
����������
�������

Citation: Saleh, H.; Mostafa, S.;

Gabralla, L.A.; O. Aseeri, A.;

El-Sappagh, S. Enhanced Arabic

Sentiment Analysis Using a Novel

Stacking Ensemble of Hybrid and

Deep Learning Models. Appl. Sci.

2022, 12, 8967. https://doi.org/

10.3390/app12188967

Academic Editor: Valentino Santucci

Received: 24 July 2022

Accepted: 1 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Enhanced Arabic Sentiment Analysis Using a Novel Stacking
Ensemble of Hybrid and Deep Learning Models
Hager Saleh 1,* , Sherif Mostafa 1 , Lubna Abdelkareim Gabralla 2, Ahmad O. Aseeri 3,*
and Shaker El-Sappagh 4,5

1 Faculty of Computers and Artificial Intelligence, South Valley University, Hurghada 1974531, Egypt
2 Department of Computer Science and Information Technology, College of Applied, Princess Nourah Bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
3 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin

Abdulaziz University, Al-Kharj 11942, Saudi Arabia
4 Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
5 Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University,

Banha 13518, Egypt
* Correspondence: hager.saleh@fcih.svu.edu.eg (H.S.); a.aseeri@psau.edu.sa (A.O.A.)

Abstract: Sentiment analysis (SA) is a machine learning application that drives people’s opinions from
text using natural language processing (NLP) techniques. Implementing Arabic SA is challenging
for many reasons, including equivocation, numerous dialects, lack of resources, morphological
diversity, lack of contextual information, and hiding of sentiment terms in the implicit text. Deep
learning models such as convolutional neural networks (CNN) and long short-term memory (LSTM)
have significantly improved in the Arabic SA domain. Hybrid models based on CNN combined
with long short-term memory (LSTM) or gated recurrent unit (GRU) have further improved the
performance of single DL models. In addition, the ensemble of deep learning models, especially
stacking ensembles, is expected to increase the robustness and accuracy of the previous DL models.
In this paper, we proposed a stacking ensemble model that combined the prediction power of CNN
and hybrid deep learning models to predict Arabic sentiment accurately. The stacking ensemble
algorithm has two main phases. Three DL models were optimized in the first phase, including
deep CNN, hybrid CNN-LSTM, and hybrid CNN-GRU. In the second phase, these three separate
pre-trained models’ outputs were integrated with a support vector machine (SVM) meta-learner. To
extract features for DL models, the continuous bag of words (CBOW) and the skip-gram models with
300 dimensions of the word embedding were used. Arabic health services datasets (Main-AHS and
Sub-AHS) and the Arabic sentiment tweets dataset were used to train and test the models (ASTD).
A number of well-known deep learning models, including DeepCNN, hybrid CNN-LSTM, hybrid
CNN-GRU, and conventional ML algorithms, have been used to compare the performance of the
proposed ensemble model. We discovered that the proposed deep stacking model achieved the best
performance compared to the previous models. Based on the CBOW word embedding, the proposed
model achieved the highest accuracy of 92.12%, 95.81%, and 81.4% for Main-AHS, Sub-AHS, and
ASTD datasets, respectively.

Keywords: machine learning; deep learning; ensemble learning; Arabic sentiment analysis

1. Introduction

Social media services such as Facebook, Twitter, LinkedIn, and others have grown
exponentially over the last decade. Companies and organizations have discovered that
these platforms may be a great source of information for interacting with and learning more
about their customers. However, quantifying a user’s overall enjoyment of a brand can
be extremely difficult due to the large number of users, posts, comments, messages, and
other forms of contact [1]. Sentiment analysis is a subfield of natural language processing

Appl. Sci. 2022, 12, 8967. https://doi.org/10.3390/app12188967 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12188967
https://doi.org/10.3390/app12188967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7758-0811
https://orcid.org/0000-0002-2520-4005
https://orcid.org/0000-0001-9863-4551
https://doi.org/10.3390/app12188967
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12188967?type=check_update&version=1


Appl. Sci. 2022, 12, 8967 2 of 25

(NLP) in which advanced data mining and machine learning models are used to measure
sentiments, emotional responses, and attitudes in a variety of domains, such as service
quality, product acceptance, price trends, and popular support of government actions and
events [2]. Arabic has several irregular forms, intricate morpho-syntactic agreement rules,
and a variety of linguistic varieties with no established writing standards. Learning stable
general models over Arabic text may be difficult without suitable processing and handling.
In terms of Sentiment Lexicons and Annotated Sentiment Corpora, Arabic Sentiment
Analysis has fewer resources than English Sentiment Analysis does. Arabic Sentiment
Analysis has garnered a lot of interest due to these challenges. (ASA) [3].

Deep learning (DL) and machine learning (ML) techniques can provide an automated
mechanism for processing and extracting valuable data and sentiments from enormous
amounts of text, and [1]. Recently, convolutional neural network (CNN) models and hybrid
models of CNN and other DL models, such as long short-term memory (LSTM), provided
significant improvements in performance in sentiment analysis [4–6]. CNN uses deep
layers such as convolutional, pooling, and fully connected layers to extract more profound
and essential features from text data. LSTM has a memory state that effectively memorizes
necessary information in the text and understands the meaning of the whole sentence. For
instance, Al Omari et al. [7] proposed a hybrid CNN-LSTM model employing word2vec
word embeddings for the binary classification of Arabic attitudes, combining the strengths
of both CNN and LSTM. Alwehaibi et al. [8] proposed a hybrid LSTM-RNN model
based on LSTM and recurrent neural network (RNN) to analyze Arabic sentiment. The
performance of the hybrid DL models can be improved by integrating more than one model
[4], constituting an ensemble. An ensemble classifier is formed by combining the results of
several classifiers to allow component models to balance out each other’s shortcomings.
In the literature on machine learning, ensemble learning techniques are receiving more
attention. However, its usage in sentiment analysis is still limited, especially for the current
literature on ensemble learning, which concentrates on homogeneous ensembles. Still,
heterogeneous ensembles based on different base classifiers and datasets are expected to
enhance the performance of the resulting ensembles. Recently, ensemble modeling has
been used as a popular technique to boost the performance of NLP models [9]. Ensemble
classifiers integrate the decisions of multiple classifiers, and the combined version of the
resulting model is expected to improve the results of each base classifier [10]. In other
words, ensemble allows learning models to alter the final ensemble model’s weights for
each base NLP system to optimize the whole model’s decisions. However, in the absence
of sufficient data, this training-based ensemble is prone to overfitting. Whether predictions
and base learners are combined using meta-learning or rule-based approaches, as well as
whether the learning process is carried out sequentially or concurrently, have a substantial
impact on the ensemble learning process [11,12]. Heterogeneous ensembles consist of
several classifiers, whereas homogeneous ensembles use repeated examples from the same
base model. Different techniques are used to increase the variance among base classifiers
in both homogeneous and heterogeneous ensembles. Heterogeneous ensembles have
many types of bias, where the combination of these biased decisions could outperform
the homogeneous ensembles if these prejudices are mutually beneficial [13]. In most
circumstances, ensemble learning methods can take one of three forms: bagging [14],
boosting [15], or stacking [16].



Appl. Sci. 2022, 12, 8967 3 of 25

Therefore, we have proposed an optimized heterogeneous ensemble stacking model
based on the best combination of CNN, hybrid CNN-LSTM, and CNN-GRU for Arabic
sentiment analysis with SVM as a meta-learner. After optimization of the resulting model,
it registered the best performance compared with other models.

Our contributions can be summarized as follows:

• We proposed three DL architectures: deep convolutional neural network (DeepCNN),
hybrid CNN-LSTM, and hybrid CNN-gated recurrent unit (GRU). A Bayesian opti-
mizer has been used to optimize the hyperparameters of these DL models.

• We proposed a heterogeneous ensemble stacking model that combined the three pre-
trained DL models of DeepCNN, hybrid CNN-LSTM, and hybrid CNN-GRU. SVM
has been used as the meta-learner to combine the outputs of the three base DL models.

• To evaluate the superiority of the proposed ensemble model, the performance of the
stacking model has been compared with the performance of several DL and classical
ML models using the three well-known Arabic datasets of Arabic health services
datasets (Main-AHS and Sub-AHS) and the Arabic sentiment tweets dataset (ASTD).

• The proposed ensemble stacking model significantly outperformed other deep learn-
ing models in terms of accuracy, precision, recall, and f1-score.

Our paper is organized as follows. The associated sentiment analysis for Arabic
models relevant to our work is described in Section 2. Section 3 summarizes the proposed
strategy and presents the proposed model. The experimental results are summarized and
discussed in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

DL has recently demonstrated its effectiveness compared to the state-of-the-art perfor-
mance of standard ML methods for sentiment analysis. To identify sentiments in SemEval
2017, ASTD, and ARSAS, the authors in [17] utilized a CNN and LSTM. They generated a
word embedding matrix using word2vec. Their model achieved the highest performance
for SemEval 2017 and ASTD datasets. In [7], for the binary classification of Arabic attitudes,
the authors suggested a hybrid CNN-LSTM model with word2vec embeddings. They
used many Arabic sentiment analysis datasets, such as Main-AHS, Ar-Twitter, and ASTD.
The hybrid CNN–LSTM model registered the highest accuracy at 79.07%. The authors
of [18] applied CNN on nine datasets, including LABR and ASTD, to analyze a binary
sentiment analysis. The dataset includes two domains: reviews and tweets. The two
types of word2vec of CBOW and Skip-Gram were used to generate the word embedding
matrix. Additionally, they used CNN on both balanced and unbalanced datasets. In [8], the
authors proposed a hybrid LSTM-RNN model based on LSTM and RNN to analyze Arabic
sentiment. They studied the effect of using different pre-trained word embeddings with DL
models. They tested their model with the AraSenTi-Tweet. In [19], the authors introduced
an Arabic language dataset about health services from Twitter. They added annotations
to tweets and pre-processed them into good and negative tweets. The authors applied
NB, SVM, LR, and CNN to the health dataset. Using character-level data, the authors [20]
deployed deep CNNs for Arabic sentiment analysis. The proposed large dataset was built
on the available Arabic sentiment analysis datasets in different domains (modern standard,
dialectal) to train networks. In addition, different ML algorithms, such as LR, SVM, and
NB, have been applied to assess the performance on a large dataset. The results show that
deep CNNs registered the highest accuracy compared to ML classifiers.

In [21], the authors investigated the bidirectional LSTM network (BiLSTM) to analyze
Arabic sentiment analysis. Six Arabic datasets were used to train and evaluate their
proposed model, the DL model and the ML model. Their proposed model achieved the
highest performance compared to the performance of DL and ML models. In [22], the
authors applied different ML algorithms and CNNs models with other feature extraction
methods. They used Main-AHS Sub-AHS heath Arabic datasets. The result showed that
CNN improved accuracy from 91 to 95% for publicly available Arabic language health
sentiment datasets.



Appl. Sci. 2022, 12, 8967 4 of 25

Ensemble models could enhance the inference power of single models. In addition,
using hybrid models as base classifiers in an ensemble could boost the performance of
hybrid models [9]. Ensemble models have been applied in different domains and achieved
better results than base models [23]. In the Arabic sentiment analysis domain, ensemble
modeling has been applied, such as in [9], where the authors proposed an ensemble model
using voting for optimizing the Arabic sentiment analysis. They applied CNN-LSTM
and the optimization method to select the best CNN and LSTM on the Arabic sentiment
tweets dataset (ASTD). The selected models are the ones achieving the highest f1-score
among other models. The authors of [4] proposed an Arabic sentiment dataset about
COVID-19-related conspiracy theories. The collected data were annotated into positive and
negative class labels. They applied RF, SVM, NB, and LR to the collected dataset and the
SMOTE technique to handle unbalanced data. Furthermore, they used the voting classifier
combining RF, SGD, SVM, BNB, and LR. The experimental results showed that applying
the ensemble model with SMOTE improved the performance. In [22], the authors studied
the effect of combining multi models (NB, SVM, and maximum entropy) using the voting
algorithm on Arabic sentiment analysis. They applied models to different stemming, such
as Khoja, ISRI, Tashaphyne, Light10, and MOTAZ. The outcomes demonstrated that the
voting algorithm delivered the best results. In [9], the authors described an ensemble model
based on CNN and LSTM that might be used to forecast the sentiment of Arabic tweets. To
obtain experimental findings, they made use of the ASTD dataset. According to the results,
the ensemble model has the best accuracy and f1-score.

Prior research employed voting ensemble learning models, hybrid models, and conven-
tional ML. Furthermore, we proposed a stacking ensemble model in a previous study [10].
In that framework, we studied the role of the RNN family, including RNN, LSTM, and
GRU, in interpreting the text data. On the other side, in the current study, we extend the
previous work by adding new features. We explore the role of increasing the diversity
of base classifiers by integrating CNN, LSTM, and GRU, which have extremely different
learning philosophies. In addition, we further explore the role of combining CNN and
LSTM in a hybrid model and CNN and GRU in a hybrid model and use these hybrid
models as a base classifier in the stacking architecture. We expect that the heterogeneity of
the base classifiers and the deep features extracted from hybrid models based on CNN is
able to enhance the learning capabilities of the resulting ensemble model.

In [24], the authors analyzed the effect of inverters on sentiment analysis of Facebook
dialectal Arabic posts. Furthermore, they studied the effect of negating words on the
sentiment polarity of a post. They used F1-score, precision, and recall to evaluate their
work. In our work, we applied ML classification algorithms, DL algorithms, hybrid DL
algorithms, and the proposed ensemble stacking models to Arabic tweets data to classify
sentiment analysis as positive or negative. We used TF-IDF and word embedding to extract
features. We evaluated models using different evaluation metrics, accuracy, precision,
recall, f1-score, and AUC.

3. Methodology

The suggested ensemble model is described in this section. It represents the essen-
tial phases in Arabic language sentiment analysis prediction. The proposed framework’s
general phases, comprising data pre-treatment, feature extraction, optimization, and classi-
fication steps, are depicted in Figure 1.



Appl. Sci. 2022, 12, 8967 5 of 25

Figure 1. The main phases of prediction Arabic sentiment analysis.

3.1. Data Pre-Processing

The following pre-processing steps are used to prepare the datasets:

• Cleaning Tweets: this step includes removing HTML tags, URLs, and non-Arabic char-
acters.

• Tokenizing: this step divides the text into parts.
• Pre-processing by removing stop words is a critical step in text pre-processing of senti-

ment analysis [25,26] because stop words are a collection of words that do not change
the meaning of the text or do not hold information, such as prepositions, conjunctions,
and articles. Furthermore, they are used to eliminate unimportant words, allowing al-
gorithms to focus on the important words instead. We remove stop words using a stop
words list, for example, some words. ø




	
YË@ - ¡

�
®

	
¯ - A

	
JË - úÍ@


K. - 	á« - B@ - øYË -

�
IJ
k

- ½Ë
	
X - É

�
JÓ

• Stemming: the main job of the stemmer is to return the word to its root.
• Removing emojis.

3.2. Feature Extraction

• For classical ML models, the term frequency/inverse document frequency with N-
gram is used to build the feature matrix.

– N-grams are commonly employed in text mining and natural language process-
ing. They are essentially a group of co-occurring words within a particular frame,
and computing the n-grams normally moves one word forward, while in more
complex cases, it can move N-words forward. N-grams are utilized to keep the
context of newly acquired words. It employs a collection of sequentially ordered
words based on the value of the N variable. If N = 1, it might be a unigram, and
a bigram if N = 2 [27].

– TF-IDF is a statistical measure used to weigh the importance of each word in
the corpus. It is a feature extraction method used for classification and recom-
mendation in NLP. The TF-IDF implementation process is divided into two parts.
Begin by counting how many times each term appears in the document or tweet.
The frequency of each word occurrence (IDF) was then calculated over all papers
or tweets. The less important the term, the lower the TF-IDF value. The bigger
TF-IDF values, on the other hand, indicate that there are fewer common words
in the corpus and therefore are significant [28,29].

• For DL models, word embedding is used to present the word matrix. Word embedding
is a method for transforming words in textual input into vectors. It is superior to
traditional bag-of-words encoding techniques, which use enormous sparse vectors to
encode a whole vocabulary by scoring each word in a vector. The basic idea behind
word embedding is that words similar to each other will be adjacent in space. The
word’s “embedding” refers to its location in the learned vector space [30]. Word



Appl. Sci. 2022, 12, 8967 6 of 25

embedding can also be taught as part of a deep learning model, which takes longer
but can be customized to a specific training dataset. Each word is represented as a
multidimensional unique feature vector in the vector space of a selected dimension
in a word embedding. The fundamental idea is to put feature vectors for frequently
occurring words in close proximity in space [31]. We used the AraVec word embed-
ding, which is a Python-based open-source project that seeks to provide robust and
free word embedding models to the Arabic NLP research community through the
usage of the pre-trained distributed word representation. Words are represented in
a continuous space as vectors, with numerous syntactic and semantic links encoded
between them [32,33]. We used two approaches of AraVec, which are the CBOW and
the skip-gram models with 300 dimensions. The CBOW model learns embeddings
by predicting the middle word in a sequence based on the words in that sequence,
regardless of their order in the sentence. The skip-gram Model seeks to predict the
surrounding contextual words given the core word.

3.3. Hyperparameter Optimization

Hyperparameter optimization is the process of determining the optimal collection of
values for hyperparameters for ML and DL models. ML algorithms are improved by grid
search and cross-validation, while a Bayesian optimizer is used to optimize the architecture
and the hyperparameters of DL models. We use the standard KerasTuner implementation
for the Bayesian optimizer.

• Grid Search: The hyperparameters’ ideal values are obtained via a tuning procedure.
When the Model had several hyperparameters, it became required to search in a multi-
dimensional space for the best combination of values for the hyperparameters [34,35].
Grid search is a hyperparameter tuning method that divides the hyperparameter
domain into distinct grids and obtains the optimal combination of hyperparameter
values.

• An evaluation method for learning algorithms known as cross-validation separates
data into two parts: one for training models while the other is for model verifica-
tion [36]. Cross-validation includes a single parameter, k, that indicates how many
groups a given data sample should be divided into, which is why it is also known
as k-fold cross-validation. Cross-validation is seen to be a strong preventive tech-
nique against overfitting because the first fold is utilized for the validation set, while
the other k-1 folds are provided to the learning system to ensure that the model is
estimated using data that were not seen during training [37].

• The KerasTuner hyperparameter optimization system includes the hyperband,
Bayesian optimization, and random search algorithms. The optimal hyperparam-
eter values for the models are found by employing one of the search algorithms after
the search space is set up using a define-by-run syntax [38]. Hyperparameters are
variables that govern the model’s topology and training process and remain constant
throughout the training phase, affecting the model’s performance. There are two sorts
of hyperparameters: process hyperparameters, which impact the quality and speed
of the learning algorithm, and model hyperparameters, which control the number
and breadth of hidden layers in the model [39]. For sophisticated models, the number
of hyperparameters can be considerably expanded, making manual tuning difficult,
and underscoring the need for the techniques. In our work, we optimized some of
the values of parameters set for DeepCNN, CNN-LSTM, and CNN-GRU, as shown
in Table 1.



Appl. Sci. 2022, 12, 8967 7 of 25

Table 1. Range of possible values for hyperparameters of DeepCNN, CNN-LSTM, and CNN-GRU
DL models.

Parameters Values

Num_filters [64, 128, 256, 512]

Kernel_size [2, 3, 4, 5]

Pool_Size [2, 3, 4, 5]

LSTM_Unit Range (50, 1000)

GRU_Unit Range (50, 1000)

Dense_Unit Range (50, 1000)

learning_rate Between 1 × 10−2 and 1 × 10−7

3.4. Machine Learning Algorithms

We used different ML algorithms with TF-IDF, unigram, and bigram. ML algorithms
are described in the following discussion.

• Logistic regression (LR): Predictions using logistic regression result in discrete values
that are best suited for binary categorization. When determining whether or not an
event will occur, there are only two options: it will occur or not occur in the binary
classifications or even in multi-class classification, and the threshold has to be always
specified to distinguish between them [40]. The logistic function (transformation func-
tion) or logistic curve (sigmoid curve) is a typical S-shaped curve with the equation,
where x is the sigmoid’s midpoint, L is the curve’s peak value, and k is the steepness
of the curve or the logistic growth rate. The usual name for the typical logistic function
is the sigmoid, which has L = 1, k = 1, and x0.

f (x) =
L

1 + e−k(x−x0)
(1)

As a result, an S-curve emerges. The default class is given a set of probabilities as a
result of logistic regression different from linear regression, where output is produced
straight away. The outcome is between 0 and 1 because it is a probability. The y-value
is derived by log converting the x-value

f (x) =
1

1 + e−x (2)

using the logistic function [41]. After that, a threshold is used to turn the probability
into a binary category.

• Naïve Bayes (NB) determines whether the existence of a particular feature in a given
class is independent of the existence of any other feature. The Bayes Theorem is used
to find the probability of an event occurring in the case that the other event has already
occurred [42]. Given our prior knowledge (d), Bayes’ theorem is used to assess the
probability of a hypothesis (h) being true:

P(b | d) = (P(d | h)P(h))/P(d) (3)

where P(h/d) denotes past probability. P(d/h) = likelihood of data d given data dP(h)
is the prior probability of a class if hypothesis h is true, the chance that hypothesis
“h” is right (regardless of the evidence), and P(d) is the predictor’s prior probability.
Probability of the data (irrespective of the hypothesis). The multinomial model and
Bernoulli model are two distinct techniques to build up Naive Bayes [43]. The docu-
ments are the classes that are handled as a separate “language” in the multinomial
model’s estimate. Bernoulli-NB (Bernoulli Naive Bayes) is a discrete data model that
works with occurrence counts and is designed for Boolean/binary characteristics.



Appl. Sci. 2022, 12, 8967 8 of 25

• Random forest (RF) takes a group of weak learners and combines them to build a
stronger classification predictor [44]. The random forest tree’s main purpose is to use
a learning algorithm to merge numerous base-level predictors into a single effective
and resilient predictor. In order to classify a new object relying on its attributes, each
tree gave a classification and said that the tree “votes” for that class [45]. In the case of
regression, the forest picks the category with the most votes (across all forest trees)
and takes the average of outputs from different trees. The forest classifiers are fitted
using two arrays, one with training data and the other with the goal values of the
testing data while creating the random forest tree [46].

• A subset of the supervised learning algorithm family is the Decision Tree (DT) algorithm.
A DT is used to develop a training model that can predict the class or value of the target
variable by learning fundamental decision rules from prior data, which are the training
data. DT has a tree shape structure with internal branches that represent the test
outcome, while the leaves or terminal nodes have the class label. The source set is
divided into subgroups using an attribute value test, and the result is a trained tree.
Recursive partitioning is the process of repeating this action for each derived subset [47].

• KNN is a Supervised ML algorithm [48] which classify data based on similarity through
comparing the new case or set of data to the existing cases to place it in the category
that is most like the existing categories [49]. As a result, the KNN can swiftly classify
new data as it comes in. KNN saves the dataset and then executes an action on it during
classification instead of immediately learning from the training set. The KNN approach
saves the dataset during the training phase and, when new data is received, classifies
it into a category based on the Euclidean distance of the K number of neighbors highly
similar to the new data [50].

3.5. Deep Learning Algorithms

We proposed three DL models, deep convolutional neural networks (DeepCNN),
hybrid CNN-LSTM based on CNN and LSTM, and hybrid CNN-GRU based on CNN and
GRU. The architectures of the three models are shown in Figure 2. Each model is described
in detail as follows.

• The DeepCNN model includes different layers: the embedding layer, three CNN
layers, two MaxPooling layers, Global MaxPooling, flatten, fully connected, and
output layers.

– The first layer utilized the embedding layer as a pre-processing step to turn the
vector representation into a fixed-sized denser vector representation [51]. It is
implemented in the Keras library [52]. Input-dim, output-dim, and input-length
are the three parameters that are employed. Input-dim provides the vocabulary
size of the dataset, output-dim describes the vector space in which words will be
embedded, and input-length describes the length of input sequences. Because
both the CBOW and the skip-gram Model are 300 d vectors long, we set the
output-dim to 300, the input-dim to 20,000, and the input length to 140.

– The multi-layer neural network known as convolutional neural networks (CNN)
is an enhancement of the error backpropagation network [53]. It has a feature
map and a convolution filter (kernel). The convolution filter is applied to the
input word matrix to create a feature map identifying significant input data
patterns. The base of the convolutional operation is the kernel function. Feature
extraction is completed by sliding the kernel from top to bottom and from left to
right in the input matrix. Each filter also makes use of the rectified linear unit
(ReLU) activation function [54] to recognize various aspects of the news.

– The max-pooling layer down samples the feature maps to be more resilient to
the probable changes of a feature’s position in the text by recapping the feature’s
presence in patches of the feature map. Calculate the maximum value for each
feature map patch.



Appl. Sci. 2022, 12, 8967 9 of 25

– The two-dimensional arrays of the combined feature maps are flattened into a
single, lengthy continuous linear vector using the flatten layer [51].

– The fully connected layer is a dense and deeply connected layer compared to
its preceding layer and changes the dimension of the output by implementing a
vector-matrix multiplication.

– The output layer uses the output of the fully linked layer to determine if the
tweets are positive or negative. In this layer, the ADAM optimizer [55] was
employed, and the activation function is sigmoid [56].

• The embedding layer, CNN and MaxPooling layers, long short-term memory (LSTM),
fully linked layer, and output layer are all components that constitute the hybrid
CNN-LSTM model.
LSTM is a recurrent neural network dependent on DL technology. LSTM is an im-
proved version of RNN that differs from it in one important way: its architecture
incorporates a memory cell at the top that allows for efficient information transmission
from one instance to the next. In comparison to RNN, it can recall a large amount of
information from previous states while avoiding the vanishing gradient problem [57].
By using a novel additive gradient structure that gives direct access to forgotten gate
activations, LSTMs are able to tackle the vanishing gradient issue. By often changing
the gates at each stage of the learning process, the network may exploit the error
gradient to encourage desired behavior. A valve is used to add information to or
remove it from the memory cell. The LSTM receives an input from the hidden layer of
the current time instance and output from the hidden layer of the prior time instance.
These two pieces of data pass via a number of network activation functions and valves
before exiting at the output. The LSTM has three gates: an input gate, an output gate,
and a forget gate. The forget gate and the input gate, as depicted in Figure 3, select
information to be cleaned and appended to the cell state. The cell state can be updated
after these two points are known. Finally, the output gate determines the network’s
final output [57].

Figure 2. The architecture of the proposed ensemble model.



Appl. Sci. 2022, 12, 8967 10 of 25

Figure 3. LSTM representation.

• The hybrid CNN-GRU model includes the embedding layer, CNN layers, MaxPooling
layers, gated recurrent unit (GRU), fully connected layer, and output layer. The GRU
model is described in detail in the following.
GRU was designed to overcome the long-short dependence problem by removing
and inflating gradients. As a result, GRU is designed to operate with sequential data
that display patterns across time increments, such as time-series data. Because GRU’s
architecture is simpler than that of LSTM, its training speed is slightly faster than that
of LSTM. The quantity of data that should be added to the next state cell is specified by
the update gate. More information is transferred to the next state cell when the update
gate value is larger [58]. The reset gate controls how much prior data are deleted.
As a result, some information generated in the previous cell may be disregarded or
forgotten as the reset gate value changes. Therefore, the update gate is responsible
for ensuring that valuable memory is kept so that the next state may be passed on.
This is highly beneficial since the model can select duplicating all previous data while
avoiding vanishing gradients. The reset gate alters the manner in which new data
are stored in previously recorded memory [59]. The GRU operation flow is depicted
in Figure 4.

Figure 4. Representation for GRU [59].

3.6. The Proposed Ensemble Model

Instead of employing a single model, the ensemble approaches improve model accu-
racy by mixing numerous models. The combined models increase the outcome’s accuracy
considerably [60]. A stacking ensemble is an ensemble method in which a new model
learns how to blend predictions from numerous existing models as best as possible. It
combines predictions from a number of different trained models [61]. CNN models and
hybrid models of CNN and other DL models, such as long short-term memory (LSTM),
provided significant improvements in performance in sentiment analysis [4,5]. CNN uses
different deep layers to extract more deep and important features from text data. LSTM
has a memory state that is effective at memorizing important information in the text and
understanding the meaning of the whole sentence. Therefore, we proposed an optimized
heterogeneous ensemble stacking model based on the best combination of CNN, hybrid
CNN-LSTM, and CNN-GRU for Arabic sentiment analysis with SVM as a meta-learner. In
our work, our model is developed in many steps, as shown in Figure 2.



Appl. Sci. 2022, 12, 8967 11 of 25

• The pre-trained models of DeepCNN, CNN-LSTM, and CNN-GRU that are described
in Section 3.5 are loaded, and all layers of the model are frozen without the output lay-
ers.

• The output prediction of the training set for each pre-trained model are combined in
the training stacking. Then, the stacking is used to train and optimize the meta-learner
(SVM in our case). SVM as a meta-learner is optimized using grid search.

• The output predictions of the testing set for each pre-trained model are combined in
the testing stacking. Then, the testing stacking is used to evaluate the meta-learner
(SVM) using accuracy, precision, recall, f1-score and ROC.

Three datasets were divided into two parts: 80% training and 20% testing. Models
were optimized using the training set. To extract features and generate feature matrices
for DL models, CBOW and SkipGram word embedding were utilized. The final values of
each parameter of DeepCNN, CNN-LSTM and CNN-GRU were applied with CBOW and
SkipGram word embedding for each dataset, as shown in Tables 2 and 3, respectively.

Table 2. Values of parameters after applying DeepCNN, CNN-LSTM and CNN-GRU with CBOW.

Models Parameters Values for Main-AHS
Dataset

Values for Sub-AHS
Dataset Values for ASTD Dataset

CNN

Num_filters [256, 128, 128] [128, 256, 256] [256, 128, 128]

Kernel_size [4, 5, 2] [4, 5, 4] [3, 5, 4]

Pool_Size [4, 5, 3] [2, 4] [2, 5]

Dense_Unit 300 150 500

learning_rate 0.0012 0.00152 0.0007

CNN-LSTM

Num_filters 128 256 256

Kernel_size 4 4 3

Pool_Size 5 2 2

LSTM_Unit 400 500 550

Dense_Unit 800 700 300

learning_rate 0.0012 0.0025 0.0046

CNN-GRU

Num_filters 256 64 128

Kernel_size 5 3 5

Pool_Size 2 3 2

GRU_Unit 950 150 250

Dense_Unit 150 900 300

learning_rate 0.0012 0.0059 0.0021



Appl. Sci. 2022, 12, 8967 12 of 25

Table 3. Values of parameters after applying DeepCNN, CNN-LSTM and CNN-GRU models with
SkipGram.

Models Parameters Values for Main-AHS
Dataset

Values for Sub-AHS
Dataset Values for ASTD Dataset

CNN

Num_filters [256, 256, 512] [128, 128, 500] [128, 256, 512]

Kernel_size [5, 4, 4] [5, 5, 5] [2, 5, 5]

Pool_Size [2, 4] [2, 4] [2, 5]

Dense_Unit 500 300 400

learning_rate 0.0012 0.0014 0.00304

CNN-LSTM

Num_filters 64 512 200

Kernel_size 5 5 2

Pool_Size 3 2 2

LSTM_Unit 200 600 200

Dense_Unit 450 680 600

learning_rate 0.00525 0.00051 0.0007

CNN-GRU

Num_filters 64 64 128

Kernel_size 3 5 5

Pool_Size 5 3 4

GRU_Unit 350 450 100

Dense_Unit 200 870 950

learning_rate 0.0054 0.00142 0.0013

4. Experiments Results

This section describes the utilized datasets, evaluation metrics, experimental setup,
and the results.

4.1. Datasets

We used three databases.

4.1.1. Arabic Health Services Dataset (Main-AHS)

The Main-AHS dataset was collected from Twitter about healthcare services [62]. Main-
AHS is classified as either 502 positive classes or 1231 classes; therefore, it is an unbalanced
dataset. The Main-AHS includes two columns: text and class label. There are 2026 rows in
the dataset. It does not have missing values. It is classified into 628 positive or 1398 classes;
therefore, it is an unbalanced dataset. The Main-AHS dataset was divided into two parts:
training and testing. The training set includes 1118 negative tweets and 502 positive tweets.
The testing set includes 280 negative tweets and 126 positive tweets.

4.1.2. Arabic Health Services Dataset (Sub-AHS Dataset)

Sub-AHS is a subset of the Main-AHS dataset [63]. It includes two columns: text
and class label. There are 1733 rows in the dataset. It does not have missing values. It
is classified into 502 positive or 1231 classes; therefore, it is an unbalanced dataset. The
sub-AHS dataset was divided into two parts: training and testing. The training set includes
985 negative tweets and 401 positive tweets. The testing set includes 246 negative tweets
and 101 positive tweets. The total tweets are 1732.

4.1.3. Arabic Sentiment Tweets Dataset (ASTD)

The ASTD dataset was gathered from Twitter and is separated into four categories:
objective, subjective negative, subjective positive, and subjective mixed [64]. In our paper, of



Appl. Sci. 2022, 12, 8967 13 of 25

the selected tweets, 1642 were positive and 777 were negative; therefore, it is an unbalanced
dataset. The total number of rows is 2419. It does not have missing values. The ASTD
dataset was then divided into two parts: training and testing. The training set includes
1294 negative tweets and 641 positive tweets. The testing set includes 280 negative tweets
and 136 positive tweets.

4.2. Evaluating Models

We used different measurement methods: accuracy, precision, recall, f1-score AUC,
and ROC are used to evaluate the performance of the proposed model and DL and ML
models. Each one is defined as follows:

Accuracy is calculated as the percentage between the correct predictions and the total
number of tweets.

Accuracy =
TP + TN

TP + FP + TN + FN
. (4)

Precision is calculated as the percentage of positive tweets that are rightly classified
from the total number of positive tweets.

Precision =
TP

TP + FP
(5)

Recall is calculated as the percentage of positive tweets that are rightly classified from
the total number of tweets.

Recall =
TP

TP + FN
(6)

F1-score is the weighted average of precision and recall

F1-score =
2 · precision · recall
precision + recall

(7)

where TP stands for the amount of positively predicted sentences that were correctly
made, FP for negatively predicted sentences that were incorrectly made, TN for positively
anticipated negative sentences that were correctly made, and FN for positively predicted
sentences that were correctly made.

Furthermore, the true positive rate (TPR) and false positive rate (FPR) are plotted
against one other at different threshold levels to create the receiver operating characteristic
curve (ROC) [65]. Additionally, it maps the classification findings from the most favorable
to the least favorable [66]. We also computed the area under the curve (AUC). AUC, where
sp is the number of positive records and np, nn are the numbers of positive and negative
records, respectively, evaluates how well the model can distinguish between models [66].

sp − np + n(n+1)/2

npnn
(8)

4.3. Experimental Setup

Google Colab with GPU was used to run the experiments. DeepCNN, hybrid CNN-
LSTM, and hybrid CNN-GRU models were implemented using Keras and were optimized
using the KerasTuner. The Scikit-learn was used to create ML models, which were then
optimized via grid search. Each dataset was divided into an 80% training set and a 20%
testing set. Models were optimized and trained on a training set before being tested on a
testing set. The results for every model for the testing set were recorded.

Several experiments were carried out to discover the best parameters for DeepCNN,
CNN-LSTM, and CNN-GRU models using KerasTuner. The datasets were divided into
two parts: 80% training and 20% testing. Models were optimized using the training set. To
extract features and generate feature matrices for DL models, CBOW and SkipGram word
embedding were utilized.



Appl. Sci. 2022, 12, 8967 14 of 25

4.4. Results

This section compares the performance of the proposed model to classical ML and
other DL models. It also displays the results of the proposed model for the three datasets of
Main-AHS, Sub-AHS, and ASTD. The results are expressed in the form of accuracy, recall,
precision, f1-score, and ROC curve.

4.4.1. The Performance Results of Models for Main-AHS Dataset

This section presents the performance results of three approaches applied to the Main-
AHS dataset. The first approach is the ML models; RF, DT, LR, and KNN were applied with
TF-IDF and Unigram, bi-gram. The second approach is the DL models, DeepCNN, CNN-
LSTM, and CNN-GRU were applied with SkipGram and CBOW word embedding. The
third approach is the proposed model. Table 4 shows the values of four metrics, including
accuracy, precision, recall, and f1-score of the testing results for three approaches.

For ML models, LR with unigram had the highest performance (85.96% for accuracy,
86.41% for precision, 85.96% for recall, 85.13% for f1-score), while KNN with Bi-gram
had the lowest (68.97% for accuracy, 47.56% for precision, 68.97% for recall, and 56.3%
for f1-score). RF with unigram registered the second-highest result (83.74% for accuracy,
84.43% for precision, 83.74% for recall, and 82.47% for f1-score).

Table 4. The performance results of models for the Main-AHS dataset.

Approaches Models Feature Extraction Method
Testing Performance

Accuracy Precision Recall F1-Score

ML approach

KNN
Unigram 82.02 83.1 82.02 80.22

Bi-gram 68.97 47.56 68.97 56.3

DT
Unigram 79.56 79.35 79.56 79.44

Bi-gram 77.09 76.25 77.09 75.25

LR
Unigram 85.96 86.41 85.96 85.13

Bi-gram 78.33 77.63 78.33 76.82

NB
Unigram 82.02 85.29 82.02 79.5

Bi-gram 82.02 82.38 82.02 80.57

RF
Unigram 83.74 84.43 83.74 82.47

Bi-gram 78.08 78.32 78.08 75.53

DL approach

Deep CNN

SkipGram

89.41 89.49 89.41 89.44

CNN-LSTM 90.38 90.36 90.38 90.37

CNN-GRU 90.89 91.08 90.89 90.95

Deep CNN

CBOW

90.64 90.74 90.64 90.68

CNN-LSTM 91.38 91.31 91.38 91.27

CNN-GRU 91.02 91.02 91.02 91.02

The proposed ensemble model
Stacking LR SkipGram 91.63 91.56 91.63 91.57

Stacking LR CBOW 92.12 92.16 92.12 92.14

DL models showed an improvement in terms of accuracy, precision, recall, and f1-
score when CBOW word embedding was applied. CNN-LSTM with CBOW achieved
the highest performance (91.38% for accuracy, 91.31% for precision, 91.38% for recall, and
91.27% for f1-score), and it improved accuracy by 5.42%, precision by 4.9%, recall by 5.42%,
and f1-score by 6.14% compared to LR with the unigram model. DeepCNN with SkipGram
produced the lowest performance: 89.41% for accuracy, 89.49% for precision, 89.41% for
recall, and 89.44% for f1-score).



Appl. Sci. 2022, 12, 8967 15 of 25

We noticed that the classification performance of the proposed model with CBOW
improved accuracy by 0.74%, precision by 0.85%, recall by 0.74%, and f1-score by 0.87%
compared to CNN-LSTM with CBOW.

Additionally, Figure 5 presents ROC curve and AUC scores of ML, DL models, and
the proposed model for the Main-AHS dataset. The proposed model with CBOW word
embedding achieved the highest AUC scores at 91. ML models with BI-gram have the
lowest AUC scores at 50, 67.421, 69.881, 67.302 for KNN, DT, LR, and RF, respectively,
compared to DL models and the proposed models. The proposed model registers the
second-best AUC score with SkipGram word embedding at 90.

Figure 5. The ROC curve and AUC scores for the Main-AHS dataset.



Appl. Sci. 2022, 12, 8967 16 of 25

Overall, the proposed model with CBOW word embedding achieved the highest
performance compared to ML models and DL models, and all evaluation metrics are
consistent: accuracy, precision, recall, f1-score, and AUC.

4.4.2. The Performance Results of Models for Sub-AHS Dataset

This section presents the performance results of the three approaches applied to the
Sub-AHS dataset. The first approach is ML models; RF, DT, LR, and KNN were applied
with TF-IDF and Unigram, bi-gram. The second approach is DL models; DeepCNN, CNN-
LSTM, and CNN-GRU were applied with SkipGram and CBOW word embedding. The
third approach is the proposed model. Table 5 shows the values of four metrics, including
accuracy, precision, recall, and f1-score, of the testing results for the three approaches.

For ML models, LR with unigram had the highest performance (85.96% for accuracy,
86.41% for precision, 85.96% for recall, and 85.13% for f1-score), while KNN with Bi-gram
had 68.97% for accuracy, 47.56% for precision, 68.97% for recall, and 56.3% for f1-score).
RF with unigram registered the second-highest result (83.74% for accuracy, 84.43% for
precision, 83.74% for recall, and 82.47% for f1-score).

For DL models, DeepCNN with CBOW achieved the highest performance (91.38% for
accuracy, 91.31% for precision, 91.38% for recall, and 91.27% for f1-score), and it improved
accuracy by 5.42%, precision by 4.9%, recall by 5.42%, and f1-score by 6.14% compared to
LR with the unigram model. DeepCNN with SkipGram reached the lowest performance
(89.41% for accuracy, 89.49% for precision, 89.41% for recall, and 89.44% for f1-score).

We noticed that the classification performance of the proposed model with CBOW
improved accuracy by 0.74%, precision by 0.85%, recall by 0.74%, and f1-score by 0.87%
compared to CNN-LSTM with CBOW.

Overall, we can see that the proposed model achieved the highest result compared to
ML models and DL models.

Table 5. The performance results of models for the Sub-AHS dataset.

Approaches Models Feature Extraction Method
Testing Performance

Accuracy Precision Recall F1-Score

ML approach

KNN
Unigram 79.83 82.32 79.83 76.31

Bi-gram 70.89 50.26 70.89 58.82

DT
Unigram 83.0 82.86 83.0 82.92

Bi-gram 80.12 80.04 80.12 77.97

LR
Unigram 87.9 88.29 87.9 87.19

Bi-gram 82.71 82.69 82.71 81.33

NB
Unigram 80.69 84.15 80.69 77.24

Bi-gram 83.29 83.14 83.29 82.13

RF
Unigram 86.17 86.96 86.17 85.06

Bi-gram 81.56 82.1 81.56 79.5

DL approach

Deep CNN

SkipGram

93.08 93.13 93.08 93.1

CNN-LSTM 93.66 93.61 93.66 93.6

CNN-GRU 93.20 93.30 93. 20 93.30

Deep CNN

CBOW

94.24 94.21 94.24 94.22

CNN-LSTM 93.37 93.34 93.37 93.28

CNN-GRU 93.66 93.61 93.66 93.6

The proposed ensemble model
Stacking SVM SkipGram 94.95 94.9 94.95 94.9

Stacking SVM CBOW 95.81 96.06 95.81 95.67



Appl. Sci. 2022, 12, 8967 17 of 25

Additionally, Figure 6 presents ROC curve and AUC scores of ML, DL models, and the
proposed model for the Sub-AHS dataset. The proposed model with CBOW and SkipGram
word embedding and DEEPCNN achieved the highest AUC scores of 93. ML models with
BI-gram have the lowest AUC scores of 50, 69.546, 73.507, 72.136 for KNN, DT, LR, and RF,
respectively, compared to DL models and the proposed models.

Overall, the proposed model with CBOW word embedding achieved the highest
performance compared to ML models and DL models, and all evaluation metrics are
consistent: accuracy, precision, recall, f1-score, and AUC.

Figure 6. The ROC curve and AUC scores for the Sub-AHS dataset.



Appl. Sci. 2022, 12, 8967 18 of 25

4.4.3. The Performance Results of Models for ASTD Dataset

This section presents the performance results of the three approaches applied to the
ASTD dataset. The first approach is ML models; RF, DT, LR, and KNN were applied with
TF-IDF and Unigram, bi-gram. The second approach is the DL models, where DeepCNN,
CNN-LSTM, and CNN-GRU were applied with SkipGram and CBOW word embedding.
The third approach is the proposed model. Table 6 shows the values of four metrics,
including accuracy, precision, recall, and f1-score of testing results for the three approaches.

For ML models, LR with unigram had the highest performance (74.79% for accuracy,
72.65% for precision, 74.79% for recall, 70.35 % for f1-score), while DT with Unigram had
the lowest (56.61% for accuracy, 63.34% for precision, 56.61% for recall, 58.69% for f1-score).
NB with unigram registered the second-highest result (73.55% for accuracy, 70.86% for
precision, 73.55% for recall, 69.86% for f1-score).

DL models showed an improvement in accuracy, precision, recall, and f1-score com-
pared to ML algorithms. CNN-LSTM with SkipGram achieved the highest performance
(78.51% for accuracy, 79.75% for precision, 78.51% for recall, 78.97% for f1-score), and it
improved accuracy by 3.72%, precision by 7.1%, recall by 3.72%, and f1-score by 8.62%
compared to LR with unigram. DeepCNN with SkipGram reached the lowest performance
(71.28% for accuracy, 74.73% for precision, 71.28% for recall, 72.36% for f1-score).

We noticed that the classification performance of the proposed model improved
accuracy by 2.89%, precision by 0.94%, recall by 2.89%, and f1-score by 1.19% compared to
CNN-LSTM with SkipGram.

Overall, we can see that the proposed model achieved the highest result compared to
ML models and DL models.

Table 6. The performance results of models for the ASTD dataset.

Approaches Models Feature Extraction Method
Testing Performance

Accuracy Precision Recall F1-Score

ML approach

KNN
Unigram 71.9 51.7 71.9 60.15

Bi-gram 71.9 51.7 71.9 60.15

DT
Unigram 56.61 63.34 56.61 58.69

Bi-gram 71.9 66.43 71.9 63.46

LR
Unigram 74.79 72.65 74.79 70.35

Bi-gram 71.69 65.71 71.69 63.33

NB
Unigram 73.55 70.86 73.55 69.86

Bi-gram 72.31 68.07 72.31 63.71

RF
Unigram 64.67 64.91 64.67 64.79

Bi-gram 71.9 66.36 71.9 63.17

DL approach

Deep CNN

SkipGram

71.28 74.73 71.28 72.36

CNN-LSTM 78.51 79.75 78.51 78.97

CNN-GRU 77.69 79.5 77.69 78.29

Deep CNN

CBOW

76.86 78.71 76.86 77.49

CNN-LSTM 78.1 78.41 78.1 78.24

CNN-GRU 78.1 79.35 78.1 78.56

The proposed ensemble model
Stacking SVM SkipGram 80.17 79.52 80.17 79.71

Stacking SVM CBOW 81.4 80.69 81.4 80.16

Additionally, Figure 7 presents ROC curve and AUC scores of ML, DL models, and the
proposed model for the ASTD dataset. The proposed model with CBOW word embedding



Appl. Sci. 2022, 12, 8967 19 of 25

achieved the highest AUC scores at 77. ML models with Bi-gram have the lowest AUC
scores of 50, 52,240, 52.096, 52.527 and 52.383 for KNN, DT, LR, NB, and RF, respectively,
compared to DL models and the proposed models. The proposed model registers the
best-second AUC score with SkipGram word embedding of 75.

Overall, the proposed model with CBOW word embedding achieved the highest
performance compared to ML models and DL models, and all evaluation metrics are
consistent: accuracy, precision, recall, f1-score, and AUC.

Figure 7. The AUC score for the ASTD dataset.



Appl. Sci. 2022, 12, 8967 20 of 25

4.5. Discussion

Figures 8–10 show the best performing models of ML, DL and the proposed models
for each of the three datasets. The best performing model from ML algorithms is the LR
for the three datasets. The hybrid CNN-LSTM model achieved the best results from the
optimized DL models. These models are compared with the proposed stacking ensemble
model. We can see that the proposed models with CBOW for all datasets produced the
highest results compared to ML and DL models. For the Main-AHS dataset, the proposed
model with CBOW has obtained the highest terms of performance at accuracy = 92.12%,
Precision = 91.31%, Recall = 91.38%, and f1-score = 91.27%. While LR with Unigram has the
worst terms of performance at accuracy = 85.96% , Precision = 86.41%,Recall = 85.96%, and
f1-score = 85.13%. For the Sub-AHS dataset, the proposed model with CBOW has obtained
the highest terms of performance accuracy = 95.81%, Precision = 96.06%, Recall = 95.81%,
and f1-score = 95.67%. LR with Unigram has the worst terms of performance accuracy
= 87.9%, Precision = 88.29% of, Recall = 87.9% of, and f1-score = 87.19%. For the ASTD
dataset, the proposed model with CBOW has obtained the highest terms of performance at
accuracy = 81.4%, Precision = 80.69%, Recall = 81.4%, and f1-score = 80%. LR with Unigram
has the worst terms of performance at accuracy = 74.79%, Precision = 72.65%, Recall =
74.79%, and f1-score = 70.35%.

Figure 8. The best models for the Main-AHS dataset.

The proposed model is compared with the existing literature for the three datasets
in Table 7.

Comparing the proposed model with the existing models proved that our model
improved the performance of other approaches. For comparison with the authors who
used the ASTD dataset in [9], the accuracy of CNN-LSTM was registered as 65.05%, and
the f1-score of CNN-LSTM was registered as 64.46%. Performance in [17] for CNN-LSTM
was registered as 66% for accuracy, 62% for f1-score, and 66% for recall. The accuracy of
CNN-LSTM was 79.18% in [7]. In [18], the accuracy of CNN was registered as 79.07%.
In [9], the authors used an ensemble model using voting based on CNN-LSTM, which was
registered as 64.46% for f1-score. In [21], the Bi-LSTM was registered as 79.25% for accuracy
and 76.83% for f1-score.



Appl. Sci. 2022, 12, 8967 21 of 25

Figure 9. The best models for the Sub-AHS dataset.

Figure 10. The best models for the ASTD dataset.

For Main-AHS, an accuracy of 88% was obtained in [7]. In [21], Bi-LSTM was regis-
tered with 92.61% for accuracy and 86.03% for f1-score. In [63], an accuracy of 92% was
obtained. For Sub-AHS, in [63], the accuracy was registered as 95%. Overall, the proposed
model achieved the highest performance compared to approaches that were used in the
existing literature.



Appl. Sci. 2022, 12, 8967 22 of 25

Table 7. Comparison of previous studies and the proposed models.

Paper Method Dataset Performance

[9] CNN-LSTM ASTD
65.05% for accuracy
64.46% for f1-score

[17] CNN-LSTM ASTD
66% for accuracy,
62% for f1-score
66% for recall

[7] CNN-LSTM
Main-AHS 88.1% for accuracy

ASTD 79.18 % for accuracy

[18] CNN ASTD 79.07% for accuracy

[21] ensemble model using voting based on CNN-LSTM ASTD 64.46% for f1-score

[63] Bi-LSTM

ASTD
79.25% for Accuracy
76.83 of F1-score

Main-AHS
92.61% for Accuracy
86.03% of f1-score

[9] CNN
Main-AHS 92% for accuracy

Sub-AHS 95% for accuracy

The proposed
model

Stacking SVM based on integrated
DeepCNN, CNN-LSTM and CNN-GRU

Main-AHS

92.12% for accuracy
91.31% for precision
91.38% of recall
91.27% of f1-score

Sub-AHS

95.81% for accuracy
96.06% for precision
95.81% for recall
95.67% for f1-score

ASTD

81.4% for accuracy
80.69% of precision
81.4% for recall
80% for f1-score

5. Conclusions

This study addresses the problem of sentiment analysis for Arabic text. The perfor-
mance of the Arabic sentiment analysis system was examined in relation to the use of
ensemble stacking models based on CNN, a hybrid CNN-LSTM model, and a hybrid
CNN-GRU model. Additionally, the ensemble stacking models have made important
contributions to increasing NLP accuracy. In order to improve the model’s performance in
forecasting Arabic sentiment analysis, we suggested an optimal ensemble staking model
that includes three pre-trained models: deep layers of CNN, hybrid CNN-LSTM, and
hybrid CNN-GRU, together with a meta-learner SVM. Different layers are included in the
DeepCNN model: the flatten layer, fully connected layer, output layer, two MaxPooling
layers, three CNN layers, and the global MaxPooling layer. The embedding layer, CNN
and MaxPooling layers, long short-term memory (LSTM), fully linked layer, and output
layer are all components of the hybrid CNN-LSTM model. The embedding layer, CNN and
MaxPooling layers, the gated recurrent unit (GRU), the fully linked layer, and the output
layer are all components of the hybrid CNN-GRU model. To extract features for DL models,
CBOW and the skip-gram models with 300 dimensions word embedding were utilized. The
performance of the proposed model is evaluated against DeepCNN, hybrid CNN-LSTM,
hybrid CNN-GRU, and conventional ML algorithms. The findings demonstrate that, when
compared to other models, the suggested ensemble model has the best performance for
each dataset. The proposed model with CBOW word embedding has the highest accuracy
of 92.12%, 95.81%, and 81.4% for Main-AHS, Sub-AHS, and ASTD, respectively.



Appl. Sci. 2022, 12, 8967 23 of 25

In future work, the word sense in Arabic is critical and expected to improve perfor-
mance [67], and we will consider this limitation in the future.

Author Contributions: Methodology, H.S.; Validation, H.S.; Visualization, H.S. and S.M.; Writing—
review & editing, H.S., S.M., S.E.-S., L.A.G. and A.O.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used to support the findings of this study are available
from the direct link in the dataset citations.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R178), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: All authors declare that they have no conflict of interest.

References
1. Sosa, P.M. Twitter sentiment analysis using combined LSTM-CNN models. arXiv 2017, arXiv:1807.02911.
2. El-Affendi, M.A.; Alrajhi, K.; Hussain, A. A novel deep learning-based multilevel parallel attention neural (MPAN) model for

multidomain arabic sentiment analysis. IEEE Access 2021, 9, 7508–7518. [CrossRef]
3. Badaro, G.; Baly, R.; Hajj, H.; El-Hajj, W.; Shaban, K.B.; Habash, N.; Al-Sallab, A.; Hamdi, A. A survey of opinion mining in

Arabic: A comprehensive system perspective covering challenges and advances in tools, resources, models, applications, and
visualizations. ACM Trans. Asian -Low-Resour. Lang. Inf. Process. 2019, 18, 27. [CrossRef]

4. Al-Hashedi, A.; Al-Fuhaidi, B.; Mohsen, A.M.; Ali, Y.; Gamal Al-Kaf, H.A.; Al-Sorori, W.; Maqtary, N. Ensemble Classifiers for
Arabic Sentiment Analysis of Social Network (Twitter Data) towards COVID-19-Related Conspiracy Theories. Appl. Comput.
Intell. Soft Comput. 2022, 2022. [CrossRef]

5. Zhang, J.; Li, Y.; Tian, J.; Li, T. LSTM-CNN hybrid model for text classification. In Proceedings of the 2018 IEEE 3rd Advanced
Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018;
pp. 1675–1680.

6. Salur, M.U.; Aydin, I. A novel hybrid deep learning model for sentiment classification. IEEE Access 2020, 8, 58080–58093.
[CrossRef]

7. Al Omari, M.; Al-Hajj, M.; Sabra, A.; Hammami, N. Hybrid CNNs-LSTM deep analyzer for arabic opinion mining. In Proceedings
of the 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain,
22–25 October 2019; pp. 364–368.

8. Alwehaibi, A.; Roy, K. Comparison of pre-trained word vectors for arabic text classification using deep learning approach. In
Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA,
17–20 December 2018; pp. 1471–1474.

9. Heikal, M.; Torki, M.; El-Makky, N. Sentiment analysis of Arabic tweets using deep learning. Procedia Comput. Sci. 2018,
142, 114–122. [CrossRef]

10. Saleh, H.; Mostafa, S.; Alharbi, A.; El-Sappagh, S.; Alkhalifah, T. Heterogeneous Ensemble Deep Learning Model for Enhanced
Arabic Sentiment Analysis. Sensors 2022, 22, 3707. [CrossRef]

11. Tsoumakas, G.; Partalas, I.; Vlahavas, I. A taxonomy and short review of ensemble selection. In Proceedings of the Workshop on
Supervised and Unsupervised Ensemble Methods and Their Applications, Patras, Greece, 21–22 July 2008; pp. 1–6.

12. Whalen, S.; Pandey, G. A comparative analysis of ensemble classifiers: Case studies in genomics. In Proceedings of the 2013 IEEE
13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 807–816.

13. Sabzevari, M.; Martínez-Muñoz, G.; Suárez, A. Building heterogeneous ensembles by pooling homogeneous ensembles. Int. J.
Mach. Learn. Cybern. 2022, 13, 551–558. [CrossRef]

14. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
15. Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An ensemble learning tool for compound classification

and QSAR modeling. J. Chem. Inf. Model. 2005, 45, 786–799. [CrossRef]
16. Wang, G.; Hao, J.; Ma, J.; Jiang, H. A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 2011,

38, 223–230. [CrossRef]
17. Farha, I.A.; Magdy, W. Mazajak: An online Arabic sentiment analyser. In Proceedings of the Fourth Arabic Natural Language

Processing Workshop, Florence, Italy, 1 August 2019; pp. 192–198.
18. Dahou, A.; Xiong, S.; Zhou, J.; Haddoud, M.H.; Duan, P. Word embeddings and convolutional neural network for arabic

sentiment classification. In Proceedings of the Coling 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 2418–2427.

http://doi.org/10.1109/ACCESS.2021.3049626
http://dx.doi.org/10.1145/3295662
http://dx.doi.org/10.1155/2022/6614730
http://dx.doi.org/10.1109/ACCESS.2020.2982538
http://dx.doi.org/10.1016/j.procs.2018.10.466
http://dx.doi.org/10.3390/s22103707
http://dx.doi.org/10.1007/s13042-021-01442-1
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1021/ci0500379
http://dx.doi.org/10.1016/j.eswa.2010.06.048


Appl. Sci. 2022, 12, 8967 24 of 25

19. Al-Twairesh, N.; Al-Khalifa, H.; Al-Salman, A.; Al-Ohali, Y. Arasenti-tweet: A corpus for arabic sentiment analysis of saudi
tweets. Procedia Comput. Sci. 2017, 117, 63–72. [CrossRef]

20. Omara, E.; Mosa, M.; Ismail, N. Deep convolutional network for arabic sentiment analysis. In Proceedings of the 2018
International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC), Alexandria, Egypt, 17–19
December 2018; pp. 155–159.

21. Elfaik, H. Deep bidirectional lstm network learning-based sentiment analysis for arabic text. J. Intell. Syst. 2021, 30, 395–412.
[CrossRef]

22. Oussous, A.; Lahcen, A.A.; Belfkih, S. Impact of text pre-processing and ensemble learning on Arabic sentiment analysis. In
Proceedings of the 2nd International Conference on Networking, Information Systems & Security, Rabat, Morocco, 27–29 March
2019; pp. 1–9.

23. Kang, M.; Ahn, J.; Lee, K. Opinion mining using ensemble text hidden Markov models for text classification. Expert Syst. Appl.
2018, 94, 218–227. [CrossRef]

24. Kaddoura, S.; Itani, M.; Roast, C. Analyzing the effect of negation in sentiment polarity of facebook dialectal arabic text. Appl. Sci.
2021, 11, 4768. [CrossRef]

25. Aldayel, H.K.; Azmi, A.M. Arabic tweets sentiment analysis—A hybrid scheme. J. Inf. Sci. 2016, 42, 782–797. [CrossRef]
26. Abdulla, N.A.; Ahmed, N.A.; Shehab, M.A.; Al-Ayyoub, M. Arabic sentiment analysis: Lexicon-based and corpus-based. In

Proceedings of the 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Amman, Jordan, 3–5 December 2013; pp. 1–6.

27. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text classification algorithms: A survey.
Information 2019, 10, 150. [CrossRef]

28. Dhar, A.; Dash, N.S.; Roy, K. Application of tf-idf feature for categorizing documents of online bangla web text corpus. In
Intelligent Engineering Informatics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 51–59.

29. Qaiser, S.; Ali, R. Text mining: Use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 2018,
181, 25–29. [CrossRef]

30. Lai, S.; Liu, K.; He, S.; Zhao, J. How to generate a good word embedding. IEEE Intell. Syst. 2016, 31, 5–14. [CrossRef]
31. Wang, B.; Wang, A.; Chen, F.; Wang, Y.; Kuo, C.C.J. Evaluating word embedding models: Methods and experimental results.

APSIPA Trans. Signal Inf. Process. 2019, 8, e19. [CrossRef]
32. Soliman, A.B.; Eissa, K.; El-Beltagy, S.R. Aravec: A set of arabic word embedding models for use in arabic nlp. Procedia Comput.

Sci. 2017, 117, 256–265. [CrossRef]
33. Suleiman, D.; Awajan, A.A.; Al Etaiwi, W. Arabic text keywords extraction using word2vec. In Proceedings of the 2019 2nd

International Conference on new Trends in Computing Sciences (ICTCS), Amman, Jordan, 9–11 October 2019; pp. 1–7.
34. Fayed, H.A.; Atiya, A.F. Speed up grid-search for parameter selection of support vector machines. Appl. Soft Comput. 2019,

80, 202–210. [CrossRef]
35. Pontes, F.J.; Amorim, G.; Balestrassi, P.P.; Paiva, A.; Ferreira, J.R. Design of experiments and focused grid search for neural

network parameter optimization. Neurocomputing 2016, 186, 22–34. [CrossRef]
36. Browne, M.W. Cross-validation methods. J. Math. Psychol. 2000, 44, 108–132. [CrossRef] [PubMed]
37. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538.
38. O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L. Hyperparameter Tuning with Keras Tuner. 2019. Available

online: https://github.com/keras-team/keras-tuner (accessed on 23 July 2022).
39. Shawki, N.; Nunez, R.R.; Obeid, I.; Picone, J. On Automating Hyperparameter Optimization for Deep Learning Applications. In

Proceedings of the 2021 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 4 December
2021; pp. 1–7.

40. Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.Y. Logistic regression was as
good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [CrossRef]

41. Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic regression for machine learning in process tomography. Sensors
2019, 19, 3400. [CrossRef]

42. John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers. arXiv 2013, arXiv:1302.4964.
43. Sarker, I.H. A machine learning based robust prediction model for real-life mobile phone data. Internet Things 2019, 5, 180–193.

[CrossRef]
44. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Sarker, I.H.; Kayes, A.; Watters, P. Effectiveness analysis of machine learning classification models for predicting personalized

context-aware smartphone usage. J. Big Data 2019, 6, 57. [CrossRef]
46. Amit, Y.; Geman, D. Shape quantization and recognition with randomized trees. Neural Comput. 1997, 9, 1545–1588. [CrossRef]
47. Boehmke, B.; Greenwell, B. Hands-on Machine Learning with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019.
48. Sun, S.; Huang, R. An adaptive k-nearest neighbor algorithm. In Proceedings of the 2010 Seventh International Conference on

Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; Volume 1, pp. 91–94.
49. Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [CrossRef]
50. Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International Conference on Neural

Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; Volume 3, pp. 1480–1483.

http://dx.doi.org/10.1016/j.procs.2017.10.094
http://dx.doi.org/10.1515/jisys-2020-0021
http://dx.doi.org/10.1016/j.eswa.2017.07.019
http://dx.doi.org/10.3390/app11114768
http://dx.doi.org/10.1177/0165551515610513
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.5120/ijca2018917395
http://dx.doi.org/10.1109/MIS.2016.45
http://dx.doi.org/10.1017/ATSIP.2019.12
http://dx.doi.org/10.1016/j.procs.2017.10.117
http://dx.doi.org/10.1016/j.asoc.2019.03.037
http://dx.doi.org/10.1016/j.neucom.2015.12.061
http://dx.doi.org/10.1006/jmps.1999.1279
http://www.ncbi.nlm.nih.gov/pubmed/10733860
https://github.com/keras-team/keras-tuner
http://dx.doi.org/10.1016/j.jclinepi.2020.03.002
http://dx.doi.org/10.3390/s19153400
http://dx.doi.org/10.1016/j.iot.2019.01.007
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1186/s40537-019-0219-y
http://dx.doi.org/10.1162/neco.1997.9.7.1545
http://dx.doi.org/10.21037/atm.2016.03.37


Appl. Sci. 2022, 12, 8967 25 of 25

51. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

52. Chollet, F. Keras: The Python Deep Learning Library; Astrophysics Source Code Library: Mountain View, CA, USA, 2018.
53. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
54. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
55. Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2.
56. Wanto, A.; Windarto, A.P.; Hartama, D.; Parlina, I. Use of binary sigmoid function and linear identity in artificial neural networks

for forecasting population density. Int. J. Inf. Syst. Technol. 2017, 1, 43–54. [CrossRef]
57. Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015,

arXiv:1511.03677.
58. Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th

International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600.
59. Ravanelli, M.; Brakel, P.; Omologo, M.; Bengio, Y. Light gated recurrent units for speech recognition. IEEE Trans. Emerg. Top.

Comput. Intell. 2018, 2, 92–102. [CrossRef]
60. Gruber, N.; Jockisch, A. Are GRU cells more specific and LSTM cells more sensitive in motive classification of text? Front. Artif.

Intell. 2020, 3, 40. [CrossRef] [PubMed]
61. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
62. Alayba, A.M.; Palade, V.; England, M.; Iqbal, R. Arabic language sentiment analysis on health services. In Proceedings of the

2017 1st International Workshop on Arabic Script Analysis and Recognition (ASAR), Nancy, France, 3–5 April 2017; pp. 114–118.
63. Alayba, A.M.; Palade, V.; England, M.; Iqbal, R. Improving sentiment analysis in Arabic using word representation. In

Proceedings of the 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR),
London, UK, 12–14 March 2018; pp. 13–18.

64. Nabil, M.; Aly, M.; Atiya, A. Astd: Arabic sentiment tweets dataset. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 2515–2519.

65. Flach, P.A. ROC analysis. In Encyclopedia of Machine Learning and Data Mining; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 1–8.

66. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for
performance evaluation. In Lecture Notes in Computer Science: Proceedings of the Australasian Joint Conference on Artificial Intelligence;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021.

67. Kaddoura, S.; D. Ahmed, R. A comprehensive review on Arabic word sense disambiguation for natural language processing
applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1447. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://www.ncbi.nlm.nih.gov/pubmed/34111009
http://dx.doi.org/10.30645/ijistech.v1i1.6
http://dx.doi.org/10.1109/TETCI.2017.2762739
http://dx.doi.org/10.3389/frai.2020.00040
http://www.ncbi.nlm.nih.gov/pubmed/33733157
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1002/widm.1447

	Introduction
	Related Work
	Methodology
	Data Pre-Processing
	Feature Extraction
	Hyperparameter Optimization
	Machine Learning Algorithms
	Deep Learning Algorithms
	The Proposed Ensemble Model

	Experiments Results
	Datasets
	Arabic Health Services Dataset (Main-AHS)
	Arabic Health Services Dataset (Sub-AHS Dataset)
	Arabic Sentiment Tweets Dataset (ASTD)

	Evaluating Models
	Experimental Setup
	Results
	The Performance Results of Models for Main-AHS Dataset
	The Performance Results of Models for Sub-AHS Dataset
	The Performance Results of Models for ASTD Dataset

	Discussion

	Conclusions
	References

