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Abstract

In this paper, an enhanced artificial coronary circulation system (EACCS) algorithm is applied to structural optimization with continuous 

design variables and frequency constraints. The standard algorithm, artificial coronary circulation system (ACCS), is inspired biologically 

as a non-gradient algorithm and mimics the growth of coronary tree of heart circulation system. Designs generated by the EACCS 

algorithm are compared with other popular evolutionary optimization methods, the objective function being the total weight of the 

structures.

Truss optimization with frequency constraints has attracted substantial attention to improve the dynamic performance of structures. 

This kind of problems is believed to represent nonlinear and non-convex search spaces with several local optima. These problems are 

also suitable for examining the capabilities of the new algorithms. Here, ACCS is enhanced (EACCS) and employed for size and shape 

optimization of truss structures and six truss design problems are utilized for evaluating and validating of the EACCS. This algorithm 

uses a fitness-based weighted mean in the bifurcation phase and runner phase of the optimization process. The numerical results 

demonstrate successful performance, efficiency and robustness of the new method and its competitive performance to some other 

well-known meta-heuristics in structural optimization.
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1 Introduction

Optimal design of truss structures subjected to dynamic 

behavior has been a challenging area of study and it is an 

active research area. Optimal truss design subjected to fre-

quency bounds is a valuable tool for improving the dynamic 

behavior of the truss [1–5]. Natural frequencies of a truss 

should be enforced to avoid resonance with an external 

excitation. In addition, engineering compositions should 

be as light as possible. On the other hand, mass minimi-

zation conflicts with frequency bounds and increases the 
complexity of the problem [6, 8, 9]. As such, an expedi-

tious optimization method is required to design the trusses 

susceptible to fundamental frequency constraints, and con-

tinuous effort is put by researchers in this aspect [7, 10].

Size, shape, and topology optimizations are three main 

kinds of truss optimization. In size optimization, the final 
goal is to acquire the best bar sections, whereas shape 

optimization insures the best nodal positions of predefined 
nodes of the truss structure. The effect of shape and siz-

ing on objective function and constraints are in conflict. 
Hence, simultaneous shape and sizing optimization with 

natural frequency bounds adds further complexity and 

often leads to fluctuations [11]. Several researchers have 
been using different optimization algorithms, yet this 

research area has not yet been fully investigated. In recent 

years, many optimization techniques have been studied in 

this application area [12–17].
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Structural optimization can be categorized into two 

classes: discrete structural optimization and continuum 

structural optimization. Discrete structural optimization 

is also best-known as truss optimization, having connec-

tivity of finite dimension parameters as variables (natu-

rally discrete parameter system) and continuum structural 

optimization have field as a variable (discretized parame-

ter system) [18–20].

This paper suggests the application of the recently 

developed optimization algorithm, so-called the Artificial 
Coronary Circulation System (ACCS) [21], for optimum 
design of truss structures with frequency constraints. 

Moreover, an enhanced version of the ACCS, called 

EACCS, is applied to the problem in hand. In this method, 

the solution candidates are considered as capillaries lead-

ers that growth in direction best position for enhancing the 

dissemination system. Improving heart circulation system 

is achieved from current population and historically best 

position in order to have a suitable balance between explo-

ration and exploitation. 

In order to evaluate the performance of the ACCS, six 

truss structures are optimized for minimum weight with 

the design variables being considered as the cross-sec-

tional areas of the members and/or the coordinates of 

some nodes. The truss examples have 10, 72, 120, 200, 37 

and 52 members, respectively. The numerical results indi-

cate that the planned algorithm is rather competitive with 

other state-of-the-art metaheuristic methods. 

This study has been organized as follows: In Sect. 2, the 

mathematical formulation of the structural optimization 

with frequency constraints is stated. The enhanced algo-

rithm EACCS is presented after a brief overview of the 

standard ACCS in Sect. 3. Six structural design examples 

are studied in Sect. 4, and some concluding remarks are 

eventually provided in Sect. 5.

2 Statement of the optimization problem

In a frequency constraint truss shape and size optimization 

problem, the goal is to minimize the weight of the struc-

ture while satisfying some constraints on natural frequen-

cies. The design variables are the cross-sectional areas of 

the members and/or the coordinates of some nodes. The 

topology of the structure is not expected to be changed 

and thus the connectivity of the structure is predefined and 
kept unaltered during the optimization process. For each 

one of the design variables should be chosen from a per-

missible range. The optimization problem can be stated 

mathematically as follows:
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where X is the vector of the design variables, including 

both nodal coordinates and cross-sectional areas. Here, n 

is the number of variables which is naturally affected by 

the element grouping scheme which in turn is chosen con-

sidering the symmetry and practice requirements. G(X) 

is the merit function; f(X) is the cost function, which has 

been taken as the weight of the structure in a weight opti-

mization problem; f
penalty

(X) is the penalty function that is 

used to make the problem unconstrained. When all of the 

constraints are contented, the penalty function value is 

equal to unity; ω
j
 is the jth natural frequency of the struc-

ture and ω
j

*  is its upper bound. ω
k
 is the kth natural fre-

quency of the structure and ω
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x
i
, respectively. The cost function is expressed as:
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where ρ
i
 is the material density of member i; L

i
 is the length 

of member i; and A
i
 is the cross-sectional area of the ith 

member.

The penalty function is defined as:
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The parameters  and are selected considering the explo-

ration and the exploitation rate of the search space. In this 

study  is taken as unity, and starts from 1.5 and linearly 

increases to 6 in all the test examples. These values penal-

ize the unfeasible solutions more severely as the optimiza-

tion procedure proceeds. As a result, in the primal stages, 

the agents are autonomous to explore the search space, but 

at the end they tend to choose solutions without violation.

To minimizes

Find X x x x
n
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3 Artificial Coronary Circulation System (ACCS) 
Optimization

ACCS is a coronary tree growth process inspired algo-

rithm, proposed by Kaveh and Kooshkbaghi [21]. This 

algorithm is based on coronary circulation of the heart 

muscle. The ACCS algorithm consists of two basic modes 

of the growing coronary tree: (i) produce stem-crown 
(known as bifurcation phase), and (ii) growing with the 
other capillaries (known as pruning phase). In this opti-
mization algorithm an initial group of capillaries is con-

sidered as population and different main arteries are con-

sidered as different design variables of the optimization 

problem and a capillary leader's result is analogous to the 

"fitness value" of the optimization problem. In this algo-

rithm, any branches of coronary tree is considered as a 

new solution and the total cost of the tree at any end is con-

sidered as the cost of the object function at any solution. 

With these values, the Coronary Growth Factor (CGF) is 
calculated for any solution. This result is analogous to the 

fitness value of the optimization problem. Also, the best 
solution in the entire population is considered as the stem, 

and the best solution is the minimum value of the CGF.

The process of the ACCS is divided into two main 

parts, 'Bifurcation phase' and 'Pruning phase'. The ACCS 

procedure can be briefly outlined as follows:

3.1 Bifurcation and Pruning phase (Global Search)
During this phase, a capillary leader tries to improve the 

CGF of the center of the suggested capillary leaders by 

the end of stem. Thus, at any iteration t, it is assumed that 

there are N
var

 number of main arteries (i.e. design vari-
ables, j = 1,2,…, N

var 
), Npop is the number of capillary 

leaders (i.e. population size, i = 1,2,…, N
pop

) and X c
t j,  is 

the mean of all the jth subjects of capillary leaders in a 

current capillaries population. However, the best capillary 

leader (CL) identified is considered by the algorithm as the 
stem. Thus, the CGF of the CLs are mathematically for-
mulated as follows:
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Then the existing solution is updated in the bifurcation 

phase according to the following expression:
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where X i j
t

,

+1  indicates the new position value of the jth vari-

able for the ith CL; and "dir" denotes the growth direction; 

and "rand" is a random number uniformly distributed in the 

range of (0,1); B
f
 is the bifurcation factor and it determines 

the growth step and is equal to CGF
i
; and X i j

t

,  indicates the 

old position value of the jth variable for the ith CL.

3.2 Runner and Pruning phase (Local Search)
As mentioned in the previous steps, the best CLs are con-

sidered as the main arteries leaders and are converted to 

stems and the coronary tree grows. In this stage, all the 

new CLs grow at the end of the stems and create new CLs. 
Also, the CLs growth is based on the coronary growth fac-

tor (CGF) of the arteries leader along the coronary arteries 
tree. Therefore, an exponent factor is defined as follow:

X X Xi j

t
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t

i j
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where X i j
t

,

+1  determines the new position value of the jth 

variable for the ith CL; and X i j
t

,  determines the old posi-

tion value of the jth variable for the ith CL; α is angiogen-

esis index and it is a decreasing function of time, which 

controls the pumping power of the heart. It is initialized 

to 1 at the beginning of the algorithm and is exponentially 

decreased to about 0.6 as the iterations elapse; and rand 

is a random numbers uniformly distributed in the range 

of (0,1); and X
b,

t

j
 and X

w,

t

j
 are the best and the worst CLs 

of the last (old) population which refer to the best arter-
ies leader and the worst arteries leader. According to the 

above equations, each CL searches the space for the new 
position for growth as the capillaries. 

Therefore, after each above mechanism, the best and 

worst CLs are found and the old values are updated. Also 
any component of the solution vector violating the variable 

boundaries can be regenerated from the Heart Memory 

(HM). Then, a memory is considered which saves the best 
CL vectors and their related coronary growth factor (CGF) 
values. So, the Heart Memory Considering Rate (HMCR) 
varying between 0 and 1 sets the rate of choosing a value 
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in the new values from the historic values stored in the 

HM. In this study, the size of the HM (i.e. HMS) is taken 
as 5 and the HMCR is considered as 0.95.

3.3 Enhanced Artificial Coronary Circulation System 
The purpose of this section is to introduce an improved ver-

sion of the standard ACCS, Enhanced Artificial Coronary 
Circulation System (EACCS) optimization modifies the 
ACCS to get better solutions. The ACCS and EACCS use 

a heart memory (HM) for saving some of the best solu-

tions and updating them in each iteration. The HM enables 

the ACCS and EACCS to have a stronger exploitation and 

better convergence. Furthermore, using a mechanism to 

change some components of capillaries leaders helps the 

algorithm to escape from local optima. The EACCS pro-

cedure is similar to that of ACCS, where only one step is 

added to its procedure:

Step 1: Initialization

The initial positions for CLs are determined randomly 
in the search space as:

X X rand X X i ni min max min pop

0
1= + −( ) = …. , , , ,  (13)

where X
i,j

0 is the initial solution vector of the ith CL. Here, 
X

min
 and X

max
 are the bounds of design variables; rand is a 

random vector with each component being in the interval 

[0,1]; N
pop

 is the number of the population of CLs.
Step 2: Defining Coronary Growth Factor (CGF)
The value of CGF for each CL is evaluated according 

to Eqs. (6 and 7).
Step 3: Storing. Heart memory (HM) is utilized to save 

several historically best capillary leaders (CL vectors) 
and their related CGF and the objective function values. 

Solution vectors that are saved in the HM are added to the 

population, and the same number of current worst CLs is 
deleted. Finally, CLs are sorted according to their objec-

tive function values in an increasing order. Using this 

mechanism can improve the algorithm performance with-

out increasing the computational cost.

Step 4: Bifurcation and Pruning phase and Jump out: 
To improve the exploration capability of the standard 

ACCS and to prevent premature convergence, a stochastic 

approach is used in EACCS. A parameter like Pro that is a 

number within (0,1) is introduced and specified whether a 
component of each CL must be changed or not. The value 
of Pro is evaluated according to Eq. (14).
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In this paper, the value of Pro is equal to 0.1 at the begin-

ning of the search to emphasize the exploration, and then 

it is linearly increased to 0.3 at the end to encourage the 

exploitation.

For each CL, Pro is compared with Rand
i
 (i = 1,…,N
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which is a random number uniformly distributed within 
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where X
i, j

 = jth design variable of the ith CL; X
min, j

 and 

X
max, j

 are minimum and maximum limits of the jth design 

variable. Then, the CLs are updated and sorted according 
to their objective function values.

Step 5: Runner and Pruning phase. Updating CLs and 
the new position of each CL are performed by Eq. (12). 
The updated CLs are sorted according to their objective 
function values.

Step 6: Updating Heart Memory. Keeping the best CLs 
in each iteration.

Step 7: Terminating condition check. The process of 

optimization is terminated after the predefined maximum 
evaluation number. Otherwise, the process is continued by 

going to Step 2.

A flowchart of the EACCS algorithm is shown in Fig. 1.

4 Numerical examples
In this section, six most often used numerical examples 

are studied by the proposed methods. These examples 

consist of four truss structures for size optimization and 

two structures for shape and size optimization. The per-

formance of the standard ACCS and EACCS are examined 

through six standard design optimization problems. 

These examples include some well-known planar and 

space trusses. The population number of the CLs or agents 
for these examples is taken as 20 for both methods. Also, 

for all these examples the maximum number of iterations 

is considered as 200. Material properties, cross-sectional 

area bounds, and frequency constraints are provided in 

Table 1. 
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Fig. 1 A Flowchart Of The EACCS Algorithm

For all examples, 10 independent optimization runs 

are executed as meta-heuristic algorithms have stochastic 

nature and their performance may be sensitive to initial 

population. The frequency constraints are handled using 

the well-known penalty approach.

Subsequently, statistical results are presented in terms 

of the best weight and the corresponding number of FE 

analyses, the mean weight and standard deviation. Only 

design variable values achieved from the best run are 

reported for comparison with those given by other optimi-

zation approaches to illustrate the accuracy and robustness 

of the proposed algorithm. Also, the ACCS and EACCS 

algorithms and the direct stiffness method for the anal-

ysis of truss structures are coded in MATLAB software. 
The example results are based on a Laptop with a CPU 2.4 
GHz, and 6.0 GB of RAM. Also, the operation system is 

Windows 10 and the version of the MATLAB is R2016a.

Table 1 Material properties, cross-sectional area bounds, and frequency 

constraints for different problems.

Problem

Property (unit)

Young's 

modulus 

(N/m2)

Material 

density 

(kg/m3)

Cross-sectional 

area bounds 

(cm2)

Frequency 

constraints 

(Hz)

10-bar 

planar 

truss

6.89 × 

1010
2770 0.645 × 10–4 ≤ A

i

f
1
 ≥ 7

f
2
 ≥ 15

f
3
 ≥ 20

72-bar 

space 

truss

6.89 × 

1010
2770 0.645 × 10–4 ≤ A

i

f
1
 = 4

f
2
 ≥ 6

120-bar 

dome 

truss

2.1 × 1011 7971.81
0.0001 ≤ A

i
 ≤ 

0.01293

f
1
 ≥ 9

f
2
 ≥ 11

200-bar 

planar 

truss

2.1 × 1011 7860 0.1 × 10 –4  ≤ A
i

f
1
 ≥ 5

f
2
 ≥ 10

f
3
 ≥ 15

37-bar 

planar 

truss

2.1 × 1011 7800 0.1 × 10 –4  ≤ A
i

f
1
 ≥ 20

f
2
 ≥ 40

f
3
 ≥ 60

52-bar 

dome 

truss

2.1 × 1011 7800
0.0001 ≤ A

i
 ≤ 

0.001

f
1
 ≤ 15.9155

f
2
 ≥ 28.6479

Fig. 2 Schematic of a 10-bar planar truss structure

4.1. Size optimization

4.1.1 The 10-bar plane truss
Schematic of the 10-bar plane truss, displayed in Fig. 2, is 

the first test problem. The cross-sectional area of each of the 
members is an independent variable. Here, cross-sectional 

areas of all bars are treated as continuous design variables. 

Four nonstructural masses of 454 kg are assigned with four 

free nodes as indicated in the same figure. Besides, as one 
of the benchmark problems, this structure has been studied 

by other researchers that are listed in the pursuing litera-

ture [4–6, 8–10, 17, 22–24].

Table 2 shows a comparison of the optimal results obtained 

by the present algorithms with different approaches. The 

optimal weight accomplished by the proposed EACCS is 
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better than other methods. Table 3 represents the first eight 
optimal natural frequencies obtained by the present work 

and different researches. All the frequencies strictly satisfy 

the allowable constraints and no constraint is violated.

The best and average convergence curves for these 

algorithms are illustrated in Fig. 3. This algorithm rap-

idly discovers the optimal solution with only 5860 analy-

ses, while the others algorithms require a larger number of 

analyses for the convergence. Also, the EACCS has min-

imum standard deviation among the presented solutions.

4.1.2 The 72-bar space truss
The second example aims to optimize a 72-bar space truss 

whose geometry and finite element model are depicted in 
Fig. 4. The values of the cross-sectional area, minimum 

weight, and statistical information of the solution obtained 

by the standard ACCS, EACCS, and some other previous 

studies reported in the literature are presented in Table 4. 

Four non-structural masses of 2270 kg are attached to four 

upper nodes. This is also a benchmark problem that has 

previously been examined by a variety of researchers such 

as Refs. [6, 8, 9, 17].

Optimal results obtained by the present methods with 

different algorithms are provided in Table 4 for compari-

son. As it can be observed, the EACCS results in the small-

est weight in comparison to the other algorithms. Table 5 

reports the natural frequencies of the optimized structures; 

clearly, none of the frequency constraints are violated. The 

weight convergence histories obtained using both algo-

rithms for this example are illustrated in Fig. 5. It is found 

that the EACCS needs far fewer number of FE analyses to 

gain the optimal solution compared to the other algorithms.

Table 2 Comparison of optimal results of the 10-bar planar truss obtained by different algorithms

Design variable (cm
2
) GA [22] PSO [5] CSS [8] FA [10]

This work

ACCS EACCS

A
1

42.230  37.712 38.811 36.198 35.5557 35.0354

A
2

18.555 09.959  09.0307 14.030 15.1448 15.0132

A
3

38.851 40.265 37.099 34.754 35.4367 35.4505

A
4

11.222 16.788 18.479 14.900 14.8101 15.0603

A
5

04.783  11.576 04.479 00.654 0.651 0.6475

A
6

04.451  03.955  04.205 04.672 4.5225 4.5224

A
7

21.049 25.308 20.842 23.467 23.9125 23.4493

A
8

20.949 21.613 23.023 25.508  23.1290 23.4182

A
9

10.257 11.576 13.763 12.707 12.0245 12.1051

A
10

14.342 11.186 11.414 12.351 12.3559 12.7158

Best weight (kg) 542.750 537.980 531.950 531.280 524.6371 524.6001

Average weight (kg) 552.447 540.890 536.390 535.070 525.4842 525.0068

Standard deviation 04.864  06.840 03.320 03.640  2.8756  0.3030

No. of analyses 13,777 20,000   4,000  5,000  8,000 8,000

Note: GA = Genetic Algorithm; PSO = particle swarm optimization; CSS = charged system search; FA = firefly algorithm; CPA= Cyclical 
Parthenogenesis Algorithm; ACCS = Artificial Coronary Circulation System; N/A = not available.

Table 3 Natural frequencies (Hz) of the optimized designs for the 10-bar planar truss

Frequency no. GA [22] PSO [5] CSS [8] FA [10]
This work

ACCS EACCS

1 07.008 07.000 07.000 07.0002 07.0000 07.0000

2 18.148 17.786 17.442 16.1640 16.2358 16.2094

3 20.000 20.000 20.031 20.0029 20.0000 20.0000

4 20.508 20.063 20.208 20.0221 20.0018 20.0001

5 27.797 27.776 28.261 28.5428 28.3855 28.4486

6 31.281 30.939 31.139 28.9220 28.8872 29.0761

7 48.304 47.297 47.704 48.3538 48.8085 48.7494

8 53.306 52.286 52.420 50.8004 51.2694 51.2833
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Fig. 3 The weight convergence histories of the 10-bar planar truss 

obtained using the ACCS and EACCS

4.1.3 The 120-bar dome truss
The third example aims to optimize a 120-bar dome truss 

as shown in Fig. 6. Non-structural masses are attached to 

all the free nodes as follows: 3,000 kg at Node 1, 500 kg at 

Nodes 2–13, and 100 kg at the remaining nodes. The sym-

metry of the structure about the x-axis and y-axis is con-

sidered to group the 120 members into seven independent 

size variables. This is also a benchmark problem that has 

been previously examined in a variety of studies such as 

[7–9, 17, 25].
Fig. 4 The 72-bar space truss

Table 4 Optimal cross-sectional areas for the 72-bar space truss (cm2)

Group No. Elements PSO [5] HS [10] CSS [8] FA [10] CPA [6]
This work

ACCS EACCS

G
1

1–4 2.987 3.6803 2.528 3.341 3.329 4.1886 3.7122

G
2

5–12 7.849 7.6808 8.704 7.759 7.841 7.9958 7.7434

G
3

13–16 0.645 0.6450 0.645 0.645 0.645 0.6813 0.6468

G
4

17–18 0.645 0.6450 0.645 0.645 0.645 0.7430 0.697

G
5

19–22 8.765 9.4955 8.283 9.020 8.416 6.4211 8.2884

G
6

23–30 8.153 8.2870 7.888 8.257 8.160 7.6720 8.2141

G
7

31–34 0.645 0.6450 0.645 0.645 0.645 0.7656 0.6658

G
8

35–36 0.645 0.6461 0.645 0.645 0.645 0.7014 0.6743

G
9

37–40 13.450 11.4510 14.666 12.045 13.078 14.0034 12.15

G
10

41–48 8.073 7.8990 6.793 8.040 8.043 8.1338 7.87

G
11

49–52 0.645 0.6473 0.645 0.645 0.645 0.6612 0.7058

G
12

53–54 0.645 0.6450 0.645 0.645 0.645 0.6810 0.6526

G
13

55–58 16.684 17.4060 16.464 17.380 16.943 17.1666 17.0882

G
14

59–66 8.159 8.2736 8.809 8.056 8.143 7.9807 7.9472

G
15

67–70 0.645 0.6450 0.645 0.645 0.647 0.7097 0.645

G
16

71–72 0.645 0.6450 0.645 0.645 0.653 0.6532 0.7462

Best weight (kg) 328.823 328.334 328.814 327.690 328.490 326.7081 325.1956

Average weight (kg) - 332.640 337.700 329.890 330.910 327.9035 326.3036

Standard deviation - 2.390 5.420 2.590 1.840 1.3413 0.650

No. of analyses - 50,000 4,000 10,000 12,800 12,000 12,000
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Fig. 5 The weight convergence histories of the 72-bar planar truss 

obtained using the ACCS and EACCS

Table 6 presents a comparison of the optimal results 

obtained by this work with those available in the litera-

ture. It can be noticed that in this case, the EACCS has the 

smallest optimal weight compared to the others. As reveals 

from the table, the standard deviation of the EACCS is 

lower than the others. The optimized structural frequen-

cies (Hz) for these methods are presented in Table 7. None 
of the frequency constraints are violated. Fig. 7 shows the 

weight convergence histories obtained using both ACCS 

and EACCS algorithms for this problem. 
Fig. 6 The 120-bar dome truss

Table 5 Natural frequencies (Hz) of the optimized designs for the 72-bar planar truss

Frequency No. PSO [5] HS [10] CSS [8] FA [10] CPA [6]
This work

ACCS EACCS

1 4.000 4.0000 4.000 4.000 4.000 4.0000 4.0000

2 4.000 4.0000 4.000 4.000 4.000 4.0000 4.0000

3 6.000 6.0000 6.006 6.000 6.000 6.0112 6.0007

4 6.219 6.2723 6.210 6.247 6.238 7.6655 6.4325

5 8.976 9.0749 8.684 9.038 9.035 9.7585 9.1635

Table 6 Comparison of optimal results of the 120-bar dome truss obtained by different algorithms

Design variable

A
i
 (cm2)

CSS [8] CBO [26] PSO [7] VPS [13] SOS [17]
This work

ACCS EACCS

A
1

21.710 19.6917 23.494 19.6836 19.5203  19.3331 19.5342

A
2

40.862 41.1421 32.976 40.9581 40.8482  40.9855 40.3209

A
3

09.048 11.1550 11.492 11.3325 10.3225  10.4487 10.5741

A
4

19.673 21.3207 24.839 21.5387 20.9277  20.9748 21.0753

A
5

08.336 09.8330 09.964  09.8867 09.6554   9.80400 09.7126

A
6

16.120 12.8520 12.039 12.7116 12.1127  12.0105 11.7997

A
7

18.976 15.1602 14.249 14.9330 15.0313  14.8797 14.9179

Best weight (kg) 9204.510 8889.1303 9171.93 8888.74 8713.3030 8704.7655 8703.7014

Average weight (kg) - 8891.2540 9251.84 8896.04 8735.3452 8728.0188 8704.4643

Standard deviation - 1.7926 89.380 6.650   17.9011  12.2037 0.7839

No. of analyses 4,000 6,000 6,000   30,000 4,000     8,000 6,000
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Fig. 7 The weight convergence histories of the 120-bar planar truss 

obtained using the ACCS and EACCS

4.1.4 The 200-bar planar truss
A planar truss containing 200 bars, shown in Fig. 8, is opti-

mized as the last example of the type of size optimization 

problem of truss structures with multiple frequency con-

straints. At upper nodes of the structure, non-structural 

masses of 100 kg are added for the free vibration analysis. 

Members of the structure are categorized into 29 groups 

corresponding to 29 design variables as indicated in Table 8.  

This example has formerly been considered in detail by 

numerous researchers with different methods [6–9].

Similar to the previously illustrated examples, optimal 

results obtained by the present algorithms and different 

approaches are summarized in Table 8 for comparison. As 

it can be seen, the best and average weight and standard 

deviation corresponding to the EACCS are better than 

some of the other methods. Furthermore, the number of 

FE analyses used to gain the optimal weight is the least 

for the EACCS. 

Optimal natural frequencies obtained by different algo-

rithms are displayed in Table 9. It can be recognized that 

none of the constraints are violated. The weight conver-

gence histories obtained using both algorithms for this 

structure are shown in Fig. 9. Clearly, the convergence rate 

of the EACCS is always better than the other algorithms.

Fig. 8 The 200-bar planar truss

Fig. 9 The weight convergence histories of the 200-bar planar truss 

obtained using the ACCS and EACCS

Table 7 Natural frequencies (Hz) of the optimized designs for the 120-bar planar truss

Frequency No. CSS [8] CBO [26] PSO [7] VPS [13] SOS [17]
This work

ACCS EACCS

1 09.002 09.0000 09.0000 09.0000 09.0009 09.0000 09.0000

2 11.002 11.0000 11.0000 11.0000 11.0005 11.0000 11.0000

3 11.006 11.0000 11.0052 11.0000 11.0005 11.0026 11.0027

4 11.015 11.0096 11.0134 11.0096 11.0046 11.0112 11.0113

5 11.045 11.0494 11.0428 11.0491 11.0714 11.0685 11.0682
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Table 8 Optimal cross-sectional areas for the 200-bar planar truss (cm2)

Design variable
CSS [8]

TLBO 
[28]

SOS [17]
This work

Ai (cm2) Member group ACCS EACCS

1 1, 2, 3, 4 0.2439 0.3030 0.4781 0.3262 0.3175

2 5, 8, 11, 14, 17 0.1438 0.4479 0.4481 0.406 0.4452

3 19, 20, 21, 22, 23, 24 0.3769 0.1001 0.1049 0.1062 0.1004

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 0.1494 0.1000 0.1045 0.1082 0.1004

5 26, 29, 32, 35, 38 0.4835 0.5124 0.4875 0.4917 0.4964

6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37 0.8103 0.8205 0.9353 0.8509 0.8226

7 39, 40, 41, 42 0.4364 0.1000 0.1200 0.1024 0.1095

8 43, 46, 49, 52, 55 1.4554 1.4499 1.3236 1.4816 1.3878

9 57, 58, 59, 60, 61, 62 1.0103 0.1001 0.1015 0.1318 0.1006

10 64, 67, 70, 73, 76 2.1382 1.5955 1.4827 1.6093 1.5465

11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75 0.8583 1.1556 1.1384 1.1354 1.1541

12 77, 78, 79, 80 1.2718 0.1242 0.1020 0.1196 0.1592

13 81, 84, 87, 90, 93 3.0807 2.9753 2.9943 3.0434 2.9979

14 95,96, 97, 98, 99, 100 0.2677 0.1000 0.1562 0.3132 0.1007

15 102, 105, 108, 111, 114 4.2403 3.2553 3.4330 3.2862 3.2726

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113 2.0098 1.5762 1.6816 1.5869 1.5753

17 115, 116, 117, 118 1.5956 0.2680 0.1026 0.2249 0.2768

18 119, 122, 125, 128, 131 6.2338 5.0692 5.0739 5.085 5.0434

19 133, 134, 135, 136, 137, 138 2.5793 0.1000 0.1068 0.1709 0.1076

20 140, 143, 146, 149, 152 3.0520 5.4281 6.0176 5.2071 5.449

21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148,150, 151 1.8121 2.0942 2.0340 2.2289 2.1447

22 153, 154, 155, 156 1.2986 0.6985 0.6595 0.2708 0.6745

23 157, 160, 163, 166, 169 5.8810 7.6663 6.9003 8.027 7.6967

24 171, 172, 173, 174, 175, 176 0.2324 0.1008 0.2020 0.2105 0.1353

25 178, 181, 184, 187, 190 7.7536 7.9899 6.8356 7.8354 7.7106

26 158, 159, 161, 162, 164, 165, 167,168, 179, 180, 182, 183, 185, 186, 188, 189 2.6871 2.8084 2.6644 2.9012 2.7915

27 191, 192, 193, 194 12.5094 10.4661 12.1430 9.5438 10.3755

28 195, 197, 198, 200 29.5704 21.2466 22.2484 21.438 21.3364

29 196, 199 8.2910 10.7340 8.9378 11.307 10.7345

Best weight (kg) 2259.86 2156.541 2180.3210 2167.4954 2156.3651

Average weight (kg) - 2157.547 2303.3034 2180.3886 2157.6554

Standard deviation - 1.545 83.5897 8.1411 1.7683

No. of analyses 10,000 23,000 10,000 23,000 23,000

Table 9 Natural frequencies (Hz) of the optimized designs for the 200-bar planar truss

Frequency No. CSS [8] TLBO [28] SOS [17]
This work

ACCS EACCS

1 5.010 5.00000 5.0001 5.0000 5.0000

2 12.911 12.21710 13.4306 12.3550 12.3137

3 15.416 15.03796 15.2645 15.0212 15.0226

4 17.033 16.70476 - 16.8172 16.6997

5 21.426 21.40164 - 21.4369 21.4152

6 21.613 21.45347 - 21.7894 21.6432
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Table 10 Comparison of optimal results of the 37-bar planar truss obtained by different algorithms

Design variable
Initial PSO [5] HS [10] CSS [8] SOS [17]

This work

Y
j
 (m) ; A

i
 (cm2) ACCS EACCS

Y3; Y19 1.0000 0.9637 0.8415 0.8726 0.9598 0.9958 0.9352

Y5; Y17 1.0000 1.3978 1.2409 1.2129 1.3867 1.405 1.3114

Y7; Y15 1.0000 1.5929 1.4464 1.3826 1.5698 1.5976 1.4983

Y9; Y13 1.0000 1.8812 1.5334 1.4706 1.6687 1.7117 1.6284

Y11 1.0000 2.0856 1.5971 1.5683 1.7203 1.818 1.7064

A1; A27 1.0000 2.6797 3.2031 2.9082 2.9038 2.8671 2.9045

A2; A26 1.0000 1.1568 1.1107 1.0212 1.0163 1.0717 1.0013

A3; A24 1.0000 2.3476 1.1871 1.0363 1.0033 1.0035 1.0156

A4; A25 1.0000 1.7182 3.3281 3.9147 3.1940 2.2862 2.6157

A5; A23 1.0000 1.2751 1.4057 1.0025 1.0109 1.3468 1.1372

A6; A21 1.0000 1.4819 1.0883 1.2167 1.5877 1.1864 1.2058

A7; A22 1.0000 4.6850 2.1881 2.7146 2.4104 2.415 2.5863

A8; A20 1.0000 1.1246 1.2223 1.2663 1.3864 1.5053 1.3730

A9; A18 1.0000 2.1214 1.7033 1.8006 1.6276 1.3932 1.4763

A10; A19 1.0000 3.8600 3.1885 4.0274 2.3594 2.0878 2.4519

A11; A17 1.0000 2.9817 1.0100 1.3364 1.0293 1.3208 1.2508

A12; A15 1.0000 1.2021 1.4074 1.0548 1.3721 1.2846 1.3155

A13; A16 1.0000 1.2563 2.8499 2.8116 2.0673 2.2003 2.2816

A14 1.0000 3.3276 1.0269 1.1702 1.0000 1.0286 1.0003

Best weight (kg) 336.30 377.20 361.50 362.84 360.8658 359.5543   358.9324

Average weight (kg) - 381.20 362.04 366.77 364.8521 361.6809   359.0855

Standard deviation - 4.26 0.52 3.742 2.9650 1.7354 0.1246

No. of FE analyses - - 20,000 - 4,000 8,000 8,000

Fig. 10 The initial shape of the 37-bar planar truss

Fig. 11 Final configuration found by the artificial coronary circulation system algorithm for the simply supported planar 37-bar truss
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Table 11 The optimal natural frequencies of the 37-bar planar truss obtained by different algorithms

Frequency No. Initial PSO [5] HS [10] CSS [8] SOS [17]
This work

ACCS EACCS

1 8.89 20.0001 20.0037 20.0000 20.0366 20.0084 20.0003

2 28.82 40.0003 40.0050 40.0693 40.0007 40.0280 40.0058

3 46.92 60.0001 60.0082 60.6982 60.0138 60.0397 60.0049

4 63.62 73.0440 77.9753 75.7339 - 76.8668 76.4605

5 76.87 89.8240 96.2564 97.6137 - 96.7594 96.6879

Table 12 Comparison of optimal results of the 52-bar dome truss obtained by different algorithms

Design variable
Initial GA [22] PSO [5] HS [10] CSS [9] CBO [25]

This work

Z
j
 , X

j
 (m) ; A

i
 (cm2) ACCS EACCS

Z
A

6.0 5.8851 5.5344 4.7374 5.2716 5.6523 6.0230 6.1496

X
B

2.0 1.7623 2.0885 1.5643 1.5909 1.9665 2.1831 2.2497

Z
B

5.7 4.4091 3.9283 3.7413 3.7039 3.7378 3.8056 3.8670

X
F

4.0 3.4406 4.0255 3.4882 3.5595 3.7620 4.0401 4.1004

Z
F

4.5 3.1874 2.4575 2.6274 2.5757 2.5741 2.5015 2.5002

A
1

2.0   1.0000 0.3696 1.0085 1.0464 1.0009 1.0037 1.0002

A
2

2.0   2.1417 4.1912 1.4999 1.7295 1.3326 1.1422 1.1116

A
3

2.0   1.4858 1.5123 1.3948 1.6507 1.3751 1.3115 1.2031

A
4

2.0   1.4018 1.5620 1.3462 1.5059 1.6327 1.3726 1.2816

A
5

2.0   1.911  1.9154 1.6776 1.7210 1.5521 1.3898 1.3620

A
6

2.0   1.0109 1.1315 1.3704 1.0020 1.0000 1.3883 1.3462

A
7

2.0   1.4693 1.8233 1.4137 1.7415 1.6071 1.3165 1.2910

A
8

2.0   2.1411 1.0904 1.9378 1.2555 1.3354 1.5172 1.6409

Best weight (kg) 338.69 236.046 228.381 214.94 205.237 197.962 199.2701 198.8307

Average weight (kg) – – 234.30 229.88 213.101 206.858 206.2003 199.6934

Standard deviation – – 5.22   12.44 7.391  5.750  6.5425 1.9257

No. of analyses – – –      20,000 4,000   4,000   8,000 8,000

Table 13 The optimal natural frequencies of the 52-bar dome truss obtained by different algorithms

Frequency No. Initial GA [22] PSO [5] HS [10] CSS [9] CBO [25]
This work

ACCS EACCS

1 22.69 12.81 12.751 12.2222 9.246 10.2404 11.3007 11.7189

2 25.17 28.65 28.649 28.6577 28.648 28.6482 28.6481 28.6477

3 25.17 28.65 28.649 28.6577 28.699 28.6504 28.6538 28.6486

4 31.52 29.54 28.803 28.6618 28.735 28.7117 28.6594 28.6548

5 33.80 30.24 29.230 30.0997 29.223 29.2045 28.7886 28.8702

4.2 Shape and size optimization
4.2.1 The 37-bar planar truss
A simply supported 37-bar planar truss is studied as the 

shape and size optimization example to demonstrate the 

effectiveness and robustness of the EACCS. Fig. 10 shows 

the initial shape and a finite element model of this structure. 
A constant lumped mass of 10 kg is placed on each free node 

of the lower chord, and is assumed to be unchanged during 

the design process. All bars of the lower chord are fixedly 
assigned to a constant cross-sectional area of 4 × 10–3 m2, 

whereas the others possess an initial cross-sectional area of 

1 × 10–4 m2. It should be noted that all the nodes of the 

upper chord are permitted to move vertically, their y-axis 

coordinates are thus taken as design variables. Furthermore, 

nodal coordinates and member areas are connected so that 

the structure is symmetric. Consequently, nineteen design 

variables containing five nodal coordinate and fourteen 
cross-sectional areas are redesigned. This structure which 

is a well-known benchmark problem has been previously 

studied by many researchers [4, 5, 10, 17, 22, 24–26].
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Fig. 12 The weight convergence histories of the 37-bar planar truss 

obtained using the ACCS and EACCS

Fig. 13 The initial shape of the 52-bar dome truss

Fig. 14 Final configuration found by the artificial coronary circulation 

system for the spatial 52-bar truss

Fig. 15 The weight convergence histories of the 52-bar dome truss

Optimal results obtained by both algorithms and dif-

ferent approaches including cross-sectional areas, nodal 

coordinates, corresponding weights and statistics results 

are provided in Table 10. It can be seen that the EACCS 

results in better solutions than the others. 

Table 11 represents the first five optimal natural frequen-

cies attained by the present study and different algorithms. 

As can be observed, all the optimized frequencies are free 

from any violations of constraints. Fig. 11 describes the 

optimal shape of the truss structure obtained using the 

EACCS. It can be stated that this final shape is quite sim-

ilar to those obtained in the previously published works. 

Finally, the convergence rate of the ACCS and EACCS are 

illustrated in Fig. 12.

4.2.2 The 52-bar dome truss
The last example for the shape and size optimization prob-

lem is considered as a 52-bar dome truss. The initial sche-

matic of the structure is depicted in Fig. 13. For optimi-

zation purpose, the members of the structure are divided 

into eight variable groups as labeled in the same figure. 
With each free node a mass of 50 kg is assigned. The three 

coordinates (x, y, z) of each free node can shift within the 
range ±2 m, and these are also considered as design vari-

ables. It should be noted that the entire structure must pre-

serve its symmetry during the optimization process. Thus, 

there are thirteen independent design variables consisting 

of five shape and eight size variables. All member areas 
are initially assigned a value of 2 × 10–4 m2. This dome 

truss is a well-known benchmark problem has previously 

been studied by researchers such as [5–10, 17, 24, 27].

Table 12 contains a comparison of the optimal results 

obtained by both ACCS and EACCS algorithms, and 

the other considered approaches. The effectiveness and 

robustness of the EACCS, the optimal weight achieved by 
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the proposed method is the best compared to those given 

by the other considered algorithms as indicated in the 

table. Table 13 displays the first five optimal natural fre-

quencies for different optimization methods. It can easily 

be seen that no violation of constraints are present for the 

optimized results. Fig. 14 sketches the final optimal shape 
of the structure given by the EACCS after the design pro-

cess. It should be noted that similar configurations were 
also found by various studies in the literature. Fig. 15 

shows the weight convergence histories obtained using the 

EACCS for this structure. 

5 Conclusions
In this paper, a new enhanced ACCS is proposed for deal-

ing with shape and size optimization problems of truss 

structures under multiple frequency constraints. The pres-

ent algorithm is a bio-inspired population-based meta-

heuristic based on the re-growing behavior of the cap-

illaries and arteries, which can happen repeatedly. Six 

numerical benchmark examples with highly nonlinear and 

non-convex properties including four examples for size 

optimization and two examples for shape and size optimi-

zation are tested to verify the effectiveness and robustness 

of the proposed approach. 

The results are compared with those of some other opti-

mization algorithms on the same problems. The results 

indicate that the performance of the EACCS is compara-

ble to the other state-of-the-art methods. In fact, for six of 

the examples, EACCS found the best results among the 

compared methods.

Therefore, the EACCS is very promising algorithm 

to extend its applications to various engineering opti-

mization problems in many fields with the high feasibil-
ity where the computational cost is important. Also, the 

EACCS is a multi-purpose optimization algorithm which 

can be used for other types of optimization problems from 

different fields of science and engineering. Application of 
the EACCS to different classes of optimization problems, 

and investigation of possible variants and modifications, 
could be the subject of future studies. Form the results of 

this study it can be concluded that both standard ACCS 

and its enhanced version have performed better than the 

many other methods available in the literature in some of 

the examples considered, and in one example the design is 

only slightly heavier than the best one found.
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