, the inflation variance experienced a

rapid decrease that forced the adaptive scheme to fix the

prior, and this, in turn, reduced the accuracy of the

estimates.

The presented results indicate that a moderate and

not-so-frequent use of deflation can be quite useful. This

is mainly because the mechanism by which inflation

evolves in time is only based on the Bayesian update.

Because the inflation distribution is kept unchanged

during the forecast, an alternative way of dissipating an

overinflated variance in the absence of observations is

required. One example of such a scenario would be

Doppler radar. Large inflation values are needed

FIG. 11. Evolution of spatially averaged prior RMS/AES in time for all variables. Except for PS, the averaging is

done for all model levels. The overall RMS/AES averages (both in space and time) are reported in the legends of

each panel. Here, LB 5 1.

FIG. 10. Time evolution of inflation standard deviation slb for PS

andT (averaged over the entire five levels). Reported in the legend

are the overall averages of slb.
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during a convective event.When the convection ends and

Doppler observations vanish, the added artificial variance

may be removed by other observations; however, the

process can be very slow, leading to strong biases. The

proposed scheme with no lower bound on the inflation

can efficiently remove such variance through deflation

only if there are some observations once the radar is gone.

Another example is a tropical storm. To fit the data, the

underestimated variance of the ensemble is heavily infla-

ted. Once the hurricane passes, deflating the ensemble can

help the model quickly forget about the hurricane and

increase its prediction accuracy.

Despite the success of the presented inflation scheme,

some limitations still exist.

d In terms of the inflation likelihood, the added correction

term, which is based on a biased estimator for the

expectation of the squared innovation sample, does not

fully solve the problem. The observed inflation can still be

negative when assimilating observations with large un-

certainties. The correction term, however, partially miti-

gates the negative and deflation issues. It is important to

note that the imposed right shift on the likelihood peak

does not always yield larger posterior inflation values.
d An appropriate forecast model for the inflation is

needed. Allowing the inflation first and second mo-

ments to evolve in time could improve the assimilation

performance. Such a model should have strong corre-

lations with the bias characteristics of the physical

model, the observation network spatial structure, and

how often the data become available. Ideas like

deflation and damping were introduced to compensate

for the absence of inflation time evolution.
d The presented inflation algorithm, unlike other schemes,

such as the EnKF-N (Bocquet et al. 2015), does not

account for errors in the ensemble mean and its co-

variance, given a finite ensemble size. Such confidence in

the ensemble mean may further generate sampling

errors that the adaptive scheme may not be aware of.
d When the sampling error is very large, the posterior

variance may turn out to be small. One possible

remediation is to inflate the posterior variance. Adapt-

ing the posterior variance inflation is not as simple as

that of the prior because the observations would have

been already used during the update. One could remove

the impact of an observation to compute innovation and

then apply the appropriate Bayesian update. This will be

explored in detail in a future study. In fact, DART has

supported this capability for a long time, and it has been

used quite a bit, but it was not carefully documented.

The enhanced algorithm produced a robust scheme that

is yet to be tested in realistic large-scale weather models.

This task has been initiated, and experiments using the

National Center for Atmospheric Research Community

Atmosphere Model (CAM) are currently being conduct-

ed.Wind and temperature observations from radiosondes,

ACARS, and aircraft, along with GPS radio occultation

observations, are assimilated. Different 6-h forecasts of the

atmospheric state are generated using the enhanced in-

flation scheme. The results of these tests will be analyzed

in a follow-up publication.

FIG. 12. Maps of the PS inflation standard deviation resulting from (top) A09 and (bottom) the enhanced adaptive inflation schemes.

Shown on the maps with green circles are the location of the PS observations. Time (days) increases from left to right panels.
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APPENDIX

Lorenz-63 System

The Lorenz-63 model (Lorenz 1963) is a model with

three variables, defined by the equations

dx

dt
5s(y2 x) , (A1)

dy

dt
5 rx2 y2 xz , (A2)

dz

dt
5 xy2bz . (A3)

The parameters are chosen such that the model pro-

duces chaotic dynamics; [s5 10, r5 28, b5 8/3]. The

time step in the mode is set to 0.01.
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