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Abstract
Converting aeroelastic vibrations into electricity for low power generation has received growing
attention over the past few years. In addition to potential applications for aerospace structures,
the goal is to develop alternative and scalable configurations for wind energy harvesting to use
in wireless electronic systems. This paper presents modeling and experiments of aeroelastic
energy harvesting using piezoelectric transduction with a focus on exploiting combined
nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated.
Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced
through the pitch DOF. A state-space model is presented and employed for the simulations of
the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used
in order to determine the unsteady aerodynamic loads. Three case studies are presented. First
the interaction between piezoelectric power generation and linear aeroelastic behavior of a
typical section is investigated for a set of resistive loads. Model predictions are compared to
experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case
study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle
oscillations can be obtained not only above but also below the linear flutter speed. The
experimental results are successfully predicted by the model simulations. Finally, the
combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch
DOF. The nonlinear piezoaeroelastic response is investigated for different values of the
nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the
hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a
wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy
harvesters (exploiting piezoelectric or other transduction mechanisms) for performance
enhancement.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transformation of aeroelastic vibrations into electrical
energy is a simple and scalable option for wind energy
harvesting. The goal is to enable aeroelastic configurations
with electromechanical coupling for converting flow-induced
structural vibrations into electricity. The harvested energy
can be used for enabling self-powered small electronic
components. The potential applications of interest for

aeroelastic energy harvesting range from lifting components
in aircraft structures to several other engineering problems
involving wireless electronic components located in high
wind areas. Aeroelastic energy harvesters can employ
various transduction mechanisms that can be used for
vibration-to-electricity conversion, such as the piezoelectric,
electromagnetic, and electrostatic transductions covered in the
literature of energy harvesting (Beeby et al 2006). However,
due to the ease of application and high power density of
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piezoelectric materials (Sodano et al 2004, Anton and Sodano
2007, Priya 2007, Cook-Chennault et al 2008), the recent
papers on aeroelastic energy harvesting have mostly focused
on the implementation of piezoelectric transduction.

Experimental investigation of power extraction from
airflow excitation of a curved airfoil with macro-fiber
composite (MFC) piezoelectric patches was reported by Erturk
et al (2008). Time-domain modeling and simulations of
cantilevered plates (in the form of an unswept wing) with
embedded piezoceramic layers were presented by De Marqui
et al (2009), (2010), (2011). The piezoaeroelastic wing
model was obtained by combining an electromechanically
coupled finite-element model (De Marqui et al 2009) with
an unsteady vortex-lattice model. The effect of using
segmented electrodes on the piezoaeroelastic response of the
generator wing was also investigated. In another paper,
frequency-domain piezoaeroelastic modeling and analysis
of the same configuration (unswept generator wing with
embedded piezoceramic layers) for energy harvesting were
presented (De Marqui et al 2011) by using the doublet-lattice
method. The resulting piezoaeroelastic equations were solved
using a p–k scheme with electromechanical coupling and the
evolutions of modal damping and frequency parameters with
increasing airflow speed were analyzed. In these papers,
wing-like configurations were investigated particularly for
low power generation in unmanned aerial vehicle (UAV)
applications.

Bryant and Garcia (2009) presented time-domain mod-
eling of a 2-DOF typical section as a piezoelectric power
harvester device driven by aeroelastic vibrations. The main
motivation was to have an alternative energy source for
placement in urban areas. A time-domain switching energy-
extracting scheme was used in order to increase the power
extraction from linear aeroelastic oscillations. Erturk et al
(2010) presented a frequency-domain solution and experimen-
tal validations for a 2-DOF piezoaeroelastic energy harvester.
The effect of piezoelectric power generation on the linear
flutter speed was also discussed in the same paper along with
the possible useful consequences of having nonlinearities in
the system to create limit-cycle oscillations (LCOs) below
the linear flutter speed. Some of the recent efforts include
scalable configurations for wind energy harvesting. Zhu et al
(2010) presented a small electromagnetic generator combining
an airfoil attached to a cantilever and exposed to different flow
conditions (free flow and wake behind a bluff body). Kwon
(2010) proposed a T-shaped piezoelectric cantilever for energy
harvesting from fluid flow. The experimental results show a
flutter speed of around 4 m s−1, which could be achieved under
natural fluid flow.

A linear aeroelastic system undergoing persistent oscilla-
tions at the neutral stability condition (i.e. at the linear flutter
speed) is the ideal linear scenario (De Marqui et al 2010, 2011,
Erturk et al 2010). However, persistent oscillations occurring
at a specific wind speed restrict the operating envelope of
the energy harvester and often inherent nonlinearities are
present. Nonlinear systems present a very rich variety of
dynamic behavior such as LCOs, internal resonances, and
chaotic motion (Nayfeh and Mook 1979, Moon 1987). In

particular, stable aeroelastic LCOs of acceptable amplitude can
provide an important source of persistent electrical power over
a wide range of airflow speeds. Many authors have examined
the aerodynamic and structural nonlinearities of aeroelastic
systems (see, for instance, Lee et al 1999), while the focus
in the present paper is placed on structural nonlinearities.
For their simplicity and the fundamental insight they provide,
aeroelastic typical section (airfoil) models have been widely
studied. Price et al (1994) investigated free play nonlinearities
in the pitch DOF of a typical section. Nonlinear LCO
regions below the linear flutter speed were verified along
with the subcritical behavior. Tang and Dowell (2006) also
modeled free play nonlinearity in the pitch DOF of a typical
section. In addition to the concentrated structural nonlinearity,
they considered aerodynamic nonlinearities. Zhao and Yang
(1990) examined LCOs when cubic nonlinearity is modeled
in torsion DOF of an airfoil subjected to incompressible
airflow. Zhao and Hu (2004) performed aeroelastic analysis
of a two-dimensional airfoil section with combined geometric
nonlinearities (free play and cubic stiffening) in the pitch DOF.
A detailed discussion on the subject was presented by Lee et al
(1999) and a review article due to Dowell and Tang (2002).

In this paper, linear and nonlinear modeling of a 2-
DOF piezoaeroelastic section is presented with the eventual
goal of exploiting combined nonlinearities in wind energy
harvesting. The piezoelectric coupling is introduced through
the plunge DOF while the nonlinearities are introduced to
the pitch DOF. Three case studies are presented for energy
harvesting from aeroelastic vibrations. First the interaction
between piezoelectric power generation and linear aeroelastic
response is investigated for a set of resistive loads at the
flutter boundary. The predictions of the flutter boundary
and the power output are verified against the experimental
results obtained from wind tunnel tests. Secondly, free play
nonlinearity is modeled in the pitch DOF and introduced to the
experimental setup. It is known that the presence of a free play
nonlinearity often results in subcritical bifurcations with LCOs
at airflow speeds below the linear flutter speed (Dowell and
Tang 2002), which is usually catastrophic in real aircraft but
can be exploited for reducing the cut-in speed in aeroelastic
energy harvesters. Theoretical predictions are compared to the
experimental results and the favorable effect of having a free
play on reducing the cut-in speed on nonlinear LCOs is shown.
Finally, the free play and the cubic hardening nonlinearities
are combined in the same DOF. The nonlinear piezoaeroelastic
response is investigated over a range of airflow speeds and
a range of nonlinear-to-linear spring constant ratios. The
advantage of using combined free play and cubic nonlinearities
is shown for obtaining nonlinear LCOs of acceptable amplitude
over a range of airflow speeds.

2. Piezoaeroelastic model with combined
nonlinearities

Figure 1 shows the schematic of a linear 2-DOF typical section.
The plunge and the pitch displacement variables are denoted by
h and α, respectively. The plunge displacement is measured at
the elastic axis (positive in the downward direction) and the

2



Smart Mater. Struct. 20 (2011) 094007 V C Sousa et al

Figure 1. 2-DOF typical aeroelastic section under airflow excitation.

pitch angle is measured about the elastic axis (positive in the
clockwise direction). In addition, b is the semichord length of
the airfoil section, e is the distance of the elastic axis from the
mid-chord position, xα is the dimensionless chordwise offset
of the elastic axis from the centroid (CG), kh is the stiffness
per length in the plunge DOF, kα is the stiffness per length in
the pitch DOF, bh is the damping coefficient per length in the
plunge DOF, bα is the damping coefficient per length in the
pitch DOF, and U is the airflow speed.

The well-known typical section model shown in figure 1
is modified in this work in two respects. First, piezoelectric
coupling is added to the plunge DOF of the typical section
and the resultant of the electrodes is connected to a resistive
load. Second, concentrated nonlinearities (free play, cubic,
and their combination) are added to the pitch DOF. After
these modifications, the nonlinear piezoaeroelastic equations
are obtained as

(m + me)ḧ + Sαα̈ + bhḣ + khh − θvp/ l = −L (1)

Sα ḧ + Iαα̈ + bαα̇ + kαα + ffp(α) + fc(α) = Mα (2)

Ceq
p v̇p + vp

Rl
+ θ ḣ = 0 (3)

where m is the airfoil mass per length (in the span direction),
me is the fixture mass (connecting the airfoil to the plunge
springs) per length, Iα is the moment of inertia per length
about the elastic axis, Sα is the static moment per length, l
is the span length, Rl is the load resistance in the electrical
domain, vp is the voltage across the resistive load, Ceq

p is the
equivalent capacitance of the piezoceramic layers, θ is the
electromechanical coupling, Mα is the aerodynamic moment
per length, L is the aerodynamic lift per length, and the
overdot represents differentiation with respect to time. In
equations (1)–(3), the nonlinear restoring moments ffp(α) and
fc(α) are given by

ffp(α) =

⎧
⎪⎨

⎪⎩

−kααfp

0

kααfp

fc(α) =

⎧
⎪⎨

⎪⎩

knα(α − αfp)
3 α > αfp

0 −αfp � α � αfp

knα(α + αfp)
3 α < −αfp

(4)

Figure 2. Restoring moments in the pitch DOF for the linear, the free
play, and the combined free play and cubic nonlinearity
configurations.

where αfp is the semi-free play gap and knα is the nonlinear
spring constant. It is important to note that when knα = 0
and αfp �= 0 the free play nonlinearity is obtained (combining
the linear restoring moment and ffp(α)) whereas the knα �=
0 and αfp �= 0 conditions yield the combined nonlinearity
(combining the linear restoring moment, ffp(α), and fc(α)).
The linear equations are recovered when αfp = 0 and knα = 0.
The restoring moments in the pitch DOF for the linear, the
free play, and the combined free play and cubic nonlinearity
configurations are presented in figure 2.

The linear form of the piezoaeroelastic equations can be
represented in the state-space form proposed by Edwards et al
(1979) for the corresponding aeroelastic problem. However,
due to the presence of the electromechanical coupling, the
voltage output should be considered as an additional state
variable. The unsteady aerodynamic loads (lift and moment
terms in equations (1) and (2)) due to arbitrary motions
are obtained from Jones’ approximation of Wagner’s indicial
function, which is an approximation to the generalized
Theodorsen function. Following the Laplace transformation
of the governing equations, the aerodynamic load expressions
for arbitrary values of the Laplace variable s are obtained
from the representation for simple harmonic loads as rational
functions of s. The Laplace inversion integral is employed
and the rational functions describing the aerodynamic loads are
ordinary differential equations that can be cast into the state-
space form. Therefore two augmented states (xt

a = { x1 x2 },
where the superscript t stands for the transpose) are included in
the state-space representation of the piezoaeroelastic problem.
The linear state-space piezoaeroelastic equation is
⎡

⎢
⎣

I 0 0 0
0 M̃ 0 0
0 0 I 0
0 0 0 Ceq

p

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ẋ
ẍ
ẋa

v̇p

⎫
⎪⎬

⎪⎭

=
⎡

⎢
⎣

0 I 0 0
−K̃ −B̃ D Θ1

E1 E2 F 0
0 Θ2 0 1/Rl

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

x
ẋ
xa

vp

⎫
⎪⎬

⎪⎭
(5)
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where Θ1 = { 0 θ/ l }t, Θ2 = { 0 −θ }, x = { α h̄ }t, and
I is the 2 ×2 identity matrix. The mass, stiffness, and damping
related matrices in equation (5) are

M̃ = M − ρb2

m
Mnc (6)

K̃ = K − ρb2

m
(U/b)2

(

Knc + 1

2
RS1

)

(7)

B̃ = B − ρb2

m
(U/b)

(

Bnc + 1

2
RS2

)

(8)

where M is the structural mass matrix, B is the structural
damping matrix, K is the structural stiffness matrix, ρ is the air
density, and Mnc, Bnc, and Knc are noncirculatory aerodynamic
matrices related to inertia, damping, and stiffness. These
matrices as well as the aerodynamic matrices D, E1, E2, F,
R, S1, and S2 are given in Edwards et al (1979).

Equation (5) can be also represented as

˙̃x = Ax̃ (9)

where

A =
⎡

⎢
⎣

0 I 0 0
−M̃−1K̃ −M̃−1B̃ M̃−1D M̃−1Θ1

E1 E2 F 0
0 (1/Ceq

p )Θ2 0 (1/Ceq
p )(1/Rl)

⎤

⎥
⎦

(10)
x̃ = { x ẋ xa }t. (11)

A similar derivation can be applied when concentrated
nonlinearities are present. In such a case, a combination of
linear state-space models is used to represent the nonlinear
system (Conner et al 1996). Therefore, the nonlinear state-
space representation is

˙̃x = Ai x̃ + ai + bi (12)

where the state matrix and the vectors ai and bi change as
the system reaches the free play boundaries (figure 2). The
equations are solved using a Runge–Kutta algorithm with
Henon’s method (Henon 1982). Conner et al (1996) presented
the adaptation of Henon’s method to determine the switching
point (or free play boundaries) in the time domain to avoid
errors in numerical integration and numerical instability.

3. Case studies and model validation

This section presents three case studies using the piezoaeroe-
lastic model described in section 2. The set of resistive loads
considered here is Rl = 102, 103, 104, 105, and 106 �. In the
first case study, the linear piezoaeroelastic solution is verified
against the experimental piezoaeroelastic results obtained from
wind tunnel tests at the flutter boundary. Secondly, bilinear
structural stiffness is considered in the pitch DOF through the
free play nonlinearity. In the presence of the free play, the
torsional stiffness is zero for small airfoil rotations (due to the
free play gap) and it approaches the original linear torsional
stiffness for relatively large rotations (figure 2). In the third

Figure 3. Experimental typical section and detailed view of the
piezoceramic patches on the plunge springs.

Table 1. Properties of the piezoaeroelastic typical section.

b 0.125 m
l 0.5 m
μ 2.597
xα 0.260
rα 0.504
ωh 52.2 rad s−1

ωα 26.6 rad s−1

ζh 0.0035
ζα 0.088

case study, a combined nonlinearity is considered in the pitch
DOF. For small airfoil rotations, the torsional stiffness is zero
and a stiffening behavior is observed for large rotations as in
figure 2. The piezoaeroelastic behavior is investigated for the
same set of resistive loads and also for a range of nonlinear-to-
linear pitch stiffness ratios (η = knα/kα) defined based on the
spring constants in equation (2).

Figure 3 shows the experimental setup used for
investigating the linear and nonlinear piezoaeroelastic behavior
of the typical section. This setup is a typical aeroelastic
section modified with piezoelectric coupling and was not
originally designed for energy harvesting (however, the results
are applicable to its scaled versions). The plunge stiffness
is due to the four elastic beams with clamped–clamped end
conditions shown in the detailed views of figure 3. The free
ends of the elastic beams are connected to metal plates at the
top and the bottom. Therefore the experimental setup in this
work slightly deviates from the ideal definition of a typical
section (where springs are assumed massless), yielding the
fixture mass (me) defined in equation (1). A shaft (or pitch
axis) is mounted to the upper and the lower plates through a
pair of bearings. The pitch stiffness is given by a spring wire
clamped into the shaft (at the elastic axis). The free end of the
wire is simply supported on the top plate (without a gap for
the linear case and with a gap for the free play nonlinearity).
Two piezoceramic patches (QP10N from Mide Technology
Corporation) are attached onto the root of two bending stiffness
members (symmetrically) and their electrodes are connected in
parallel to the external resistive load.

The properties of the piezoaeroelastic typical section are
shown in table 1. The dimensionless aeroelastic parameters
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Figure 4. Real part of the eigenvalue (for the mode that becomes
unstable) with increasing airflow speed for a set of resistive loads
along with a close-up view around the flutter boundary.

in this table are defined as the mass ratio, μ, the radius of
gyration, rα , and the pitch and plunge damping ratios, ζα

and ζh, respectively (the definitions of these dimensionless
parameters can be found in textbooks on aeroelasticity, e.g.,
Hodges and Pierce 2002). The uncoupled and undamped pitch
and plunge frequencies are ωα and ωh, respectively. The
manufacturer’s published equivalent capacitance of Ceq

p =
120 nF is used in the piezoaeroelastic model. The
electromechanical coupling parameter is obtained based on
distributed parameter modeling (Erturk and Inman 2009) by
considering clamped–clamped end conditions for the two
beams with piezoceramic patches as θ = 1.55 mN V−1 (Erturk
et al 2010).

3.1. Linear piezoaeroelastic typical section

In the first case study, the linear aeroelastic behavior of the
electromechanically coupled typical section is investigated at
the flutter boundary for a set of resistive loads. The real part
of the relevant eigenvalue λ is shown in figure 4 for changing
airflow speed and different resistive loads. Only the eigenvalue
for the mode that becomes unstable is shown for clarity.
The predicted linear short-circuit (Rl → 0) flutter speed is
11.6 m s−1. The experimental short-circuit flutter speed is
measured as 11.9 m s−1. The load resistance of 100 k� gives
the maximum experimental power output among the set of
resistors considered in this paper. The model predicts the linear
flutter speed for this load as 11.8 m s−1. The experimental
flutter speed for the same resistive load is 12.1 m s−1. Although
the model slightly underestimates the experimental flutter
speed, approximately the same increase (1.7%) in the linear
flutter speed (with respect to the short-circuit flutter speed) is
observed for the resistive load of 100 k�. It is also interesting
to note in figure 4 that approximately the same flutter speed
(11.8 m s−1) is obtained for load resistance values of 100 k�

and 1 M�.
The variation of power output with increasing load

resistance is shown in figure 5. The electrical power
is experimentally measured as close as possible to the
linear flutter speed of each resistive load (in order to
obtain almost persistent oscillations but to avoid post-
flutter oscillations). The model slightly overestimates the
experimental power output for the set of resistive loads used

Figure 5. Experimental and theoretical power outputs versus load
resistance at the linear flutter boundary.

Figure 6. Experimentally measured linear and bilinear (free play)
pitching moments.

in this work. The predicted power output for the load
resistance of 100 k� is 13.8 mW and the experimental
power output for the same load is measured as 12 mW. This
overestimation can be attributed to material nonlinearities and
nonlinearities in dissipation (Stanton et al 2010a, 2010b) not
considered in this work. The post-flutter response of the
particular experimental setup results in dramatically large-
amplitude oscillations with growing amplitude (of divergent
and oscillatory nature for practical purposes) since the setup
behaves quite linearly around the flutter speed. Therefore, the
maximum airflow speed of effective energy harvesting without
growing oscillations is very close to the linear flutter speed.
However, almost persistent oscillations occurring at a specific
wind speed restrict the operating envelope of the linear flow
energy harvester.

3.2. Piezoaeroelastic typical section with a free play

The experimental piezoaeroelastic typical section with free
play nonlinearity is tested next. The nonlinear piezoaeroelastic
behavior of the coupled typical section is investigated for the
same set of resistors. The free play gap causing the bilinear
stiffness in the pitch DOF is ±1.4◦ (αfp = 1.4π/180 rad). The
linear pitch stiffness outside the free play gap is given by the
same stiffness as the linear case study. The experimental linear
pitching moment and free play pitching moment are shown in
figure 6.

In the presence of free play nonlinearity, the LCO
mechanism observed in the experiments is due to subcritical
bifurcations (Nayfeh and Balachandran 1995), leading to
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Figure 7. Experimental (dashed line) and theoretical (solid line)
nonlinear piezoaeroelastic response histories for Rl = 100 k�
(experiment: 10.0 m s−1, model: 10.4 m s−1).

LCOs below the linear flutter speed of each load resistance
used in this work. The lowest airflow speed to have LCO is
experimentally measured as 10.0 m s−1 and the model predicts
this lower bound as 10.4 m s−1. It is observed that, beyond
12.0 m s−1, the response amplitude (predicted by the present
model) becomes very large for all resistive loads considered
here. Therefore, no experimental testing was performed
outside the range of 10.0–12.0 m s−1.

The load resistance of 100 k� gives the maximum
experimental power output among the set of resistors used
in this case as well. The piezoaeroelastic time histories
(pitch, plunge, and voltage output) for this resistive load with
persistent oscillations are shown in figure 7. The model
predicts the amplitudes of the pitch, plunge, and voltage
response histories as well as the frequencies accurately.

The power versus load resistance diagrams obtained from
the experiments and the model are displayed in figure 8. In this
figure, the experimental and theoretical airflow speeds of LCO
are 10.0 m s−1 and 10.4 m s−1, respectively. Unlike the case
of response at the linear flutter boundary (figure 5), the LCO
due to free play (figure 8) is a strongly nonlinear phenomenon
and the airflow speed of persistent oscillations is not affected
by the resistive shunt damping effect of piezoelectric power
generation since piezoelectric coupling is a weak coupling
in the system, usually of the order of mechanical damping
(Erturk and Inman 2011). Moreover, in this particular case,
the piezoelectric coupling is more effective on the plunge DOF
while the strong nonlinearity is in the pitch DOF. Therefore, all
the experimental and theoretical data points in figure 8 are for
the airflow speeds of 10.0 m s−1 and 10.4 m s−1, respectively.
The maximum experimental power output is again obtained for
Rl = 100 k�. For this electrical load, the power output is
predicted by the model as 28.6 mW, slightly overestimating the
experimental value of 27.0 mW. Note that the maximum power
output for this configuration with free play nonlinearity is more
than twice the power output obtained in the previous case study
(linear piezoaeroelastic power harvester excited at the flutter
boundary). Moreover, the cut-in speed of LCO is reduced
with the free play nonlinearity by about 2 m s−1. However,
the range of airflow speeds with LCO of acceptable amplitude
is still relatively narrow. Therefore, it is required to reduce
the response amplitude to acceptable values while keeping the

Figure 8. Experimental and theoretical power outputs versus load
resistance (experiment: 10.0 m s−1, model: 10.4 m s−1).

Figure 9. Plunge amplitude with increasing airflow speed for three
different values of the nonlinear-to-linear stiffness ratio
(Rl = 100 �).

free play nonlinearity, which is theoretically investigated in
section 3.3.

3.3. Piezoaeroelastic typical section with combined
nonlinearities

Having validated the nonlinear piezoaeroelastic energy
harvester model, the configuration with combined free play
and hardening cubic stiffness nonlinearities (recall figure 2)
is studied in this section. The theoretical piezoaeroelastic
behavior of the electromechanically coupled typical section
is investigated for different values of the nonlinear-to-linear
stiffness ratio (η = knl/kα). The free play gap considered in
this third case study is ±1.4◦ as in section 3.2. The vibration
amplitude and the electrical power output are investigated for
airflow speeds ranging from 90% to 150% of the linear flutter
speed of 12 m s−1.

Figure 9 shows the plunge amplitude with dimensionless
airflow speed (the ratio of airflow speed to linear flutter speed)
close to short-circuit conditions (Rl = 100 �). It is clear from
figure 9 that the plunge amplitude is highly sensitive to the
nonlinear-to-linear stiffness ratio. When η = 0 (i.e., knl = 0)
and αfp �= 0, the free play nonlinearity is achieved. The
amplitude of plunge displacement increases with increasing
airflow speed and decreases with increasing stiffness ratio.
Therefore, for the configuration with combined nonlinearity
(η �= 0 and αfp �= 0), the LCO response has acceptable
amplitude over a wide airflow speed range. In practice,
the nonlinear-to-linear stiffness ratio can be increased by
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Figure 10. Variations of (a) the power output and (b) the plunge amplitude with airflow speed for five different values of load resistance
(η = 100).

employing additional inherently nonlinear hardening springs to
improve the range of airflow speeds with acceptable response
amplitude in the presence of free play nonlinearity.

For the case of η = 100, the variation of the electrical
power output with increasing airflow speed for five different
values of load resistance is shown in figure 10(a). The
power output increases with increasing airflow speed for any
resistive load. At any airflow speed, as the value of load
resistance is increased from Rl = 100 � to 100 k�, the
power output increases. When the value of load resistance
is further increased to Rl = 1 M� (close to the open-circuit
condition) the power output starts decreasing. Therefore,
among the set of resistive loads considered here, Rl =
100 k� gives the maximum power output over the entire
range of airflow speeds. The maximum theoretical power
of 106 mW is obtained for the optimum load resistance at
U = 18 m s−1 (U/ULF = 1.5), which is expected to
overestimate the possible experimental results due to material
and dissipative nonlinearities. Figure 10(b) shows the variation
of plunge amplitude with airflow speed and η = 100 for the set
of resistive loads considered in this work. The effect of power
generation on the vibration amplitude is negligible for practical
purposes, in agreement with the discussion given in section 3.2.

4. Conclusions

This paper investigates linear and nonlinear piezoaeroelastic
energy harvesting theoretically and experimentally with a
focus on the advantages of exploiting combined nonlinearities.
The piezoelectric coupling is introduced through the plunge
DOF while the concentrated structural nonlinearities are
introduced to the pitch DOF. A state-space piezoaeroelastic
model is derived and the unsteady aerodynamic loads are
obtained from Jones’ approximation of Wagner’s indicial
function, which is an approximation to the generalized
Theodorsen function.

The linear piezoaeroelastic response predictions are
successfully verified against experimental results obtained
from wind tunnel tests at the flutter boundary. Although
usually avoided in real aircraft, the response at the flutter
boundary is the ideal scenario for energy harvesting from
linear aeroelastic vibrations. However, having persistent
oscillations only at the airflow speed of neutral stability is

a very limited condition for aeroelastic energy harvesting.
Nonlinearities exist often inherently within the system (and
they are pronounced under certain conditions) or they can be
introduced for performance enhancement.

Concentrated nonlinearities are introduced to the pitch
DOF and the nonlinear piezoaeroelastic behavior of the elec-
tromechanically coupled typical section is also investigated.
First, the free play nonlinearity is considered in the pitch
DOF to reduce the cut-in speed of persistent oscillations. The
predictions are successfully verified against the experimental
measurements. The presence of free play nonlinearity results
in LCOs at airflow speeds below the linear flutter speed
(reducing the cut-in speed by about 2 m s−1), which is a
favorable condition in energy harvesting. The maximum
power output of the configuration with free play nonlinearity
is observed to be twice that of the linear configuration (at the
flutter boundary). In both cases (linear and free play) divergent
oscillations are observed at airflow speeds above the linear
flutter speed (12 m s−1).

In order to obtain persistent and bounded oscillations
of acceptable amplitude in the presence of free play
nonlinearity, hardening cubic stiffness is combined with free
play nonlinearity in the pitch DOF. Having validated the
model for the linear and the free play configurations in two
case studies, simulations are performed to study the effect
of combined nonlinearities. The piezoaeroelastic behavior is
investigated for a range of nonlinear-to-linear pitching stiffness
ratios and resistive loads. The response amplitudes increase
with increasing airflow speed and decrease with increasing
nonlinear-to-linear stiffness ratio. Overall, it is shown that
the free play nonlinearity reduces the cut-in speed and the
hardening stiffness helps in bringing the response amplitude to
acceptable levels (hence increasing the upper limit of the post-
flutter speed of acceptable response amplitude). Therefore,
the combination of the free play and the hardening cubic
stiffness nonlinearities constitutes the most useful scenario for
aeroelastic energy harvesting. This conclusion is applicable
to aeroelastic energy harvesters employing other transduction
mechanisms as well.
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