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Abstract: Accurate calibration of low-cost gas sensors is, at present, a time consuming and difficult
process. Laboratory calibration and field calibration methods are currently used, but laboratory
calibration is generally discounted due to poor transferability, and field methods requiring several
weeks are standard. The Enhanced Ambient Sensing Environment (EASE) method described in this
article, is a hybrid of the two, combining the advantages of a laboratory calibration with the increased
accuracy of a field calibration. It involves calibrating sensors inside a duct, drawing in ambient
air with similar properties to the site where the sensors will operate, but with the added feature
of being able to artificially increases or decrease pollutant levels, thus condensing the calibration
period required. Calibration of both metal-oxide (MOx) and electrochemical (EC) gas sensors for the
measurement of NO2 and O3 (0–120 ppb) were conducted in EASE, laboratory and field environments,
and validated in field environments. The EC sensors performed marginally better than MOx sensors
for NO2 measurement and sensor performance was similar for O3 measurement, but the EC sensor
nodes had less node inter-node variability and were more robust. For both gasses and sensor types
the EASE calibration outperformed the laboratory calibration, and performed similarly to or better
than the field calibration, whilst requiring a fraction of the time.

Keywords: low-cost sensors; metal oxide sensor; electrochemical sensor; calibration protocol; calibration

1. Introduction

Poor air quality (AQ) constitutes a global public health emergency. Estimates of the
global death toll caused by air pollution reach up to 9 million per year, or ∼1 in 6 deaths,
and this number is increasing [1–4]. The impact of poor AQ on the cardiopulmonary system
has been known for many years, but emerging studies link pollution exposure to a massive
range of adverse health impacts, extending from dementia, Parkinson’s disease, and cog-
nitive impairment, to diabetes, obesity and issues with the reproductive system [2,5–7]. It
may, in fact, be damaging every organ in the human body [8]. Nitrogen dioxide (NO2)
and Ozone (O3) are gas phase pollutants, with high spatiotemporal variability in urban
environments and known health impacts [9,10]. The World Health Organisation Global
Air Quality Guideline for NO2 is 10 µg m−3 (∼5 ppb) as an annual mean, and for O3 is
60 µg m−3 (∼30 ppb) as an 8-h mean for peak season [9].

Further efforts to quantify the links between AQ and health, and to produce targeted so-
lutions, particularly for individual pollutants, are hampered however by the scarcity of AQ
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monitoring [11,12]. Reference standard monitoring utilises large and expensive instruments
based on chemiluminescence for NO2 and UV photometry for O3 measurements [13,14],
while pollutant concentrations vary rapidly in time and space, their measurement has low
spatiotemporal resolution in developed countries due to the size and cost of traditional
reference standard monitoring stations [12], and can be almost non-existent in low and
middle-income countries, where the greater burden of poor AQ is felt [2,4,10]. Modelling
of air pollution levels, through parameterised semi-empirical models, is an alternative,
but often challenged by lack of high quality input and calibrated data, as modelling can
not stand alone, but should be used in combination with measurements (see Hertel et al.,
2007 [15]).

Low-cost sensors (LCS) have the potential to revolutionise air quality monitoring.
There is no agreed definition of a low-cost sensor, however, they are far cheaper, smaller
and record with greater time-resolution than traditional methods [12,16–18]. This means
that they can be deployed in greater numbers, used in mobile applications, and in areas
where monitoring is not currently possible, all with high time-resolution. Hence hot-spots,
point-sources, indoor concentrations and even personal exposure levels can be identified
and measured [12]. Monitoring programmes and epidemiological studies could also be
implemented in lower income countries, which until now have had to reply on findings
extrapolated from studies in other areas, that may underestimate the effects of poor AQ [19].

Many companies are already producing LCS commercially, and this has led to their
use in scientific studies and citizen science projects, as well as privately [20,21]. However,
together with the many benefits LCS have over traditional methods, they also have out-
standing issues with data quality. In particular, LCS suffer from issues with selectivity,
sensitivity, and stability, all of which detract from their overall accuracy [12,17,22,23]. These
issues are typical to all LCS but also depend on the sensor’s principle of operation, and the
context they are used in. In this study, we focus on gas sensors for NO2 and O3, based
on Metal-Oxides (MOx) and Electrochemical (EC) cells. These are the most widely used
LCS for NO2 and O3 measurement, with EC being more common [22,24]. They are both
chemo-resistive sensors; MOx operate by measuring resistance change across a metal-oxide
surface resulting from gas adsorption [25], and EC cells by using amperometry to measure
the current of a redox reaction which is proportional to the gas concentration present in the
air above the cell [26]. Further details of the individual sensors are given in Section 2. Both
of these sensor types suffer particular issues with drift/ageing, cross-sensitivity between
pollutants, and effects from temperature (T) [27–29].

Resultant data quality can be drastically improved with effective sensor calibration
(and hardware approaches described in Section 2). Pre-deployment calibration is used
to identify sources of error and develop calibration models that bring the sensors into
best possible agreement with reference instruments [18]. Post-deployment calibration is
necessary to maintain this during longer deployments, however, there is not currently
a recognised standard procedure for calibration, and many commercial sensors are sold
un-calibrated [22,30]. Calibration is individual and must be repeated for each LCS unit.
Ideally each unit should also have a different calibration model for individual environments,
as different co-pollutant levels and environmental factors will alter their response [24].
Once deployed, the drift in response will also be individual, dependent on both the LCS’s
original characteristics and it’s environment. Therefore, individual re-calibration should
also be performed when necessary [24,27].

The prevailing calibration methods are either Field (also called co-location) calibration
or laboratory (Lab) calibration, both of which have known drawbacks [18,22]. Laboratory
calibration can be performed relatively quickly, in any laboratory with appropriate equip-
ment, and the range of pollutant concentrations, relative humidity (RH), and T levels, can
be chosen. However, laboratory-based calibrations rarely perform well when validated in
real field conditions [16,31] and, in a recent review of LCS for AQ monitoring, 90% of LCS
studies surveyed (for NO2 and O3 measurement) utilised Field calibration [22]. The exact
reason for this difference in efficacy has not been determined, however, it is thought to be
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due to meteorological and co-pollutant fluctuations in the field environment, which are
not accurately represented in the laboratory, as well as the high cost associated with an
effective laboratory calibration setup. There may also be contaminants in the laboratory
environment for example volatile organic compounds (VOCs) and their oxidation products,
not found in the field.

Field calibration is considered superior, particularly if calibration occurs in a similar
geographical area to the actual measurement and in the same season of the year. However,
it is time intensive, typically requiring several weeks to observe a comprehensive range
of concentrations, particularly for more complex models, requires access to an official
reference station or similar staging area, and leaves to chance whether or not the full
range of pollutant concentrations is encountered [30,32–34]. Field calibration models may
also not be transferable if moved between sites with different concentration profiles, co-
pollutant matrices or prevailing meteorological conditions [22,35,36]. It has been claimed
that the Laboratory and Field calibration methods are complementary and a combination
of data from both methods is required for a full assessment of sensor performance and the
production of a robust calibration model [16,26].

Within the different methods used to obtain calibration data (e.g., Field calibration
and Laboratory calibration) there are many calibration models available, chiefly; Linear Re-
gression (LR), Multivariate Linear Regression (MLR), or a range of Machine Learning (ML)
algorithms, such as artificial neural networks, random forest and support vector regression,
amongst others [22,30,36]. The most suitable calibration approach for all situations has not
been determined. Complex ML algorithms often perform better than MLR when observing
training data and if sensors are not moved after calibration, but can perform poorly after
sensors are transferred to a different site [30,36]. This may be due to the complex models
over-fitting specific aspects of the training site that are not directly related to pollutant
concentrations, whereas, a simpler LR or MLR model may appear worse during training
but not have a significant increase in error after transfer [33,37].

In this study, a ‘hybrid’ calibration method is described. This calibration method is
a combination of both the Laboratory and the Field calibration methods, as the Hybrid
calibration method draws ambient air into an insulated, well-mixed duct with a steady
flow. This ensures that the air maintains similar properties to those observed outdoors.
Inlets for adding NO2 and O3, as well as an activated carbon filter were also added to
the duct. Thereby, sensor nodes placed inside the duct are exposed to ambient pollution
levels, as well as artificially increased and lowered levels. The responses from the LCS are
compared to reference monitors sampling the duct from the outside. This system is called
the Enhanced Ambient Sensing Environment or EASE.

Previous works have been performed on the development of optimal laboratory
calibration setups, but without the addition of ambient pollutants/conditions, this work
was drawn on in the initial stages of the EASE design [38,39]. However, these typically
focus on the manipulation and control of experimental conditions, whereas the main
focus of the EASE setup is on preserving ambient conditions, whilst having the added
advantage of manipulating the pollutant concentrations. This means that the LCS can be
calibrated according to ambient concentrations, under realistic conditions in terms of RH,
T, and the presence of a co-pollutant matrix, but with additional spiking of pollutants to
ensure that the full span of pollutant concentrations is included in the calibration, within a
short time-period. At points, filtration of the incoming air is also used, for identifying the
zero/baseline response of the sensors under ambient conditions.

This study paves the way for future calibration methods that are faster and more
accurate for real-world use. In this work, the EASE method is compared with Field and
Laboratory calibration methods for 12 MOx and 15 EC sensors. Calibration was performed
separately for the two sensor types and with differing setups. The main differences in the
overall protocol is that the MOx sensors were EASE calibrated in Copenhagen, Denmark,
and also Field calibrated and validated in Copenhagen, 3 km away, whereas, the EC
sensors were calibrated in Copenhagen but were Field calibrated and validated in Surrey,
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UK, and with a longer separation in time. Furthermore, the MOx nodes were laboratory
calibrated at Copenhagen University whereas the EC sensors were laboratory calibrated by
their manufacturer prior to node assembly.

The main aim of the work is to compare the three different calibration methods (Field,
Lab and EASE) for both sensor types (MOx and EC) as well as comparison between the
sensors. The EASE method gave better results than Laboratory calibration and had similar
results to Field calibration, whilst requiring a fraction of the time. The EC sensors performed
better than the MOx nodes for NO2 measurement and similarly for O3 measurement,
but with less inter-variability between nodes.

2. Materials and Methods

In this section, the sensor node hardware is described, followed by the calibration
setups and procedures for each of the three calibration methods, separately, for both node
types. The data analysis was conducted in R [40], using the ggplot2 [41] and Openair [42]
packages for data visualisation.

2.1. Sensor Nodes

In this article, ‘sensor’ refers to individual sensing devices, e.g., a metal-oxide chip,
whereas ‘sensor node’ or ‘node’ refers to a complete package including sensors, housing,
sampling system, and the ability to internally log or broadcast data.

Two types of sensor nodes were used in this study, both are prototypes developed
by AirLabs ApS for monitoring urban air quality and called ‘AirNodes’. Both nodes
measure NO2 and O3, Generation 2 (Gen 2) AirNodes do so with MOx sensors, whereas
Generation 5 (Gen 5) AirNodes utilise electrochemical cells. The relevant sensors to this
study are detailled for both nodes in Table 1, schematics and images of the nodes are shown
in Figures 1 and 2.

Table 1. Relevant sensors within the Gen 2 and Gen 5 nodes. The output column describes sensor
output after processing and calibration.

Node Sensor Producer Type Output

Gen 2 MiCS-6814 SGX Sensortech/AirLabs MOx NO2/ppb
Gen 2 MiCS-6814 SGX Sensortech/AirLabs MOx O3/ppb
Gen 5 NO2-B43F Alphasense/AirLabs EC NO2/ppb
Gen 5 OX-B431 Alphasense/AirLabs EC O3/ppb

Figure 1. AirNode Gen 2 (left) and cross-section of the AirNode Gen 2 gas sampling system, showing
both of the MOx cells in series, the filter between them, and the fan behind them (right).
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Figure 2. Gen 5 node views, node with heat-shield installed (left), and cross-section of the node with
sensor locations (right).

2.1.1. Gen 2 MOx Nodes

In the MOx node, the gas sensors used are MiCS-6814 metal-oxide sensors from SGX
Sensortech [43]. Each sensor chip contains three sensing elements (s1, s2, s3), each of these
has a heating element, a magnified image of the sensor is shown in Figure A5. Sensing
element three (pure WO3) is optimised for measuring oxidising gasses and therefore its
output is primarily used in this context. Element 2 is designed for the measurement of
reducing gases and element 1 for ammonia. The sensing mechanism of a MOx is reliant on
surface reactions, therefore the grain size, thickness and porosity of the MOx surface layer
will alter the sensitivity and response rate of the MOx sensor to a pollutant. These effects
are explained further in other studies [44–46].

The method used to create the MOx film will affect the microstructure of it’s surface
and therefore the performance, and even when the same method is used for sensor chips
of the same model. the microstructure of each chip can vary. In use, the performance of
individual sensor chips can be highly variable, meriting individual calibration. An image
of the chips, showing surface structure, difference in drop size and damage to a sensing
element is shown in Figure A5.

The chips are operated with temperature cycling operation (TCO), which is a technique
developed by Schütze and coworkers [47]. Cycling the operating temperature means that
at a certain point in the cycle the optimal temperature for binding of a specific gas will
be reached, thus providing the highest sensitivity for the gas of interest. Species on the
surface can also be burnt off at high temperatures, cleaning the surface. In the Gen 2 MOx
sensor, the cycle is optimised for NO2 and O3 and the sensor output is recorded at the high
and low points of each cycle. A schematic of the nodes is shown in Figure 1, two sensors
(MOX1 and MOX2) measure the sampled air in series, with an integrated O3 filter between
them, this removes O3 and therefore sensor 1 is exposed to both gasses, whereas sensor 2
(after the filter) is exposed to NO2 without the presence of O3. The output of both sensors
is then used in determining the concentrations of the gasses, and the cross-sensitivity can
be mitigated [48].

Each complete Gen 2 node is installed in a weatherproof enclosure (88 × 88 × 90 mm)
with inlets, exhaust holes, and a fan for active sampling, illustrated in Figure 1. Active
sampling was found to be integral to sensor performance. The sensing elements consume
the gas of interest when measuring; if the air around the sensor were stagnant, a lower and
less linear response would be observed than with active flow.

2.1.2. Gen 5 EC Nodes

The Gen 5 nodes (shown in in Figure 2) contain EC cells from Alphasense, a NO2-B43F
cell [49], which has a MnO2 filter that reduces O3, and a OX-B431 cell [50] which does not
have the filter and is sensitive to both NO2 and O3. The O3 concentration can be found
from the difference between cell responses (analogously to the MOx nodes). The EC cells
do not rapidly consume the target gas and therefore active sampling is not included in
the node design (schematics of the node are shown in Figure 2). The cells are sensitive to
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temperatures above 20 ◦C, however, and a sun shield is added to the node body to mitigate
heat build-up. A temperature sensor is also included within the node and during this
study the nodes internal temperature did not exceed the threshold of 20 ◦C at which a
temperature correction is necessary. The node body dimensions are 190 × 105 × 70 mm.

Use of these sensors has been extensively reported in a number of studies [22,26,28],
but in simple terms, each cell contains a working electrode (WE) and an auxiliary electrode
(AE). The WE is exposed to the environment and is where the redox reactions occur,
resulting in a change in current. The AE has the same structure as the WE but is not exposed
to ambient air, and so is not affected by gas concentrations, only other environmental
parameters such as temperature. The difference in output between the two electrodes,
therefore, corresponds to changes in concentration at the EC cell surface. AirLabs have
developed a printed circuit board (PCB) for converting the cell output from nA into mV,
the board has a conversion rate of 0.735 mV/nA.

2.2. Calibration Method Overview

The MOx and EC nodes underwent separate calibration procedures, the timings of
these are detailed in Table A4. In order to validate the methods, the nodes were co-located
for several weeks at reference stations, this co-location was split into training for the Field
calibration and a validation period. The same nodes were also calibrated over ∼3 days
each in the EASE and Lab setups. The performance of the Field, EASE and Laboratory
models over the validation period were then compared, a schematic of this is shown in
Figure 3. The evaluation statistics for validation of the calibration models (for all methods)
are calculated based on a comparison between the nodes and reference instruments during
the Field validation period, with the different calibration models applied.

Gen 2

Time

Lo
ca
tio
n

Time

Lo
ca
tio
nC
PH

C
PH

AS
SU
R

Field Validation EASE
Training

EASE
Training

Lab
Training

Lab
Training

Field Training

Field ValidationField Training

Gen 5

Model

Model

Model

Model

Model

Model

Figure 3. Schematic of calibration periods. The blocks sizes are not to scale for time, Field training
should be 7 times the size of EASE and Laboratory training. Arrows indicate calibration models.
The CPH location stands for Copenhagen, AS for Alphasense, and SUR for Surrey. Lab is short
for laboratory.

A general overview of the methods is presented in Table 2, and the protocols for each
node and calibration method are described below.

Table 2. Calibration method overview. A schematic showing the time-series for the different methods
is included in Figure 3.

Field Laboratory EASE

RH/% Ambient 25, 50, 75 Ambient
T/◦C Ambient 10, 20 Ambient

[C]/ppb Ambient 0-80-0 Ambient + 0, 40, 80
Time taken ∼3 weeks (preferably) ∼3 days ∼3 days

Resource intensity Low (but requires station access) High Medium
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2.2.1. MOx Laboratory Calibration Protocol

Laboratory calibration of the MOx nodes took place inside a 1 m3 chamber, made
from aluminium, stainless steel and Perspex, situated inside a larger climate-controlled
chamber (Viessmann A/S), this setup is already partially described in Bulot et al. [51] (2020).
A schematic of the Laboratory calibration setup is shown in Figure 4, it includes an ozone
generator and O2 flask (pure O2), as well as an NO2 flask (1–2.3% NO2 in N2) and mass
flow controllers (MFCs, 0–100 ml min−1). A Model 42i chemiluminescence NOx Analyser
(Thermo-Fisher Scientific, Waltham, MA, USA) was used for NO2 measurement as well as
a direct absorbance analyser, a Model 405 nm (2B Technologies, Boulder, CO, USA). Ozone
was measured with a BMT 930 UV photometer, and RH and T were monitored with an
HTU21D digital sensor. In order to control RH levels, filtered, dry air was supplied to
the chamber, via a MFC directly (lowering RH) or diverted through a Nafion membrane
submerged in water (increasing RH). The chamber air was mixed with three fans in X,Y
and Z directions, test mixing with CO2 is shown in Figure A4.

The Laboratory testing protocol consisted of arranging the nodes inside the chamber
and sealing it before steadily increasing pollutant concentrations (NO2 or O3 separately)
from zero to ∼80 ppb, before allowing the concentration to steadily decay, at RH of 25, 50
and 75% (±15%), and T of 12 and 20 ◦C (±2 ◦C), respectively. Resulting in 6 concentration
spikes for each pollutant in total, over the course of 3 days. An example time-series of of an
O3 concentration spike is shown in Figure 5.

Filter

O3 monitor

O3 generator

NO2 monitor

MFC

MFC

Water
reservoir

Test chamber

Climate chamber

Mix fan x3

MFC RH/T
Probe

Dry air
supply

Node NO2 O2

Figure 4. Laboratory calibration setup schematic for the Gen 2 MOx nodes.

0

20

40

60

80

0 1 2 3 4
Time (hours)

O
3 

/ p
pb

Figure 5. Example O3 spike from the MOx Laboratory calibration.

2.2.2. MOx EASE Calibration Protocol

A schematic of the EASE calibration setup is shown in Figure 6. It consists of an
insulated galvanised steel duct (32 × 32 cm cross-section), which acts as the mixing chamber,
and is connected to a blower fan with 12 cm diameter ducting. The inlet to the system was
extended 2 m away from the building through a window on the 5th floor. Inlets for the
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addition of NO2 (50 ppm NO2 in N2 flask) and O3 (pure O2 passed through an O3 generator)
were also added to the main inlet and their flow controlled by MFCs (0–100 mL min−1).
The duct is equipped with flow, RH and T probes (LS control ES991 and ES989), mixing
fans, and outlets for NO2 and O3 monitors (Model 405 nm NOx monitor and BMT 930 UV
photometer). As the setup is insulated, and a relatively large throughput of air is used,
the interior of the chamber is similar to the ambient air outdoors, however the setup
has the advantage of being able to artificially increase (with gas flasks or generators) or
decrease (with an activated carbon filter) pollutant concentrations. An example section of a
concentration profile, with spikes and a ‘rush-hour’ period, is shown in Figure 7.

The chosen EASE calibration protocol required 48 h per pollutant (or 72 h total for
both pollutants as the ambient measurements can be used for NO2 and O3 calibration),
during which time the sensors were exposed to ambient pollutant concentrations through-
out, except for zeroing periods and pollutant spikes, at low (∼40 ppb), medium (∼80 pbb)
and high (∼100 pbb) concentrations for NO2 and O3 independently. With each lasting
∼45 min and occurring during non-rush hour periods. During the rush hour periods NO2
and O3 concentrations are not altered. The flow was held constant throughout and RH and
T dictated by the ambient environment. A 24 h example section is shown in Figure 7.

Removable
filter

O3 monitor
O3 generator

NO2 monitor

MFC

Mix fan

RH/T
Probe

Flow
Probe

Node

NO2 O2

Ambient

Figure 6. EASE calibration setup. This schematic is representative of the setup used for both MOx
and EC calibration.

Figure 7. EASE calibration setup example concentrations, note the artificial spikes from 12:00 to 21:00,
and morning rush hour period from 06:00 to 10:00.

2.2.3. MOx Field Calibration Protocol

The MOx Field calibration took place at the H. C. Andersens Boulevard (HCAB)
roadside monitoring station in Copenhagen, Denmark, operated under the NOVANA
program (the Danish National Monitoring Program for Water and Nature [52]). HCAB is a
highly trafficked street with relatively high air pollution levels. The nodes were co-located
at the station from 22nd December 2020 until 3rd February 2021 (43 days). The period
before 12th January 2021 was designated as the training period (21 days) and post as the
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validation period (22 days). During the co-location mean RH was 80% (range: 58–96%),
and mean T was 2.1 ◦C (range: −6.2–9.1 ◦C). A time-series of the reference NO2 and O3
concentrations during the co-location is shown in Figure 8. The nodes were installed at the
same height and approximately the same distance from the traffic at HCAB as the inlet for
the reference instruments. A schematic of the setup is also shown in Figure 8.

The reference instrument for NO2 is a chemiluminescence NOx monitor (Teledyne
API model T200). Reference O3 measurements were recorded via UV-absorption at 254 nm
with a Teledyne API model T400. The detection limit for both monitors is below 1 ppb,
with precision of ±5%. Reference station data is recorded at 30 min time-resolution and
therefore the LCS data was averaged to the same level for analysis.

Road
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Figure 8. MOx Field calibration and validation setup (left) and pollutant time-series (right). In the
setup schematic the node location is the blue rectangle and the reference inlet is the green circle.

2.2.4. MOx Calibration Models

As the Laboratory and EASE models in this study must inherently be transferable
between sites, a simple MLR was chosen to produce the calibration models, to avoid
overfitting to a specific environment [30,36]. An individual stepwise-selected model was
used for each of the MOx nodes for all of the MOx calibration methods, where the input
variables were the following, for predicting both NO2 and O3:

PNO2 or O3 =

a0 + a1 ∗ MOX1_s2_high + a2 ∗ MOX1_s2_low + a3 ∗ MOX1_s2_o f f set + a4 ∗ MOX1_s2_scale+

a5 ∗ MOX1_s3_high + a6 ∗ MOX1_s3_low + a7 ∗ MOX1_s3_o f f set + a8 ∗ MOX1_s3_scale+

a9 ∗ MOX2_s2_high + a10 ∗ MOX2_s2_low + a11 ∗ MOX2_s2_o f f set + a12 ∗ MOX2_s2_scale+

a13 ∗ MOX2_s3_high + a14 ∗ MOX2_s3_low + a15 ∗ MOX2_s3_o f f set + a16 ∗ MOX2_s3_scale+

a17 ∗ RH + a18 ∗ T

(1)

where a0 is the offset and a1–a16 are the calibration coefficients, and a17 and a18 are the
temperature and relative humidity correction coefficients, calculated using the method
of multiple least squares, separately for each MOx node. Due to the temperature cycle
(described in Section 2.1.1), the MOx sensor provides several parameters obtained as raw
data, as seen in Equation (1). For each sensor chip (s2 and s3), a scale and offset are provided
for both the high- and low-temperature period in the temperature cycle, and the average
conductance during the two temperature periods is also provided. Since two sensors are
included in the MOx node, and measure the air in series, with an O3 filter between them,
the readings from both sensors (MOX1 and MOX2) are included. Parameters from sensing
element two (s2) and three (s3) are both included as input variables in the model, even
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though only s3 is optimised for oxidising gases. Parameter s2 was included to check for
interference, but if none were found (p-value > 0.05), the input variables were removed
before doing the stepwise-selected model. The stepwise-selected model is determined
based on the step function in R with the mode of stepwise search done with a ‘forward’
and ‘backward’ direction until the lowest Akaike Information Criterion (AIC) was found.
Temperature and RH were included as input parameters in the models, but the stepwise-
selection model disregarded them as inputs as they did not improve the final MOx node
calibration models.

2.2.5. EC Laboratory Calibration Protocol

The EC cells (NO2-B43F [49] and OX-B431 [50]) are produced by Alphasense and each
cell is tested in a single pass setup, yielding zero current (nA) and sensitivity (nA ppm−1)
values, prior to dispatch [53]. Tests are conducted with a flow of 5 L min−1, T of 22 ± 2 ◦C
and RH of 45 ± 15%. Alphasense is confident in the linearity of cell response within the
specified measurement range (0–20 ppm) and therefore only test at pollutant concentrations
of zero ppb, and one known concentration (not disclosed). Tables of sensitivities and zero
values for the cells are included in the Appendix A (Tables A1 and A2).

2.2.6. EC EASE Calibration Protocol

For the EC nodes, a scaled-up duct system was constructed (38 × 50 cm cross-section)
to accommodate the larger node bodies, and different gas monitors were used, a Thermo
Electron Model 42C chemiluminescence NOx Analyzer and a Thermo Scientific Model
49i Ozone Analyzer. Otherwise, the calibration followed a similar procedure to the MOx
EASE calibration, except that ∼120 ppb was used for the ‘high’ exposure level, and the
inlet concentration was filtered during the artificial pollutant spikes for better consistency.
An example plot of the full procedure is displayed in Figure 9. The EASE setup in Figure 6
is also representative of the EC calibration setup.
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Figure 9. Example concentration profile from EC calibration in the EASE setup.

2.2.7. EC Field Calibration Protocol

The EC co-location took place at Surrey University, Guildford, United Kingdom,
where the EC nodes were mounted in front of the Thomas Telford Building Air Quality
Lab, on the university campus, at ∼1 m from the ground. This is the same level as the
intake of the reference monitors (Figure 10), which are operated by Surrey University.
The co-location took place between 9th December 2021 and 23rd December 2021 (15 days),
and was split into training and validation periods which consist of measurements before
and after 15th December 2021, respectively. During the co-location internal node mean RH
was 44% (range: 32–58%) and internal node mean T was 11.2 ◦C (range: 1.10–18.1 ◦C). Since
the co-location took place on the university campus, low NO2 levels were encountered,
relative to the HCAB co-location. The O3 levels were similar, a time-series of reference
pollutant concentrations is shown in Figure 10. The reference instrument for NO2 was
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a Serinus Ecotech 40 NOx monitor, whereas reference O3 measurements were recorded
via a Thermo Fisher Scientific 49i Ozone monitor. All reference data was obtained with
1-mintime resolution, and therefore the node data did not need to be aggregated.

Figure 10. EC Field calibration and validation setup (left), and pollutant time-series (right).

2.2.8. EC Calibration Models

For the Laboratory calibration, the supplied coefficients (see Tables A1 and A2 in the
Appendix A) and the recommended equations are utilised. Concentrations of NO2 are
predicted from the NO2-B43F cell (cell 2), using Equation (2) to find corrected WE output
(WE2C), from raw WE output (WE2v), WE sensor zero (WE20), temperature dependent
correction factor (nT1), raw AE output (AE2v) and AE sensor zero (AE20). Which is then
used in Equation (3) with the supplied sensitivity (S2) and an offset (C2) to convert the
output into ppb. The sensitivities, sensor zeroes and temperature dependent correction
factor are supplied by the manufacturer, the offset (if included) is determined by Field
co-location. The sensitivities are multiplied by −10 due to the change in cell output when
using the AirLabs PCB and not an Alphasense PCB, this is omitted from the equations
for clarity.

WE2C = (WE2v − WE20)− nT1(AE2v − AE20) (2)

PNO2 = WE2C ∗ S2 + C2 (3)

Predicted O3 concentration is calculated from the difference in response between the
two cells. Corrected output for cell 1 WE (WE1C) is determined in the same way as WE2C,
except that the variables relate to cell 1, as shown in Equation (4), and afterwards, the O3
concentration can be determined based on Equation (5):

WE1C = ((WE1v − WE10)− nT2(AE1v − AE10)) (4)

PO3 = (WE1C ∗ S1 − WE2C ∗ S2) + C1 (5)

Alterations were made to these stock equations after testing. The supplied temperature
dependent correction factor (nT1) for NO2 prediction was 1 if T is 0–10 ◦C and 0.6 for
temperatures 10–20 ◦C, whereas nT2 for O3 prediction was 1.5 if T is below 10 ◦C and 1.7
for temperatures 10–20 ◦C, although when this was applied, the R2 value of the model
dropped drastically. When the difference between modelled and reference NO2 or O3
concentration was plotted against temperature for the modelled concentration without a
temperature correction, there was no relation between the error and temperature in the
range experienced at the test site, and therefore the nT1 and nT2 values were set to 1. This is
in agreement with other deployments of the sensors, where a temperature dependence is
not noticeable below 20 ◦C.

For the EASE and Field calibration models, similar equations are used, however the
supplied sensitivities and zero values for the cells were not included. For prediction of
NO2 concentrations the voltage change in cell 2 is found from the difference between the
WE and AE outputs, as shown in Equation (6), and the predicted O3 concentration is found
by subtracting cell 2 response from cell 1 response, as shown in Equation (7).
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PNO2 = (WE2v − AE2v) ∗ SN + CN (6)

PO3 = ((WE1V − AE1V)− (WE2V − AE2V)) ∗ SO + CO (7)

The sensitivities, SN and SO, as well as offsets, CN and CO, are determined using the
method of multiple least squares, separately for each EC node.

3. Results and Discussion

In the following section, the different calibration methods are compared, firstly for the
MOx nodes, followed by the EC nodes, and finally the different sensor types are compared
with each other. Results from the validation of the EASE setup against a reference station
are included in the Appendix A, Appendix A.1.

In the review by Karagulian et al. (2019) [22], a good level of agreement for a sensor
with a reference instrument is denoted by a R2 value of >0.75 and a slope ‘close’ to 1.0,
which we take to mean 1± 0.3, this definition will be used in the following analysis. The R2

value gives a measure of the goodness of fit between variables but does not account for
bias. Relative bias is denoted by a slope that diverges from 1. A non-zero intercept denotes
absolute bias and impacts the limit-of-detection, this is also recorded and discussed for
each method [22]. The root mean square error (RMSE), mean bias error (MBE), and mean
absolute error (MAE) are also included as statistical indicators for the models.

3.1. Mox Node Results

Results for the validation of MOx sensor calibration with each method are displayed
in Table 3 and selected statistical indicators are shown in Figure 11. Example time-
series of NO2 and O3 for one of the nodes during the validation period are shown in
Figures 12 and 13, respectively.

Table 3. Evaluation statistics for validation of the MOx nodes with all of the calibration methods,
all values are means over all MOx nodes with their corresponding standard deviation of the results
shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2

Laboratory 0.67 (0.22) 1.6 (0.39) 11 (21) 8.5 (3.0) −16 (17) 21 (11)
EASE 0.80 (0.065) 1.6 (0.63) −11 (19) 6.8 (1.2) −3.5 (13) 13 (2.7)
Field 0.83 (0.12) 1.6 (0.24) −6.5 (4.9) 6.2 (2.2) −7.7 (3.2) 8.8 (2.9)

O3

Laboratory 0.82 (0.11) 1.4 (0.54) −6.4 (5.3) 3.2 (0.98) 5.2 (16) 11 (12)
EASE 0.93 (0.062) 1.2 (0.16) −2.2 (6.9) 1.9 (0.90) −1.3 (4.5) 4.3 (1.4)
Field 0.96 (0.037) 0.88 (0.12) 1.4 (0.9) 1.4 (0.67) 0.87 (2.8) 2.2 (2.3)

It was found that individual models of this prototype node were highly variable and
some were unstable and gave poor results. Nodes that had training R2 values < 0.75 and
or validation R2 < 0.1 were discounted from the study, consequently, 5 of the 12 nodes
had to be discounted. The poor reliability of the nodes is presumably due to issues with
the complex sampling/filtration system, or the fragile MOx chips, as some of the broken
nodes had low sampling flows or damaged chips, an example chip is shown in Figure A5).
After calibration, it was found that the response of the MOx cells changed dramatically at
temperatures <0 ◦C, presumably due to perturbation of the TCO. Negative temperatures
were present only in the Field validation period and not the Field training (or EASE or
Laboratory training), and all models performed poorly when temperatures were <0 ◦C in
the validation period, therefore, these data were also removed from the validation to better
compare the models.

Overall, MOx sensor measurement of O3 was superior to NO2, with R2 values of 0.96
vs. 0.83 in the Field validation, and better performance for all calibration methods. In terms
of the different calibration methods, the Laboratory method was least successful, followed
by the EASE method, with the Field being most effective. All six statistical indicators follow
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this pattern (Laboratory < EASE < Field) in terms of R2 and slope difference from 1, intercept
difference from zero, and size of RMSE, MBE, and MAE, except for Field NO2 MBE, which
is greater than EASE MBE, and slope which is the same for all methods. In the case of
slope and intercept, a mean value can be misleading as these parameters can be above or
below the optimum value (1 or 0, respectively), which is why the standard deviations and
boxplots are included. One of the nodes calibrated for NO2 with the Laboratory method
had a negative slope (−0.9) for the validation, this pulled the mean slope value closer to
1 despite being a poor and anomalous result and therefore was removed from the analysis.
Despite the EASE and Field methods performing better than the Laboratory method,
they do not meet the requirements for ‘good’ sensor performance for NO2 measurements,
due to slope values that are too high (1.6). However, the EASE and Field calibrated O3
measurements are well within the requirements, with particularly high R2 values (0.93 and
0.96) and acceptable slope values (1.2 and 0.88).
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Figure 11. Comparison of R2, slope, and RMSE for calibration model validation of MOx sensors with
the different methods for both NO2 (left) and O3 (right). Lab is short for laboratory.
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Figure 12. Example NO2 time-series from a single MOx node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.

In conclusion, the EASE method outperforms the Laboratory method with similar
overall results to the Field method, but the sensor hardware only performs well enough
for O3 measurement, as even the Field calibrated NO2 measurements are not within the
requirements for a good sensor, under these conditions. The MOx nodes also had poor
reliability, with a large fraction being discounted, and did not perform well at negative
temperatures (although they were not trained under negative temperatures).

3.2. EC Node Results

Results for validation of the EC sensors with all three methods are displayed in Table 4,
and selected statistics are displayed in Figure 14. Example time-series of NO2 and O3
during the validation period are shown in Figures 15 and 16, respectively. Results from
the calibration training periods are found in Table A6 in the Appendix A. The mean NO2
concentration was low during the entire period (training and validation) at 10.4 ppb,
and particularly low during the training period (7.7 ppb, vs. 13 ppb in the validation
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period). This means that at times the levels are near the limit of detection for the cells
(reported previously as ∼4 ppb [54]). Therefore a lower R2 value is recorded for the
sensor output compared with the reference instruments in the training period, relative to
the validation period (0.49 vs. 0.83), whereas the mean O3 concentrations were greater
throughout, and the R2 for the O3 measurement is similar for both periods (∼0.83) [55,56].
The Field calibration performs very well for O3 (R2 = 0.83, slope = 0.97) but over-predicts
NO2 concentrations in the validation period (slope = 1.4), which is most likely due to
the short training period, with lower NO2 levels than the validation period. As stated
previously, ∼3 weeks or longer is recommended for Field calibration.
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Figure 13. Example O3 time-series from a single MOx node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.
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Table 4. Evaluation statistics for validation of the EC nodes with all calibration methods. Note that the
statistics for the Laboratory calibration are calculated after the Field offsets, shown in Table A3, have
been applied. All values are means over all EC nodes with their corresponding standard deviation
shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2

Laboratory 0.83 (0.025) 1.3 (0.11) −2.7 (1.1) 2.6 (0.20) −1.1 (0.42) 2.4 (0.19)
EASE 0.83 (0.027) 1.2 (0.13) −2.6 (5.2) 2.6 (0.22) 0.32 (4.2) 3.9 (2.2)
Field 0.83 (0.027) 1.4 (0.17) −2.6 (1.4) 2.6 (0.22) −1.6 (0.49) 2.6 (0.39)

O3

Laboratory 0.83 (0.027) 0.73 (0.10) 6.1 (2.3) 3.4 (0.27) −2.8 (1.7) 4.5 (1.1)
EASE 0.83 (0.027) 1.3 (0.17) −8.3 (7.6) 3.4 (0.27) 2.7 (4.9) 5.3 (2.5)
Field 0.83 (0.027) 0.97 (0.073) −0.092 (1.7) 3.4 (0.27) 0.47 (0.95) 2.8 (0.29)
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Figure 14. Comparison of R2, slope, and RMSE for calibration model validation of EC sensors with
the different methods for both NO2 (left) and O3 (right). Lab is short for laboratory.
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Figure 15. Example NO2 time-series from a single EC node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.

The R2 and RMSE values for validation of the EC nodes with different methods are
essentially the same, unlike the MOx nodes for which R2 differs between methods. This
is because the EC cells have a more linear response to pollutant concentrations, and less
output variables, and therefore a change in the slope between methods does not alter the
coefficient of determination. This is also reflected by a generally better performance and
lower inter-unit variability for the EC nodes.

It was found that the the Laboratory coefficients provided by the EC manufacturer
(Alphasense) yield results that scale well with concentration increase in the Field, with a
slope similar to the Field calibrations (∼1.3), however the intercept of the Laboratory
predicted concentrations were either greatly above or below zero (between −175 and
+126 ppb) when applied to the Field data. Consequently, a Field offset correction was also
identified, based on the the Field calibration training period. The offsets are shown in the
Appendix A in Table A3 and as an example by the light blue lines in Figures 15 and 16.
This means that the pure Laboratory calibration would only be usable for measuring
relative changes, and not absolute values, unless a short Field co-location is performed to
determine their offset (as is the case for the statistics in Table 4 and the dark blue lines in
Figures 15 and 16).
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Figure 16. Example O3 time-series from a single EC node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.

The zero coefficients supplied by Alphasense were included in the Laboratory cali-
bration models, as described in Section 2.2.8, but this only partially reduced the range of
intercepts encountered for the validation period (e.g., from 184 ppb down to 166 ppb for
NO2), compared with not using the zero coefficients, and just subtracting the AE from the
WE response. The offset issue may be partly due to the use of a PCB designed by AirLabs
in the Gen 5 EC node, which complicates the use of the ’zero’ coefficients supplied by
Alphasense, as the electronic offset may be altered. However, the large variability in offset
between units suggests that individual offset calibration is necessary for each cell in the
Field, regardless of the PCB used. In the application note from Alphasense, it is stated
that large over/under-estimation may occur if using just Laboratory coefficients and that a
secondary correction method is normally required [53], which was the case here. However,
the scale for the models produced by the Laboratory calibration was impressive. Potentially
a simple on-site zero air calibration, or calibration at a single fixed concentration, could be
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used together with the Laboratory calibration model coefficients to improve their results.
This will be tested as part of a future study.

Temperature correction using the nT coefficients supplied was also tested but did
not improve the results. A correlation linking the difference between model predictions
and reference measurements was not observed for NO2 measurements during the Field
validation. For O3, a decrease in absolute difference was observed for increasing tempera-
tures, meaning that the sensors appear to perform better for O3 measurements at greater
temperatures, however O3 concentration also had a strong correlation with temperature,
meaning that the increased absolute accuracy is due to the sensors having lower absolute
error at greater concentrations. When temperature was included in the training of the MLR
model for the Field method it did not improve results in the Field validation. This suggests
that below 20 ◦C using the difference between the WE and AE is sufficient to account
for any sensitivity that the EC sensors have towards temperature increase. This is also
evidenced by the strong performance from the Field trained model (R2 = 0.83, slope = 0.97),
which does not include temperature.

In conclusion, the Field and EASE methods perform similarly for both NO2 and O3
measurements, all being in good agreement with the reference, except for Field NO2 which
has a slope slightly above the acceptable range, as described above. It is also clear to see
from the time-series in Figures 15 and 16 that these methods result in models that track the
observed data well. In this case, EASE performs essentially as well as the Field calibration,
with a better slope for NO2, worse for O3, but meeting the criteria for both. This is despite
the fact that EASE calibration was performed in CPH and the nodes validated in Surrey,
UK, although it should also be noted that the Field calibration was shorter than is optimal.
Overall we believe this study demonstrates EASE as a viable alternative to Field calibration
for the EC nodes.

3.3. Node Comparison

As can be seen in Figures 8 and 10, the concentration profiles in the Field co-locations
periods are very different. The HCAB co-location (MOx nodes) is longer and importantly
for the NO2 calibration has a large NO2 concentration range during the Field training
period (0–81 ppb). Meanwhile the Surrey Field training period (EC nodes) is short and has
a lower mean NO2 level (7.7 ppb), with a lower NO2 concentration range (0.50–29 ppb),
followed by a validation period with a slightly greater mean NO2 concentration (13 ppb).
A lower mean concentration can result in a lower R2 value regardless of the sensor being
tested, and validating sensors using a concentration range greater than the training range is
not optimal [34,55,56]. Half-hourly data is the maximum resolution available from HCAB,
whereas the Surrey co-location data had a one-minute time resolution, using greater time-
resolution generally results in lower performance statistics. Therefore, it is difficult to
compare the Field calibration of the sensors under these differing conditions. However,
the EC nodes appear to have been trained and validated under more challenging conditions
and yet still perform as well as or better than the MOx nodes.

Temperature is also a factor in the training/validation of the models, but again is diffi-
cult to compare. It was warmer during the Surrey co-location than the HCAB co-location (11
vs. 2.8 ◦C), but the sensors respond differently to temperature changes. The MOx sensors
operate poorly below 0 ◦C, whereas the EC cells operate well at negative temperatures,
but lose sensitivity at greater temperatures (particularly above 20 ◦C), which were not
present during the co-location.

The laboratory MOx training consisted of a number of concentration, T and RH
combinations (although temperatures were greater than those encountered in the field).
In contrast, the EC Laboratory calibration consisted of a zero calibration and one other
concentration/T/RH combination. This may partly explain the large offsets produced by
the EC Laboratory method. In terms of the EASE training, the MOx nodes were trained and
tested in the same geographical area, which is the preferred method for EASE calibration,
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whereas the EC nodes were trained in Copenhagen, Denmark and tested in Surrey, UK.
Despite this, the EASE method performs well for the EC nodes.

It is clear that the EC Gen 5 nodes are more robust and less variable than the MOx
nodes as none of them had to be discounted from the analysis, compared with 41% of the
Gen 2 MOx nodes. It seems that the fan/filter system in the MOx nodes and sensors chips
themselves are vulnerable to damage.

Overall, If using the best calibration method in each case (Field or EASE), the statistics
for the different sensors appear similar, for NO2 measurement, EC: R2 = 0.83, slope = 1.2,
MOx: R2 = 0.83, slope = 1.6 and for O3 measurement, EC: R2 = 0.83, slope = 0.97, MOx:
R2 = 0.96, slope = 0.88. However, when all factors are taken into account, including the
less optimal EC Field co-location and the unreliability of the MOx nodes, the EC nodes are
judged as superior.

4. Conclusions

This study demonstrates how the EASE calibration method performs better than pure
Laboratory calibration and similarly to a Field calibration (and in some cases better, e.g., EC
NO2), whilst requiring a fraction of the time, being completed in days instead of weeks.
The EASE method even performed well when nodes were calibrated in Copenhagen,
Denmark and validated in Surrey, UK, up to 3 months later, suggesting that using a site
with similar characteristics (e.g., Urban, European) and at least within the same season,
yields acceptable results. Although, we expect even better results from calibration at or
nearer to the intended measurement site and directly before deployment.

Although the EASE method performed well under the circumstances in this study and
can expose sensors to the full expected range of pollutant concentrations in a condensed
period, it does not ’condense’ the RH and T exposure. These meteorological parameters
have less impact on the node output than concentration range, at least within certain ranges
(e.g., T < 20 ◦C for EC and >0 ◦C for MOx), therefore in most cases, we expect that if the
calibration is performed in the same season as the deployment an EASE calibration will be
sufficient. However, the temperature during the co-location should be monitored and if it
is outside of the optimal operating range for the sensors, then either a separate temperature
correction should be applied, or data may need to be discounted. The EASE method will be
best applied to shorter deployments, e.g., one season, but is still expected to perform better
than Laboratory calibration over longer deployments. The issue with not capturing an
appropriate range for meteorological factors is also present for Field calibration methods,
as can be seen from the MOx data in this study. Theoretically, longer Field calibrations could
solve this issue, for instance a year long co-location would ensure the sensors encounter
a large meteorological range, but this is not viable for most LCS, and in particular for EC
sensors, due to their overall lifetime and the drift they exhibit during deployment. We
propose that additional EASE calibration periods during a deployment would be a better
solution. The speed of an EASE calibration also means it is a viable option for conducting
pre- and post-deployment calibration, and using the the combined calibration models to
account for drift.

Laboratory calibration did not produce a calibration model meeting the requirements
for a ‘good’ sensor performance in any of the cases in this study. A potential improvement
would be to model the expected concentration, RH and T of the site during a deployment
and then to use a range around them for the defined Laboratory parameters. Although this
would not account for potential co-pollutant species present at the deployment site.

The secondary purpose of this study was to compare the Gen 2 MOx nodes and
the Gen 5 EC nodes. It is clear from the results that despite the Field co-location being
less optimal for the EC nodes (shorter, lower concentration range, lower mean NO2 level,
warmer), they out-perform the MOx nodes for NO2 measurements, for O3 the results from
both sensor types were similar and rate as ‘good’ for Field and EASE calibration. However,
the MOx nodes were less reliable.
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The method is in its infancy but we expect that further testing and iteration of the
procedure will improve the results, particularly when dealing with correlated or anti-
correlated pollutants that the sensors are cross-sensitive to. The natural progression for
this work would be to either install an EASE system directly at a reference station and
use that for optimal EASE calibration for the surrounding area, or to build a mobile EASE
system inside a vehicle that could be used for condensed calibration at the exact site at
which nodes will be measuring, and to validate the sensors in the same setup. This could
provide rapid and accurate calibration on-demand. Based on the results from this study,
the method appears to perform well enough to invest in this.
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Appendix A. Equipment Tests and Training Parameters

Appendix A.1. EASE

Prior to use, the EASE setup was compared against data from the urban-background
monitoring station operated under the NOVANA program (the Danish National Monitoring
Program for Water and Nature [52]) on the roof of the neighbouring building, (H.C. Ørsted
Institute), to confirm that it would correctly track fluctuations in ambient pollution levels.
The system was in good agreement for trends in NO2 (R2 = 0.77) and O3 (R2 = 0.84),
shown in Figure A1, although with lower values for both pollutants. This may be due
to reaction on the walls of the system or the difference in position compared with the
reference monitors. T and RH were higher and lower, respectively, in the EASE setup than
the reference station but followed the same trends (R2 of 0.79 and 0.84, respectively, shown
in Figure A2) and were in good agreement with a RH and T probe mounted 2 m outside
the building. The mixing and homogeneity of the setup was also probed and found to be
satisfactory (results displayed in Figure A3).
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Figure A1. Time-series (above) and scatter-plots (below) showing the correspondence between the
EASE duct and nearby reference station for NO2 (left) and O3 (right) measurements.
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Figure A2. Time-series (above) and scatter-plots (below) showing the correspondence between the
EASE duct and nearby reference station for T (left) and RH (right) measurements.

Table A1. Sensitivity and zero currents for NO2-B43F cells, provided by Alphasense.

Node NO2-B43F
Cell Serial

WE Zero
Current/nA

AE Zero
Current/nA

Sensitivity/
(nA ppm−1)

ANG500012 202750622 32.16 18.29 −386.68
ANG500149 202750349 19.86 2.84 −338.6
ANG500151 202750350 25.54 18.60 −348.85
ANG500174 202750153 30.58 11.35 −400.24
ANG500194 202750122 30.90 8.51 −380.38
ANG500208 202750105 31.21 12.30 −412.38
ANG500218 202750639 33.73 18.92 −379.75
ANG500219 202750638 33.42 21.44 −384.32
ANG500224 202055609 9.46 9.14 −341.13
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Table A1. Cont.

Node NO2-B43F
Cell Serial

WE Zero
Current/nA

AE Zero
Current/nA

Sensitivity/
(nA ppm−1)

ANG500225 202055604 25.22 17.66 −319.37
ANG500245 202240647 52.97 20.49 −393.62
ANG500252 202750601 24.91 17.34 −355.63
ANG500254 202750119 31.84 14.19 −374.39
ANG500255 202750110 35.63 15.76 −368.87
ANG500259 202750112 35.94 10.72 −382.58

1 

 

 

Figure A3. Results of mixing test in EASE duct, the sampling line was moved between points P1
and P4 shown in the schematic (above) at the realtive times shown in the plot (below). As can be
seen from the plot there was not a significant difference in NO2 either for the different points or the
same points at different times. The small fluctuations in concentration over time are caused by slight
fluctuations in total flow through the duct.
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Figure A4. Figure displaying the results of chamber mixing tests, including: schematic showing
5 different node placements in the chamber, in their corresponding colours (below), and time-series
(plots A and C) and scatter-plots (plots B and D) of two different mixing tests, where the CO2

concentration was incrementally increased before rapidly venting the chamber (A,B) and slowly
increased before leaving to steadily decay (C,D).
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Figure A5. Example MOx sensor surfaces (4× magnification), bottom sensor is damaged.

Table A2. Sensitivity and zero currents for OX-B431 cells, provided by Alphasense.

Node OX-B431
Cell Serial

WE Zero
Current/nA

AE Zero
Current/nA

Sensitivity/
nA ppm−1

ANG500012 204050221 25.22 9.77 −656.87
ANG500149 204071554 37.20 24.59 −548.26
ANG500151 204071553 39.09 21.12 −586.25
ANG500174 204070150 47.29 17.66 −480.64
ANG500194 204751304 −29.01 11.67 −599.18
ANG500208 204070439 34.36 11.98 −543.37
ANG500218 204070440 33.42 7.25 −585.94
ANG500219 204070441 44.45 17.97 −489.46
ANG500224 204070407 20.49 14.19 −627.87
ANG500225 204070406 37.52 10.72 −570.02
ANG500245 204851926 33.73 16.71 −584.20
ANG500252 204851922 39.41 20.18 −613.37
ANG500254 204851921 43.51 19.86 −613.05
ANG500255 204851916 36.89 17.34 −626.76
ANG500259 204851918 35.63 19.86 −559.77

Table A3. Field offsets applied to the Laboratory calibration of the EC nodes, including the minimum
and maximum offset applied for each pollutant, and the difference between them.

Node Offset Applied NO2/ppb Offset Applied O3/ppb

ANG500012 24.80 52.20
ANG500149 55.28 52.50
ANG500151 58.55 −62.56
ANG500174 69.03 −11.60
ANG500194 37.55 43.46
ANG500208 76.79 −55.55
ANG500218 −21.66 46.76
ANG500219 44.61 −127.34
ANG500224 −20.53 −10.62
ANG500225 36.25 −90.69
ANG500245 −7.93 122.58
ANG500252 18.78 125.58
ANG500254 45.48 −7.23
ANG500255 105.74 −89.34
ANG500259 101.61 −175.24



Sensors 2022, 22, 7238 27 of 29

Table A3. Cont.

Node Offset Applied NO2/ppb Offset Applied O3/ppb

Max 105.74 125.58
Min −21.66 −175.24

Difference 127.41 300.82

Table A4. Summary of calibration period dates. * EASE separated into 2 batches, ** EASE separated
into 7 batches, tested alongside other nodes.

Node Field EASE Laboratory

MOx 22nd December 2020 : 3rd February 2021 * 21st February 2021 : 26th February 2021 12th March 2021 : 15th March 2021
EC 9th December 2021 : 23rd December 2021 ** 1st September 2021 : 5th October 2021 Prior to dispatch (then sealed)

Table A5. Evaluation statistics for training of the MOx nodes with all of the calibration methods. All
values are means over all MOx nodes with their corresponding standard deviation shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2

Laboratory 0.90 (0.047) 1.0 (0.0) 0.0 (0.0) 9.9 (2.7) 0.0 (0.0) 6.6 (1.7)
EASE 0.96 (0.014) 1.0 (0.0) 0.0 (0.0) 3.7 (0.67) 0.0 (0.0) 2.6 (0.32)
Field 0.92 (0.040) 1.0 (0.0) 0.0 (0.0) 3.6 (0.86) 0.0 (0.0) 2.6 (0.67)

O3

Laboratory 0.99 (0.011) 1.0 (0.0) 0.0 (0.0) 3.3 (1.2) 0.0 (0.0) 2.2 (0.86)
EASE 0.97 (0.013) 1.0 (0.0) 0.0 (0.0) 2.7 (0.72) 0.0 (0.0) 1.5 (0.51)
Field 0.96 (0.040) 1.0 (0.0) 0.0 (0.0) 1.2 (0.71) 0.0 (0.0) 0.90 (0.57)

Table A6. Evaluation statistics for training of the EC nodes with all of the calibration methods.
Laboratory coefficients were not available from the calibration performed by the manufacturer. Note
that the Field training period encompassed low NO2 concentrations, near the LOD, resulting in a low
R2 value. All values are means over all EC nodes with their corresponding standard deviation shown
in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2
EASE 0.94 (0.040) 1.0 (0.0) 0.0 (0.0) 5.2 (1.6) 0.0 (0.0) 4.0 (1.4)
Field 0.49 (0.082) 1.0 (0.0) 0.0 (0.0) 3.3 (0.22) 0.0 (0.0) 2.5 (0.19)

O3
EASE 0.96 (0.026) 1.0 (0.0) 0.0 (0.0) 4.6 (1.1) 0.0 (0.0) 2.9 (1.2)
Field 0.84 (0.047) 1.0 (0.0) 0.0 (0.0) 2.8 (0.38) 0.0 (0.0) 2.2 (0.29)
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