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Abstract—Huge collections of data have been created in recent
years. Cloud computing has been widely accepted as the next-
generation solution to addressing data-proliferation problems.
Because of the explosion in digital data and the distributed nature
of the cloud, as well as the increasingly large number of providers
in the market, providing efficient cost models for composing data-
intensive services will become central to this dynamic market. The
location of users, service composers, service providers, and data
providers will affect the total cost of service provision. Different
providers will need to make decisions about how to price and pay
for resources. Each of them wants to maximize its profit as well
as retain its position in the marketplace. Based on our earlier
work, this paper addresses the effect of data intensity and the
communication cost of mass data transfer on service composition,
and proposes a service selection algorithm based on an enhanced
ant colony system for data-intensive service provision. In this
paper, the data-intensive service composition problem is modeled
as an AND/OR graph, which is not only able to deal with sequence
relations and switch relations, but is also able to deal with parallel
relations between services. In addition, the performance of the
service selection algorithm is evaluated by simulations.

Keywords—ant colony system algorithm, data-intensive service
composition, quality of service.

I. INTRODUCTION

In recent years, huge collections of data have been created
by the advances in technology areas such as digital sensors,
communications, computation, and storage. This data deluge
exhibits not just volume and velocity but also variability and
diversity of structure, completeness, and domain [33]. The
impact of enormous new sources of data extends to many
areas of society, far beyond business, industry, government,
science, sports, advertising and public health, with no area
being untouched. There is no doubt that the importance of data-
intensive computing has been increasing and it becomes the
foremost research field in industry and academic communities.
As a result, applications based on data-intensive services have
become the most challenging type of applications in service-
oriented computing. Generally, we define the notion of data-
intensive services as Web services that make use of very large
data sets as inputs. Services use data from data providers, and
they also use data from other services. The data from other
services sometimes consist of that which is exchanged between
services within a common context. In this paper, we focus on
the data from data providers as this kind of data is generally
much larger.

To solve a complex social or scientific problem such as, for
example, attempting to understand the regional scale impacts

of fires, or the long-range transportation of pollutants on air
quality, or even the implications of climate change, scientists
need to combine data from aircraft and satellites. And it
is necessary to design a workflow of various data-intensive
services and get a composite data-intensive service when
using Web service technologies to solve such problems. A
composite service can be re-used by other users. The research
area of service composition has been attracting tremendous
attention in recent years [1], [5], [10], [13], [23], [27], [32],
however, very little research has considered the effect of data
intensity and the communication cost of mass data transfer to
service composition, and most research has considered only
the sequence relation between services. On the other hand,
it should be noted that the optimization processes in most
QoS-aware service composition studies aim to satisfy quality
constraints and provide the “best” solutions with highest QoS.
However, from a cost perspective, consumers will not always
pay more, even if the qualities of the requested composite
services exceed their expectations. This is because most service
composition processes involve static-pricing models. In addi-
tion, data-intensive services need to access large data sets that
may each be replicated in different data centers [12], [17], [25],
but the access cost of each data replica on one data center is
different from that for other data centers [19]. Therefore, how
to select appropriate data centers for accessing data replicas
and how to select services with the lowest associated costs
are emerging problems when deploying and executing data-
intensive service applications.

In a data-intensive service composition process, a service
composer, service providers, and data providers all want to
have a position in the market whilst maximizing their profits.
Data play the dominant role in the process of data-intensive
service composition. The authors of [6] were concerned with
data placement policies for application execution. The paper
[3] focused primarily on the problem of optimizing the repli-
cation of data, that is, deciding when and where to create and
delete replicas of data files. We aim to minimize the over-
all cost of data-intensive service composition and maximize
the three actors’ (service composer, service providers, data
providers) market competitiveness in the “long-term”. Tradi-
tional quality-driven composition techniques usually consider
the qualities at the time of the composition [11]. It is not
easy for service providers to compete on price if they want
to establish long-term partnerships in the marketplace, since
they are eager to have an acceptable profit when they sell their
services. If they cannot have position in the marketplace, the
problem may be that their costs are too high rather than that



the price is too low. So, during the process of data-intensive
service composition, it is necessary to adopt dynamic pricing
models and all actors in the value chain negotiate with each
other to lower cost.

In our data-intensive service composition model, there
are two parts. The first part is that the service composer
selects service candidates while the service providers select
data replicas, and the second part is that the service composer
negotiates with multiple service providers while the service
providers negotiate with their respective data providers at the
same time. The service composer wants to get a satisfactory
service according to QoS requirements in the first negotiation
process, and the service providers want to lower the price
of data in the second negotiation process. We have already
done pilot studies in applying bio-inspired algorithms to tackle
this kind of problem [14], [15], [20], [21], [30]. Based on
our earlier outcomes and other studies, we will design a
holistic cost minimization data-intensive service composition
mechanism. The solution of the first part is presented in this
paper. An enhanced service selection algorithm based on an
ant colony system for cost minimized data-intensive service
composition is proposed.

The remainder of this paper is organized as follows: Section
II introduces the background. Section III details the utility
function for local optimization and global optimization, and it
also presents a local selection approach as well as the problem
statement. Section IV investigates how an ant colony algorithm
could be used to solve data-intensive service composition
problems. Section V shows the experiments and analysis.
Section VI reviews some related work. Finally, Section VII
concludes this paper and proposes future work.

II. BACKGROUND

A. Service composition as a workflow design problem

According to [4], a composite service is similar to a
workflow. The authors of [2] proposed a model for service
composition using a workflow. They argued that processes
could be viewed as workflows that manage services instead of
tasks. Thus, in a workflow-based service composition model, a
workflow is actually a composite service. The types of work-
flow structures in this paper were derived from the workflow
patterns in [18]. The basic workflow structures are: sequence,
AND split (fork), XOR split (switch), Loop, AND join, and XOR
join (merge). Accordingly, the control flows between services
are shown in Fig. 1. The irregular circle represents an abstract
service.

B. Service composition model using an AND/OR graph

In the field of service composition, a directed graph is
used to represent the dependencies between services. This
is referred to as ‘service functional graph’. Discovering a
composite service is essentially searching for a solution in a
solution space represented by the ‘service candidate graph’.
Fig. 2 is a ‘service candidate graph’, and Fig. 3 is a ‘service
functional graph’ in which data sets, as the inputs of services,
are incorporated.

As shown in Fig. 3, there is a logical AND relationship
between AS2 and AS3, and there is a logical OR relationship

Switch (condition)

LoopSequence

Flow (parallel)

AS5

AS4p1

p2

AS8

k

AS2

AS3

AS3 AS6

XOR split XOR join

AND joinAND split

Fig. 1: Control structures between services

cs2

cs3

cs5

cs6

cs7

start
end

cs4

cs9
cs1

cs1,1

cs1,2

cs3,1

cs3,2

cs2,1

cs2,2

cs4,1

cs4,2

cs5,1

cs5,2

cs7,1

cs7,2

cs6,1

cs6,2

cs9,1

cs9,2

cs8

cs8,1

cs8,2

k

p1

p2

Fig. 2: Service Candidate Graph

AS1

AS2

AS3

AS5

AS6

AS7

start end

AS4

AS9

p1

p2

AS8

k

data sets

data sets

data sets
data sets

data sets data sets

data sets

data sets

data sets

Fig. 3: Service functional graph for data-intensive service
composition

between AS4 and AS5. Thus, an AND/OR graph is used to
form the service composition model. An AND/OR graph is a
‘service functional graph’, in which a vertex is called an ‘AND
split’ vertex if there is a logical AND relationship between its
direct successors, and a vertex is called an ‘OR split’ vertex if
there is a logical OR relationship between its direct successors.
Meanwhile, a vertex is called an ‘AND join’ vertex if there is a
logical AND relationship between its direct predecessors, and
a vertex is called an ‘OR join’ vertex if there is a logical
OR relationship between its direct predecessors. All ‘AND
split’ and ‘AND join’ vertices are called AND vertices, and
all ‘OR split’ and ‘OR join’ vertices are called OR vertices.
Each ‘AND split’ vertex and its ‘AND join’ vertex are a pair,
and each ‘OR split’ vertex and its ‘OR join’ vertex are a pair.
For example, AS1 and AS9 are AND vertices, AS2 and AS7

are OR vertices. In this paper, we just consider a graph with
basic control structures as shown in Fig. 1.

III. DATA-INTENSIVE SERVICE COMPOSITION

A. Utility function

In order to evaluate the quality of a concrete service, a
utility function is used. This paper adopts the simple additive
weighting (SAW) approach in the multiple criteria decision
making (MCDM) [28] technique for the utility function. The



utility computation includes two phases: the scaling phase and
the weighting phase. The scaling phase is used to normalize
all QoS attributes to the same scale, independent of their
units and ranges. The weighting phase is used to compute
the overall utility for each service candidate by using weights
depending on users’ priorities and preferences. In this section,
two utility functions will be presented, namely, utility function
for a concrete service, and utility function for a composite
service.

1) Select a concrete service using the local utility function:
Suppose a composite service CS is composed of n tasks,
and there are m concrete services to execute each task. Each
concrete service csi,j is associated with a QoS vector qij =
[q1ij , q

2
ij , . . . , q

r
ij ] with r QoS parameters. Qmax

k,i = max
∀csi,j∈csi

qkij

and Qmin
k,i = min

∀csi,j∈csi
qkij are used to represent the maximal

value and the minimal value of the k-th QoS attributes of
all concrete services in candidate set csi respectively. The set
of QoS attributes can be classified into two groups: positive
and negative QoS attributes. The values of negative QoS
attributes like response time need to be minimized. The higher
their values, the lower the QoS. The values of positive QoS
attributes such as availability need to be maximized. The
higher their values, the higher the QoS. Suppose there are α
negative QoS attributes and β positive QoS attributes in the
QoS vector of concrete service csij , and α+ β = r. Now the
utility of csi,j is computed according to (1).

U(csi,j) =
α∑

k1=1

(
(
Qmax

k1,i
− qk1

ij

Qmax
k1,i

−Qmin
k1,i

) ∗Wk1

)

+

β∑
k2=1

(
(

qk2
ij −Qmin

k2,i

Qmax
k2,i

−Qmin
k2,i

) ∗Wk2

)
Qmax

k1,i
− qk1

ij

Qmax
k1,i

−Qmin
k1,i

= 1, if Qmax
k1,i −Qmin

k1,i = 0

qk2
ij −Qmin

k2,i

Qmax
k2,i

−Qmin
k2,i

= 1, if Qmax
k2,i −Qmin

k2,i = 0

(1)

where Wk1
,Wk2

∈ [0, 1], and
α∑

k1=1

Wk1
+

β∑
k2=1

Wk2
= 1. Wk1

and Wk2
represent weights of k1-th and k2-th quality criteria

with values normally provided by the users based on their own
preferences.

2) Select a composite service using the global utility func-
tion: Assigning a concrete service to each abstract service
in an execution path leads to a possible service composition
solution. As in the local utility function approach, a SAW
approach is used to select a concrete service. The selection
of a composite service also relies on this approach. QMAX

k
and QMIN

k are used to represent the maximal value and the
minimal value of the k-th QoS attributes of all the execution
paths respectively.

QMIN
k =

n∑
i=1

Qmin
k,i =

n∑
i=1

min
∀csi,j∈csi

qkij

QMAX
k =

n∑
i=1

Qmax
k,i =

n∑
i=1

max
∀csi,j∈csi

qkij

(2)

Suppose a composite service CS is associated with a QoS
vector qCS = [q1CS , q

2
CS , . . . , q

r
CS ]. The overall utility of CS

is computed according to (3).

U(CS) =
α∑

k1=1

(
(

QMAX
k1

− qk1

CS

QMAX
k1

−QMIN
k1

) ∗Wk1

)

+

β∑
k2=1

(
(

qk2

CS −QMIN
k2

QMAX
k2

−QMIN
k2

) ∗Wk2

)
QMAX

k1
− qk1

CS

QMAX
k1

−QMIN
k1

= 1, if QMAX
k1

−QMIN
k1

= 0

qk2

CS −QMIN
k2

QMAX
k2

−QMIN
k2

= 1, if QMAX
k2

−QMIN
k2

= 0

(3)

B. Local selection

When performing the local utility function to select a
concrete service, each task selects a concrete service without
taking into account the other tasks involved in the composite
service. Since (1) compares the quality value of a concrete
service with the local maximum/minimum value (Qmax

k,i and
Qmin

k,i ) of its candidate set, this scaling approach can lead
to local optima. In order to make the evaluation of concrete
services be valid globally and avoid a local optimum, the utility
of a concrete service csi,j is computed in a way similar to
(1) by replacing the local maximum/minimum value with the
global maximum/minimum value(QMAX

k and QMIN
k ).

C. Problem statement

The data-intensive service composition problem is modeled
as an AND/OR graph, denoted as G = (V,E,D, start, end),
where V = Vand ∪ Vor ∪ Vother and E represent the vertices
and edges of the graph respectively. D represents a set of data
sets for services. Vand is AND vertices, Vor is OR vertices,
and Vother is the set of other vertices. For simplicity, it is
assumed that all data sets used by each service have already
been distributed in data centers prior to service composition
following a uniform distribution, and we will not deal with
the selection of data replicas in this paper. Furthermore, we
will consider only the cost and response time of data-intensive
services. The QoS of each data-intensive service in (1) to (3)
will include the access cost Cvi(DT ), transfer cost Ctr(DT ),
and transfer time Tt(DT ) of data set DT , since they would
affect the cost and response time of the service that makes use
of DT . The cost and response time of each service candidate
csi,j are given by (4).

C(csi,j) = Cvi(DT ) + Ctr(DT ) + Csr(csi,j)

T (csi,j) = Trp(csi,j) + Tt(DT )
(4)

where Csr(csi,j) and Trp(csi,j) are the cost and response time
of service csi,j in traditional service composition respectively,
DT is the data set as input of service csi,j . Suppose a
composite service of Fig. 3 is CS, ti and ci are the response
time and cost of service csi,j , then the cost and response time



of CS are shown by (5).

Cost(CS) = c1 + c2 + c3 + p1 ∗ c4 + p2 ∗ c5
+ c6 + c7 + k ∗ c8 + c9

T ime(CS) = t1 +max
(
t2 + p1 ∗ t4 + p2 ∗ t5 + t7,

t3 + t6 + k ∗ t8
)
+ t9

(5)

where p1 and p2 are the probability of the conditional branches,
k is the loop count for Loop structure. According to (4), ci =
C(

∑m
j=1(csi,jxij)), ti = T (

∑m
j=1(csi,jxij)), where xij is

the constraint used to represent only one concrete service is
selected to replace each abstract service during the process
of service composition. This constraint satisfies

∑m
j=1 xij =

1, xij ∈ {0, 1}, i ∈ {1, . . . , n}, where xij is set to 1 if concrete
service csi,j is selected to replace abstract service ASi and 0
otherwise. Note in (5), n = 9.

Using an ant colony system algorithm, the problem of find-
ing a data-intensive service composition solution is considered
as an optimization problem, in which the overall utility value
has to be maximized. Formally, the optimization problem is
described as follows. Find a solution CS in graph G by replac-
ing each abstract service ASi in V = {AS1, AS2, . . . , ASn}
with a concrete service csi,j ∈ csi such that the overall utility
U(CS) is maximized.

IV. DYNAMIC DATA-INTENSIVE SERVICE SELECTION
BASED ON AN ANT COLONY SYSTEM

The field of ‘ant colony algorithms’ studies models derived
from the behavior of real ants and it is widely used for
combinatorial optimization problems. Ant colony algorithms
are developed as heuristic methods to identify efficient paths
through a graph and have been applied to identify optimal
solutions for service composition problems. The features of ant
colony algorithms include positive feedback and local heuris-
tics. An ant colony optimization (ACO) algorithm iteratively
performs a loop containing two basic procedures. The first
is how the ants construct solutions to the problem, and the
second is how to update the pheromone trails [16]. Using
ACO algorithms to solve combinatorial optimization problems,
requires a representation of the problem and the definition
of the meaning of pheromone trails, as well as the heuristic
information. Because the results of many ACO applications
to NP-hard combinatorial optimization problems show that
the best performance is achieved when coupling ACO with
local optimizers, it is necessary to implement an efficient local
search algorithm [8], [16].

The ant colony system (ACS) is an algorithm strongly
inspired by the ant system (AS) but it differs from AS in
three main aspects [7]. First, the state transition rule provides
a direct way to balance between exploration of new edges
and exploitation of a priori and accumulated knowledge about
the problem. Second, the global updating rule is applied only
to edges which belong to the best ant path. Third, a local
pheromone updating rule is applied while ants construct a
solution.

As discussed, considering different workflow structures and
an optimized function with QoS attributes, we model the
service composition problem as an AND/OR graph. In the
graph, ants are initially positioned on the start vertex. The

task of each ant is to find a path from the start vertex to the
end vertex. If the ant arrives at an ‘AND split’ vertex, it will
clone several new ants and each ant will choose one of the
successors according to the state transition rule respectively.
If the ant arrives at an ‘OR split’ vertex, it only chooses one
of the branches with a probability, then will apply the state
transition rule to choose the successor. While finding the path,
an ant also modifies the amount of pheromone on the edges
it has passed by applying the local updating rule. Once all
ants arrive at the end vertex, the global updating rule will be
applied to modify the amount of pheromone on the edges of
the optimal path. The key to ACS for data-intensive service
composition problem is how to determine the state transition
rule, the global updating rule, the local updating rule, and the
ant replication and death rule.

A. State transition rule

When ant k arrives at vertex i, it will choose successor j
to move to by applying the rule given by (6).

j =

{
argmaxl∈Nk

i
{[τil][ηil]β}, if q ≤ q0;

J, otherwise.
(6)

where q is a random variable uniformly distributed in [0, 1],
q0(0 ≤ q0 ≤ 1) is a parameter, and J is a random variable
selected according to the probability distribution given by (7)
(with α = 1).

pkij =

⎧⎪⎨
⎪⎩

[τij ]
α[ηij ]

β

∑

l∈Nk
i

[τil]α[ηil]β
, if j ∈ Nk

i ;

0, otherwise.
(7)

where pkij represents the probability with which ant k, currently
at vertex i, chooses to go to vertex j. Nk

i is the neighborhood
of vertex i when ant k is in it, that is, the set of vertices
that ant k has not visited yet. α is a parameter to control the
influence of τij , β is a parameter to control the influence of ηij .
The neighborhood of vertex i contains all the vertices directly
connected to vertex i in the AND/OR graph, except for the
predecessor of vertex i. τij is the pheromone density on edge
(i, j). Here, ηij = U(j) which is computed according to the
local selection method as heuristic information.

B. Global updating rule

After all ants arrive at the end vertex, a global pheromone
updating rule is performed. The pheromone level is updated
by applying the global updating rule (8).

τij = (1− ρ)τij + ρΔτij (8)

where ρ(0 < ρ < 1) is the pheromone evaporation rate, and

Δτij =

{
U, if ∀(i, j) ∈ P bs ;

0, otherwise .

where U is the utility of P bs which is computed according to
(3). P bs is the best path found since the start of the algorithm.
This formula indicates the pheromone trail update, both the
evaporation and the new pheromone deposit, only applies to the
edges of P bs. There are two types of global updating rule. One
is called ‘iteration-best’ (the best path in the current iteration
of the trial), and the other is called ‘global-best’ (the best path



from the beginning of the trial). Experiments have shown that
the global-best is slightly better, it is therefore used in our
experiment.

C. Local updating rule

When building a solution (i.e., an executed path) of the
service composition problem, the ants use a local pheromone
update rule that they apply immediately after having crossed
edge (i, j) during the path construction which is shown in (9).

τij = (1− ξ)τij + ξτ0, ∀(i, j) ∈ E. (9)

where ξ(0 < ξ < 1) and τ0 are two parameters. At the begin-
ning of the search process, a constant amount of pheromone
is assigned to all the edges, namely, τij = τ0 = CP (CP is a
constant, ∀(i, j) ∈ E). The local updating rule will reduce the
pheromone trail of edge (i, j) after an ant passes it. In other
words, it allows an increase in the exploration of edges that
have not been visited yet and, in practice, has the effect that
the algorithm does not show stagnation behavior [7].

D. Ant replication and death rule

When the current vertex i of ant k is determined, and i is
an ‘AND split’ vertex which has f direct successors, ant k will
make (f − 1) copies of itself. Then ant k and the (f − 1) ants
each will choose one of the direct successor vertices of i to
move to, according to the state transition rule described in (6),
and different ants choose different successor vertices. During
the path construction, each ant uses the local updating rule to
the edge that it has passed. Ant k and all of its copies will
keep the vertices they have visited in list of ant k. When the
(f − 1) ants arrive at the ‘AND join’ vertex of i, all of them
will die. The current concrete service at the ‘AND join’ vertex
will be determined by ant k. The whole process is recursive.
All the copies of ant k construct paths using the same rule as
ant k. That is to say, a copy ant of ant k will make copies of
itself when it arrives at an ‘AND split’ vertex. All copy ants
will die when they arrive at the ‘AND join’ vertex, which pairs
with the ‘AND split’ vertex where they are replicated.

The service selection algorithm based on ACS for data-
intensive service composition is given in Algorithm 1. The time
complexity of our algorithm is O(noa ∗ ntask ∗ noc), where
noa, ntask, and noc denote the number of ants, the number
of abstract services, and the number of candidate services for
each abstract service, respectively.

V. EXPERIMENTS AND ANALYSIS

The proposed approach considers not only sequence re-
lation, but also parallel relation and switch relation between
services. In order to evaluate the performance of the proposed
algorithm, we verified it against the simulated composite
service the functional graph of which is shown in Fig. 3. The
loop structure can be unfolded by cloning the vertices involved
in the structure as many times as the maximal loop count [31].
This paper does not deal with loop relation so the maximal
loop count is 1.

Algorithm 1 Service composition selection algorithm using
AND/OR graph based on ACO
Input:
MaxIt: the maximum number of iterations;
noa: the number of artificial ants;
G = (V,E,D, start, end): the AND/OR graph;
Output:
S: a service execute path to create a composite service ;

1: S = ∅; step = 0; τ0 = CP ;
2: while step < MaxIt do
3: step=step+1;
4: set all ants at start vertex;
5: Sc = ∅;
6: for each ant k do
7: as = ∅;//candidate list for each ant
8: while ant k is not at the end vertex do
9: if ant k arrives at an ‘AND split’ vertex then

10: ant k executes ant replication and death rule;
11: else if ant k arrives at an ‘OR split’ vertex then
12: ant k chooses only one branch with a probability,

then chooses a successor according to the state
transition rule (6);

13: else
14: ant k chooses a successor according to the state

transition rule (6);
15: end if
16: update candidate list as;
17: apply the local updating rule (9);
18: end while
19: if U(as) > U(Sc) then
20: Sc = as;
21: end if
22: end for
23: when all ants arrive at end vertex, apply global updating

rule (8) to Sc;
24: if U(Sc) > U(S) then
25: S=Sc;// keep the global-best path to S
26: end if
27: end while
28: return S.

A. Test case generation

The values of parameters considered in this paper are: α =
1, β = 2, q0 = 0.9, τ0 = 0.1, CP = 0.1, ρ = 0.1, ξ = 0.1,
W = [0.8, 0.2], p1 = p2 = 0.5, noa = 10, MaxIt = 1000.
As the preferred parameter settings of the ACS algorithm for
the TSP are given in [8], we use the same parameter settings.
In Fig. 3 the ants will find Path1 and Path2.

Path1 : {AS1, AS2, AS3, AS4, AS6, AS7, AS8, AS9}
with a probability of p1=0.5;

Path2 : {AS1, AS2, AS3, AS5, AS6, AS7, AS8, AS9}
with a probability of p2=0.5.

In this paper, in order to find the solution with highest utility,
the algorithm is designed to report the branch with the highest
utility rather than the highest probability of execution. So, it
will only returns one path with the highest utility.

The performance of the ant colony algorithm depends on



the size of the data-intensive service composition problem. The
size of the problem depends on the number of abstract services
in the workflow, and the number of concrete services for each
abstract service. Thus, we generate two test groups. The first
test group includes 5 test scenarios with different numbers of
service candidates. The number of service candidates for each
abstract service ranges from 10 to 50, in increments of 10. The
number of abstract services is fixed at 9. The second test group
includes 4 test scenarios with different numbers of abstract
services. The number of abstract services is 15, 20, 25 and
30. The number of service candidates for each abstract service
is fixed at 10. This was done by increasing the number of
abstract services on the workflow of Fig. 3 with a sequential
flow structure. This two test groups are designed to test how the
running time and iteration times of the proposed algorithm will
change as the number of service candidates and the number
of abstract services change.

All test scenarios are run twenty times and the average
values are reported. The cost and response time of each service
candidate are randomly drawn from a uniform distribution of
the interval [1,10]. The access cost and transfer time of each
data set are randomly drawn from a uniform distribution of
the interval [1,10]. The transfer cost is the price to be paid
per unit of transfer time and its value is set as 1 in this paper.
The values of the access cost and transfer time of data sets,
and the values of the QoS attribute cost and response time of
service candidates will not affect the running time and iteration
times of the proposed algorithm. So their values can be in any
intervals.

B. Result analysis

The simulation results of the first test group are shown in
Fig. 4 on the next page. In Fig. 4(a) to Fig. 4(e), the blue line
denotes the utility of the best path from the beginning of the
trial, and the red point denotes the utility of the best path of
each iteration. The value of ‘GUtility’ is the utility of the best
path from the beginning of the trial and it depends on the QoS
attributes of services. Different values of QoS attributes give
different values of ‘GUtility’. That is to say, the change of
the value of ‘GUtility’ has no significance for the simulation
results. The value of ‘FRIT’ is the number of iterations when
the best utility appeared and from this iteration its value will
not change. According to the value of ‘FRIT’ in Fig. 4, as
the number of concrete services increases, the ants need more
iteration times to find the best path. Fig. 4(f) shows the effect
of the number of service candidates on the running time for
finding the best path. This figure shows the time consumption
is basically linear to the number of service candidates.

The results of the second test group are shown in Fig. 5.
According to the value of ‘FRIT’ in Fig. 5(a) to Fig. 5(d), as
the number of abstract services increases, the ants need more
iteration times to find the best path. Fig. 5(e) shows the effect
of the number of abstract services on the running time for
finding the best path. This figure shows the time consumption
is basically linear to the number of abstract services.

VI. RELATED WORK

Quite a few studies have proposed using a workflow-based
model to solve service composition problems. Bio-inspired

algorithms are one type of the main approaches. One of our
earlier studies [20] presented a survey on bio-inspired algo-
rithms for Web service composition by comparing ant colony
algorithms, genetic algorithms, evolutionary algorithms, and
particle swarm optimization algorithms. In [22], [24], [26],
[27], the authors applied an ACO algorithm to solve a Web
service composition problem. However, these studies did not
address the parallel, conditional, or loop execution of services
which are very common in business processes or workflows.
The paper [29] presented a QoS-aware Web services selection
model using an AND/OR graph, but it did not have the ant
replication and death rule to deal with AND vertices. The paper
[9] used an AND/OR graph to represent a service dependency
graph and presented its search algorithm for composite Web
services. However, the authors focused on how to construct the
graph to capture the input/output dependencies among the Web
services, and they neglected the nonfunctional characteristics
of services.

On the other hand, as we discussed earlier, data-intensive
services have become the most challenging type of applications
in service oriented computing. The data intensity and the
communication cost of mass data transfer will affect the
efficiency of data-intensive applications. The goal of our data-
intensive service provision mechanism is to find the best
providers for each elementary service and the best data-
sourcing strategies for sourcing data which cannot only satisfy
the service composer’s QoS request, but also ensure the overall
cost to use these elementary services and data is as low as
possible, while service providers and data providers are still
profiting from such an agreement. One of our earlier studies
[21] presented a bio-inspired cost minimization model for data-
intensive service provision. That paper was the first effort
to address lower cost data-intensive service composition. We
continued that work and presented an algorithm based on the
ant colony system along with the evaluation of its performance
through simulations in this paper.

VII. CONCLUSION

As explained in this paper, it is important to develop
mechanisms for selecting concrete services and data replicas
to achieve a cost-effective solution for data-intensive service
composition. We are interested in how to apply bio-inspired
approaches to optimizing the service cost, data cost, data
transfer cost, and service-composition cost in data-intensive
service provision. In this paper, the data-intensive service
composition problem is modeled as an AND/OR graph, which
is not only able to deal with sequence relations and switch
relations, but is also able to deal with parallel relations between
services. A novel service selection algorithm based on ant
colony optimization is proposed, and the performance of the
algorithm has been studied by simulations. Dynamic service-
price-setting models using non-standard pricing mechanisms
are expected to appear for composing data-intensive services.
The design of the algorithms using negotiations for data-
intensive service composition is currently under way.
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(a) Utility of each iterative course for 10
service candidates.
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(b) Utility of each iterative course for 20
service candidates.
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(c) Utility of each iterative course for 30
service candidates.
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(d) Utility of each iterative course for 40
service candidates.
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(e) Utility of each iterative course for 50
service candidates.
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Fig. 4: The results of the first test group

REFERENCES

[1] A. Bucchiarone, and L. Presti, “QoS composition of services for data-
intensive application”, International Conference on Internet and Web
Applications and Services (ICIW’ 07), pp. 46, 2007.

[2] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality of
service for workflows and Web service processes”, Web Semantics:
Sciences, Services and Agents on the World Wide Web, Vol. 1, No. 3,
pp. 281-308, 2004.

[3] M. Carman, F. Zini, L. Serafini, and K. Stockinger, “Towards an
Economy-Based Optimisation of File Access and Replication on a
Data Grid”, Proceedings of 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid, pp. 340-346, IEEE computer
society, Washington, DC, USA, 2002.

[4] F. Casati, M. Sayal, and M. C. Shan, “Developing e-services for
composing e-services”, Proceedings of 13th International Conference
on Advanced Information Systems Engineering(CSiSE), Interlaken,
Switzerland, Springer Verlag, pp. 171-186, 2001.

[5] Z. Chen, H. Wang, and P. Pan, “An approach to optimal Web service
composition based on QoS and user preferences”, Proceedings of the
2009 International Joint conference on Artificial Intelligence, pp. 96-
101, 2009.

[6] A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S. Bharathi,
G. Mehta, and K. Vahi, “Data placement for scientific applications in
distributed environments”, Proceedings of IEEE/ACM International
Conference on Grid Computing, pp. 267-274, 2007.

[7] M. Dorigo, and L. M. Gambardella, “Ant colony system: a coop-
erative learning approach to the traveling salesman problem”, IEEE

Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66,
1997.

[8] M. Dorigo, and T. Stutzle, “Ant colony optimization”, MIT Press,
Cambridge, MA, USA, 2004.

[9] Q. H. A. Liang, and S. Y. W. Su, “AND/OR Graph and Search
Algorithm for Discovering Composite Web Services ”, International
Journal of Web Services Research, Vol. 2, No. 4, pp. 46-64, 2005.

[10] Y. Li, and C. Lin, “QoS-aware service composition for workflow-
based data-intensive applications”, IEEE International Conference on
Web Services, pp. 452-459, 2011.

[11] B. Medjahed, A. Bouguettaya, and A. Elmagarmid, “Composing web
services on the semantic web”, The VLDB Journal, Vol. 12, No. 4,
pp. 333-351, 2003.

[12] M. Milenkovic, E. Castro-Leon, and J. R. Blakley, “Power-aware
management in cloud data centers”, CloudCom, LNCS 5931, pp. 668-
673, 2009.

[13] C. B. Pop, et al., “Ant-inspired Technique for Automatic Web Service
Composition and Selection”, 12th International symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, pp. 449-455,
2010.

[14] J. Shen, G. Beydoun, S. Yuan, and G. Low, “Comparison of bio-
inspired algorithms for peer selection in services composition”, IEEE
International Conference on Services Computing (SCC 2011), pp.
250-257, 2011.

[15] J. Shen, and S. Yuan, “QoS-aware peer services selection using ant
colony optimisation”, Business Information Systems Workshops, pp.
362-374. 2009.

[16] S. N. Sivanandam, and S. N. Deepa, “Introduction to genetic algo-



100 200 300 400 500 600 700 800 900 1000
0.915

0.925

0.935

0.945

0.955

Iterative Time

G
lo

ba
l B

es
t U

til
ity

GUtility=0.95184, FRIT=22

100 200 300 400 500 600 700 800 900 1000
0.915

0.925

0.935

0.945

0.955

Iterative Time

Ite
ra

tiv
e 

B
es

t U
til

ity

(a) Utility of each iterative course for 15
tasks.
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(b) Utility of each iterative course for 20
tasks.
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(c) Utility of each iterative course for 25
tasks.
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(d) Utility of each iterative course for 30
tasks.
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Fig. 5: The results of the second test group
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