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Abstract

Background: During the most recent decade many Bayesian statistical models and software for

answering questions related to the genetic structure underlying population samples have appeared

in the scientific literature. Most of these methods utilize molecular markers for the inferences,

while some are also capable of handling DNA sequence data. In a number of earlier works, we have

introduced an array of statistical methods for population genetic inference that are implemented

in the software BAPS. However, the complexity of biological problems related to genetic structure

analysis keeps increasing such that in many cases the current methods may provide either

inappropriate or insufficient solutions.

Results: We discuss the necessity of enhancing the statistical approaches to face the challenges

posed by the ever-increasing amounts of molecular data generated by scientists over a wide range

of research areas and introduce an array of new statistical tools implemented in the most recent

version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-

specified numbers of clusters and to estimate levels of admixture under a genetic linkage model.

Also, alleles representing a different ancestry compared to the average observed genomic positions

can be tracked for the sampled individuals, and a priori specified hypotheses about genetic

population structure can be directly compared using Bayes' theorem. In general, we have improved

further the computational characteristics of the algorithms behind the methods implemented in

BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset

can now be spread over multiple computers using a script interface to the software.

Conclusion: The Bayesian modelling methods introduced in this article represent an array of

enhanced tools for learning the genetic structure of populations. Their implementations in the

BAPS software are designed to meet the increasing need for analyzing large-scale population

genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at

http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.

Published: 16 December 2008

BMC Bioinformatics 2008, 9:539 doi:10.1186/1471-2105-9-539

Received: 5 August 2008
Accepted: 16 December 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/539

© 2008 Corander et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2105/9/539
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19087322
http://web.abo.fi/fak/mnf//mate/jc/software/baps.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:539 http://www.biomedcentral.com/1471-2105/9/539

Page 2 of 14

(page number not for citation purposes)

Background
The past decade has provided an upsurge of methods and
software enabling Bayesian statistical analyses of the
ancestry and the current genetic structure of natural pop-
ulations using a variety of molecular information sources,
such as microsatellite and single-nucleotide polymor-
phism markers, as well as mitochondrial and house-keep-
ing DNA sequences, to name a few. Reviews of the existing
methods (see e.g. [1-3]) illustrate the jungle of software
that can be in general exploited to infer ancestral patterns,
migration and genetic isolation of subgroups of samples
using Bayesian inference, e.g., BAPS [4-9], BAYES [10,11],
BayesAss+ [12], GENECLUST, TESS [13], GENELAND
[14-17], InStruct [18], NEWHYBRIDS [19], PARTITION
[20], STRUCTURAMA [21], STRUCTURE [22,23]. Most of
these methods rely on Markov chain Monte Carlo
(MCMC)-computation in ways that have become more or
less standard for modern Bayesian analysis [24].

We have earlier demonstrated the versatility of enhancing
Bayesian computation through incorporation of analyti-
cal integration techniques into the stochastic search over
the space of putative models, in the current applied con-
text [4,5,8], in more general bioinformatics pattern recog-
nition problems [25], as well as from a more theoretical
statistical perspective [26,27]. It is apparent from the
generic developments within molecular biology, that the
statistical and computational methods used for the analy-
ses of molecular datasets must evolve to meet the chal-
lenge stated by continuously increasing sizes of samples
and the amount of molecular information characterized
for them. With the cost of DNA sequencing decreasing
rapidly and with the increasing number of molecular
markers available for non-model organisms, a large
number of research areas will face the need of feasibly
applicable statistical tools to the myriad of questions
related to the genetic population structure. It is evident
both from the theoretical and applied literature con-
cerned with Bayesian model learning and MCMC-compu-
tation, that the existing standard methods, such as the
Gibbs sampler and reversible-jump Metropolis-Hastings
algorithm [24], are not as such able to handle feasibly the
challenge stated by large (e.g. at least one thousand sam-
ples) and complex (e.g. moderate to large number of mix-
ture distribution components) molecular biological
datasets [25,26,28]. By the latter we refer to datasets con-
taining at least 10 and up to several hundreds of hidden
groups or clusters.

In most of the subsections of METHODS, we introduce a
number of new statistical tools that are implemented in
the most recent version of the BAPS software, to further
enhance the possibilities of exploring complex patterns
associated with the evolution of populations from a
genetics perspective. The novel features are then demon-

strated through a set of analyses of molecular data sets in
the RESULTS section.

Methods
Fitting genetic mixture and admixture models using a fixed 

number of populations

Motivation

Earlier introduced models and the associated stochastic
estimation algorithms available in BAPS have been based
on an approach where the number of genetically diverged
subpopulations (i.e. genetic clusters) underlying the sam-
ple material have been learned statistically, given some
reasonable a priori upper bounds determined by the user.
While such an approach is relevant for most applications,
there are situations in which it would be more appropriate
to use fixed numbers of clusters specified by auxiliary
information available. For instance, the sampling scheme
might very likely be known to violate assumptions uti-
lized for most genetic clustering methods, namely that the
individuals represent fairly unrelated samples from the
target population. With closely related samples it may
happen that the estimate of the number of clusters is
strongly biased, as the assumption of the Hardy-Weinberg
equilibrium fails for such data. By fixing the cluster num-
bers within a certain confidence range, one can avoid spu-
rious inferences about population structure due to genetic
relatedness between samples. Also, biological auxiliary
information may limit the number of possible ancestral
sources of sampled individuals, say, into two alternatives,
in which case it would be beneficial to restrict the analyses
by not fitting models with three or more clusters. Such an
approach is particularly useful when the molecular data
are relatively sparse and the level of genetic differentiation
between the ancestral sources is weak.

Description

In the stochastic partition representation utilized in
[1,4,8], a genetic mixture model for a population consist-
ing of k panmictic parts is determined by a partition S =
(s1, ..., sk), which assigns n sampled individuals into k
non-empty clusters. Using the molecular information
available for the individuals, the inferences about the
genetic mixture are obtained from the posterior distribu-
tion

where Θ is the space of possible genetic structures (parti-
tions), p(data|S) is the marginal likelihood of the molecu-
lar data for the genetic mixture S, and p(S) is the prior
distribution of this structure parameter, which can be
defined in various ways, depending on the availability of
biologically relevant non-molecular information.

p S data p data S p S p data S p S
S

( | )  =
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In the earlier introduced BAPS models, five different
choices are available for specifying the a priori uncertainty
about the genetic mixture in terms of p(S). Firstly, a
default uninformative choice sets the prior equal to a uni-
form distribution over the set of genetic structures that are
only restricted by an integer K (or a set of distinct integers
K), 1 <K ≤ n, an upper limit for the number of panmictic
components thought to be feasible for the investigated
population. The structure S which maximizes the poste-
rior distribution (1) over this set is then sought using a
stochastic search algorithm. Secondly, a more informative
prior can be derived from the information provided by a
commonly applied sampling design, where the strategy is
to collect individuals from a number of geographically
limited areas, yielding local sample populations. A uni-
form prior distribution can then be specified over the set
of genetic structures satisfying the constraint that any sub-
set of individuals with an origin in the same local sample
population should not be assigned into separate clusters.
The second prior thus corresponds to clustering of sample
populations (or similar groups of individuals) instead of
the individuals. Although such a prior for genetic struc-
tures is quite restrictive, it is still useful, in particular when
the molecular information in the likelihood is very sparse
(say 1–5 marker loci), or when the levels of genetic dis-
tances among populations are rather low.

The third and fourth prior alternatives are otherwise anal-
ogous to those two already presented, except that the prior
distribution over different genetic structures is not uni-
form, but favors spatial smoothness in the clustering solu-
tion. Such priors were derived in [9], who introduced a
spatial clustering model for molecular marker data. Under
these alternatives it is assumed that sample coordinates
are available either for the collected individuals, or for the
local sample populations, depending on the level at
which the clustering is to be performed. The spatial prior
distributions are then specified under the constraint that
the upper bound K is determined application-wise, and
the corresponding posterior optimal number of clusters
within the range [1, K] is estimated using the stochastic
learning algorithm. The particular advantage of the spatial
priors in contrast to the uniform distribution is that they
provide more weight for clustering solutions that are
expected to be sensible from the biological perspective a
priori, which strengthens the inferences for sparse molecu-
lar data. However, for strongly informative markers and
clear genetic boundaries in the sample, the two
approaches will provide highly similar inferences, as the
prior distribution will be dominated by the marginal like-
lihood of the molecular data.

The final alternative to specifying the prior distribution
over the genetic structures is provided by considering
trained clustering, where it is assumed that separate base-

line data consisting of individuals with known origins is
available for at least some of the possible genetic origins
underlying the sample data. The molecular information
from the baseline is then utilized to update information
concerning the allele frequencies in the corresponding
subpopulations, which is further used to assess models
that assign sample data to these and other putative origins
in various configurations. The number of clusters present
in the sample data is here otherwise learned similarly as
for the previously described models, i.e. under an a priori
determined upper bound K.

To provide more flexibility for the genetic mixture estima-
tion, we have in BAPS 5.1 extended each of the above
modelling approaches to allow for a fixed number of clus-
ters to be used instead of letting the algorithm learn the
value under a given upper bound K. This means that the
prior distribution is otherwise analogously determined as
according to the five described alternatives, except that it
gives non-zero probabilities only for the genetic structures
that have exactly the specified number of clusters. It is
worth emphasizing that the stochastic maximization of
the posterior is still done in a similar fashion as for the
models with an upper bound K, by using the analytically
calculated marginal likelihoods to evaluate the clustering
solutions, however, under the constraint that the number
of clusters does not change during the iterations of the
estimation algorithm. The particular advantage of utiliz-
ing the analytical approach is that it avoids the Monte
Carlo error for the estimation of a marginal likelihood for
a Bayesian model. Such errors can be substantial even for
a relatively large number of Monte Carlo iterations, when
the number of clusters is at least considerable and/or the
number of samples assigned in a cluster is small, due to
the increased instability of the allele frequency samples
from the corresponding posterior distribution. In situa-
tions where it is still of interest (and appropriate) to com-
pare the statistical adequacy of estimated genetic
structures having different numbers of clusters, the
obtained maximal marginal likelihood values p(data|S)
for the different solution can be used as previously.

Comparing a priori specified biological hypotheses about 

the population structure

When molecular methods are applied in population
genetics, it is common that previously gained context-spe-
cific knowledge, or even more general theories, may sug-
gest a range of alternative genetic structures that are a priori
considered plausible for some set of sample data. Under
such circumstances, fitting of genetic clustering models as
presented previously can be an inconvenient and indirect
way of comparing the existing a priori hypotheses about
the genetic structure. To facilitate such comparisons, we
have implemented a possibility to do the analysis using
the posterior probabilities for the hypotheses correspond-
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ing to the fixed genetic mixture models. Let Hi, i = 1, ..., m,
be m hypotheses, each specifying unambiguously a value
for the partition S in a genetic mixture model, and p(Hi)
the corresponding prior probabilities for the hypotheses.
The posterior probabilities for the hypotheses are then
defined as

and provide a direct way of comparing the relative plausi-
bility of the competing structures.

Discovering alleles with a deviating ancestry

Motivation

In our earlier work [4], we introduced a two-stage strategy
to inferring admixture events for individuals, where a
genetic mixture model is first fitted to the data, and the
likelihood of admixture for each individual is then con-
sidered conditional on the number of putative ancestral
sources in the mixture. This strategy was proposed as a
way of handling the weak identifiability resulting from
admixture models where the number of ancestral sources
is inferred simultaneously with the admixture coefficients
of the individuals, as this may lead to spurious inferences,
see [4].

While admixture models are useful for shaping our under-
standing about the past events in a population, they have
a somewhat narrow scope in certain contexts, where it is
of interest to identify at which loci an individual might
have alleles representing a deviating ancestry. Namely, as
the admixture framework is focused on the average pro-
portions of genomic content that can be assigned to par-
ticular ancestral sources, it does not directly reveal which
alleles or nucleotides should be considered to carry statis-
tically conclusive evidence for an ancestry distinct from
the origin assigned to an individual in a genetic mixture
analysis. Such an inference task is particularly relevant in
analyzing bacterial population structures, since horizon-
tal gene transfer between groups of different origins play
an important role in shaping the bacterial gene sequences.
Also, for suspected hybrid individuals, it may be of inter-
est to explore how many and which genomic regions
show signs of recombination if data are available from the
parental lineages. Moreover, migration events in a rela-
tively distant past, for which the traces present in the
molecular data are already quite diluted, may go undetec-
ted in an admixture analysis when the focus is on average
proportions of genomic content, especially if a large
number of loci is considered.

In order to complement the picture painted by an admix-
ture analysis about the past events in a population, we

introduce here a simple statistical tool which can be
exploited to discover alleles with a deviating ancestry,
given the results for an earlier estimated genetic mixture
model. Our approach is based on the use of Bayes factors
combined with predictive likelihoods to compare the evi-
dence for alternative ancestral sources at each marker
locus observed for a particular individual (examples are
provided in Figures 1 and 2). In the implementation of
this tool it is possible for a user to determine the level of
conclusive evidence for deviating ancestry, while the
default threshold is chosen according to the categories
advocated in the theoretical literature [26]. We note that
as the tool treats the data from all loci separately, it serves
primarily as an exploratory method. In particular, for
studies of bacterial populations based on DNA sequences
from multiple genes, it is possible to perform more
detailed analyses, for instance, using the model intro-
duced by [29].

Description

To consider the statistical uncertainty related to the ances-
try of an observed allele (or a nucleotide) at a particular
locus (site), we utilize in a combined manner Bayes fac-
tors [30] and posterior probabilities for the allele frequen-
cies in the putative origins to efficiently explore the
molecular data, such that loci carrying plausible evidence
for deviating ancestry are discovered.

We assume that a genetic mixture analysis is performed
prior to an attempt to discover alleles with a deviating
ancestry, to identify the possible putative origins of the
alleles. Such an analysis may be done either using the
approach where the suitable number of clusters is learned
by BAPS, or by specifying the number of clusters in
advance. The number of distinct ancestral origins used
here is denoted by k. Let aij be an observed allele for an
individual i at the locus j, and further, let c denote the clus-
ter into which this individual was assigned in the genetic
mixture analysis. For notational simplicity, we assume
here that the data are haploid. Diploid data is dealt with
accordingly by considering both the alleles at a single
locus separately. The strength of evidence for an ancestry
distinct from c is assessed by the maximal Bayes factor

where p(aij|Sc) is the predictive likelihood of allele aij in
the genetic origin represented by cluster c after removing
aij from the molecular data obtained from sc at locus j, and
similarly, p(aij|Sc') is the corresponding predictive likeli-
hood for cluster c' (where no removal is necessary as indi-
vidual i is not included in sc'). The predictive likelihood is
the probability of observing the allele aij within a particu-
lar genetic origin, when the remaining uncertainty about

p H data p data H p H p data H p Hi i i i i
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the allele frequencies at locus j after the molecular data
obtained from individuals assigned in the particular clus-
ter has been taken into account. Thus, these predictive
likelihoods reflect in a statistically sensible manner both
the possibly varying levels of polymorphism and missing
data over the loci. To identify loci where the statistical evi-
dence for a deviating ancestry is at least substantial, we use
2.3 as a default threshold for the log BF, as suggested by
the guidelines discussed in [30]. This threshold implies
that the particular allele under consideration is at least 10
more likely to be observed in a cluster other than c. How-
ever, in our software implementation it is possible to
choose the threshold freely, for instance, if only loci with
very strong evidence of a deviating ancestry are sought.
Under the reference Dirichlet prior utilized for the allele
frequencies in the earlier BAPS works, the above predictive
likelihoods can be written as

where Γ(·) is the gamma function, nc' jl is the number of
copies of allele l (l = 1, ..., NA(j)) at locus j observed in the
cluster c', I(aij = l) is an indicator function of aij being equal
to l, and αj is a Dirichlet prior hyperparameter equal to 1/
NA(j).

To aid the summarization and interpretability of the allele
screening results for any individual of interest, we have
implemented the Bayes factor-based discovery tool in
such way that it displays a visual map of the loci where the
threshold of (3) is reached. The statistical basis of this
map is similar to the admixture plots, where an individual
is shown as a multicolored vertical bar, such that the rela-
tive height of each color is equal to the estimated percent-
age of the genome having an ancestry from the
corresponding origin. Here, similar bars are drawn for
each locus (on two separate images for diploid data)
where the maximal Bayes factor value is larger than the
threshold; however, with the distinction that all the bars
represent the inferences for the same individual. The rela-
tive height of the color corresponding to ancestral origin
labeled by c' is equal to the posterior probability under the
uniform prior over the k possible origins, which is calcu-
lated analytically as

p a s
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Posterior probabilities of the origins of alleles for an admixed individual from the population labelled C/D, who was assigned into the cluster with green label in the genetic mixture analysisFigure 1
Posterior probabilities of the origins of alleles for an admixed individual from the population labelled C/D, who 
was assigned into the cluster with green label in the genetic mixture analysis. The posterior probabilities are only 
shown for the alleles where the loge Bayes factor for an ancestry deviating from the origin labelled green exceeds the default 
threshold (2.30). For simplicity of the visualization, the genotype data are assumed ordered, such that the lower and upper pan-
els correspond to chromosome 1 and 2, respectively.
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For examples, see Figures 1 and 2, which are introduced in
the RESULTS section. If a conservative approach to inter-
preting the above values is taken, then only cases where
the bar area is solely or almost solely represented by a sin-
gle color, are considered as evidence for a deviating ances-
try of a particular allele. However, such a strict limitation
would tend to ignore alleles that are brought into a popu-
lation by migration or admixture (even several genera-
tions earlier), but which are common in more than one
alternative ancestral origin.

It should be noticed that making inferences about the ori-
gin of an allele (or genotype) at any particular single locus
is per se more challenging than the admixture analysis,
which combines the information provided over all con-
sidered loci. This is due to the fact that the allele frequen-
cies at a single locus in the different possible populations
of origin have to be quite distinct to yield conclusive evi-

dence for a deviating ancestry. Moreover, especially for
highly polymorphic loci, only a fraction of the individuals
representing a specific ancestral origin tends to carry alle-
les that are markedly characteristic for that origin, at a
given locus. Thus, it is not realistic to expect that statisti-
cally conclusive evidence for deviating ancestry can be
obtained for a large number of loci, unless the popula-
tions in question are strongly differentiated in genetic
sense.

Admixture analysis under a genetic linkage model

Motivation

As discussed in the previous section, [4] developed a Baye-
sian approach to the estimation of the levels of admixture
in individuals' genomes from sample data with unlinked
molecular markers. Here we describe an extension of this
approach to linked molecular data under the linkage
model introduced by [5]. Also, we improve the simula-
tion-based estimation framework of [4] to both reduce the
computational burden for large datasets and to obtain
more accurate p-value estimates in situations where the
amount of missing molecular data varies considerably
among the observed individuals. These computational

p aij sc
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c
c c

k
p aij sc

( |

( | ( |
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’
’
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.
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≠
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Posterior probabilities of the origins of alleles for an individual with pure ancestry in the population labelled E, who was assigned into the cluster with magenta label in the genetic mixture analysisFigure 2
Posterior probabilities of the origins of alleles for an individual with pure ancestry in the population labelled E, 
who was assigned into the cluster with magenta label in the genetic mixture analysis. The posterior probabilities 
are only shown for the alleles where the loge Bayes factor for an ancestry deviating from the origin labelled green exceeds the 
default threshold (2.30). For simplicity of the visualization, the genotype data are assumed ordered, such that the lower and 
upper panels correspond to chromosome 1 and 2, respectively.
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enhancements are applicable to the admixture estimation
for unlinked marker data as well.

Assume that the molecular data cover m genomic regions,
e.g. genes, such that the regions are considered unlinked
and that the dependencies among the sites within each
individual region are represented by a Markov structure as
in [5]. Then, it is possible to find an analytical expression
for the joint probability of an observed genetic profile
over the considered regions and to use Monte Carlo sam-
pling for the allele frequencies conditional on an esti-
mated genetic mixture model. Consequently, principally
the same strategy to finding marginal maximum a posteri-
ori estimates of the admixture coefficients and assessing
their significance, as in [4], can be used.

Description

Let ωi = (ωi1, ..., ωik),  be a vector of admixture

coefficients representing the proportions of the genome of
individual i with ancestry in the corresponding origins.
Assume that the observed molecular data are represented
by either ng genomic regions (DNA sequence data) or link-

age groups (linked marker data). The linkage model intro-
duced in [5] represents the dependencies by Markov
structures, under which the joint probability of the data
over the considered sites or loci can be expressed using an

analytical factorization. Let pc(xig|ωi) be such a joint prob-

ability of the data from the gth region for individual i

within the subpopulation c. Then, the admixture model
likelihood for all the data xi from i is determined by

where

where Qg and Sg are sets of all cliques and separators in
region g pcq is the probability of clique q in cluster c, and
pcs is the probability of separator s in cluster c

Here we use the same prior for ωi as in [4], and obtain the
marginal posterior mode estimates by numerical maximi-
zation combined with a Monte Carlo simulation, to
account for the uncertainty about the probabilities p(xi |

ωi) given a genetic mixture estimate. It follows from the
basic properties of the Dirichlet-distribution and decom-
posable graphical factorizations (e.g. [31]) that realiza-
tions from the posterior of p(xi | ωi) can be simulated
using an ordinary Monte Carlo approach even under the
linkage model.

After the estimation of the admixture coefficients for the
individuals, a simulation procedure is carried out in order
to assess their statistical significance. By simulating refer-
ence individuals without admixture from the populations
identified in the mixture clustering, we can estimate the
distribution of admixture coefficients under the no-
admixture hypothesis. In particular, we can assess the
probability that the non-zero admixture coefficients
obtained for the individuals in the data could have arisen
by chance alone, and not represent a real admixed back-
ground.

To reduce notably the simulation burden for large and
complex datasets, we use a simple pre-filtering to remove
those individuals for which there is definitely not enough
statistical evidence of admixture to obtain significance at
5%-level. The filtering is accomplished by investigating
the difference in the maximized log-likelihood between
the admixture hypothesis and the no-admixture hypothe-
sis. If this difference is less than 3, it is concluded that
there is not enough evidence in the likelihood to obtain
significance for admixture, and the individual is not con-
sidered further by simulation. The simulation-based p-
value (see below) for such individuals will be set to unity.
Notice that the chosen filtering threshold represents a very
liberal significance limit in an asymptotic likelihood ratio
test with the minimum possible degrees of freedom, and
thus, no cases where there are non-negligible chances of
obtaining a p-value smaller than 5% will be left out of the
consideration.

When non-admixed reference individuals are simulated
from a subpopulation identified in the genetic mixture
estimation, the fact that the levels of missing data may
vary between individuals should be explicitly taken into
account, which was not done by [4]. Otherwise, elevated
levels of significance may be obtained under some cir-
cumstances, where the degree of missing information in
the genetic profiles of certain individuals allows spuri-
ously high posterior mode admixture coefficients to arise
for a false origin. To prevent such events, we have devel-
oped a strategy where each estimated subpopulation is
further divided into clusters based on the proportions of
the missing alleles of the individuals assigned to that sub-
population. In this clustering the individuals are allowed
to be grouped into maximally three subsets using the pro-
portions of missing alleles as evidence in the modelling
approach derived in [32]. Notice, however, that the sub-
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groups are not forced by the method, i.e. a single cluster
may result from this procedure, if the observed individu-
als are relatively homogeneous with respect to the levels
of missing data.

Given the obtained subgroups with respect to varying
degrees of missing information in the genetic profiles of
individuals assigned to a specific cluster in the genetic
mixture analysis, a number of non-admixed reference
individuals are simulated for each subgroup. However,
this simulation effort is used only for those clusters, where
the pre-filtering described above has not removed all indi-
viduals, as there is otherwise no need to obtain signifi-
cance limits for the admixture estimates. The admixture
coefficients are estimated for the simulated individuals in
exactly the same manner as for the individuals in the
observed data. To summarize these analyses, a simula-
tion-based p-value is given for each individual in the data,
and it corresponds to the proportion of the simulated
individuals from the same population and with the same
level of missing data, whose estimated admixture coeffi-
cient ωic for their true population is smaller than or equal
to the estimated coefficient for the investigated individ-
ual. Thus, this p-value reflects how small a proportion of
the genome can be assigned to the true ancestral origin of
an individual by chance, while taking into account the
uncertainty about the allele frequencies in the underlying
population and the extent of information in the observed
genetic profile.

Enhancements in the computational architecture and 

presentation of results

As model-based clustering and admixture analysis are sta-
tistically and computationally very challenging problems,
in particular for large and complex datasets, we have
improved the computational architecture inside BAPS to
facilitate fitting of the Bayesian models. Firstly, as dis-
cussed in the previous section, the pre-filtering approach
developed for the admixture analysis reduces considera-
bly the number of simulation steps when there exists at
least a moderate number of individuals in the data with
negligible evidence of admixture. Secondly, we have opti-
mized the information processing in the clustering algo-
rithms, such that the computation time required for
fitting a linkage clustering model to a large dataset has
decreased by approximately 80% compared to the earlier
version (4.14) of the software. Finally, we have intro-
duced the possibility to use script files to run analyses,
such that the replicate runs of the genetic mixture cluster-
ing or the admixture reference simulations can be per-
formed simultaneously in separate computers. The
analytical approaches utilized in our models enable a sub-
sequent aggregation and comparison of the results from
these estimation processes, using built-in features of the
software interface. To facilitate the extraction of informa-
tion from the genetic mixture analyses, both graphical and

numerical summaries of the relationships among inferred
clusters can be obtained. We have in particular imple-
mented the possibility to draw UPGMA and Neighbor-
Joining trees (see, e.g. [33]) using several different visual
types (square, angular, radial, phylogram) and distance
measures (Kullback-Leibler divergence, Nei's and Ham-
ming distance).

Results
Fitting genetic mixture and admixture models using a fixed 

number of populations

To illustrate the flexibility provided by the approach
based on a fixed number of clusters that are fitted to the
molecular data, we consider a dataset from [34]. The data
consists of 90 individuals collected from three distinct
population isolates that all had the same origin in a spe-
cific founder population 20 generations earlier. The sam-
ple size from each population isolate is 30, and these
individuals represent 10 sibships with three siblings in
each. The observed molecular data comprise 15 unlinked
microsatellite loci for which alleles were simulated by [34]
using a realistic setup of founder allele frequencies with a
sensible mating scenario. The estimated maximum poste-
rior genetic structure based on the individual level cluster-
ing model for unlinked markers with exactly three clusters
is nearly equal to the underlying grouping, showing only
a single incorrectly assigned individual. Similarly, to
investigate how well the sibling trios could be identified
from the data, the posterior optimal structure with 30
clusters was estimated, and also this estimate misplaced a
single individual.

To pinpoint the advantages gained from the analytical
integration approach combined with the stochastic
search, we compared these results to those reported in
[34] based on STRUCTURE analyses of the same data.
Notably, at the population isolate level (K = 3) the results
are quite similar, i.e. STRUCTURE assigned incorrectly
only three individuals. However, at the sibship level (K =
30) the genetic boundaries identified by STRUCTURE are
considerably blurred for approximately half of the trios
(Figure 5 in Estimating genealogies from unlinked marker
data: A Bayesian approach [34]). This difference arises
likely from the Monte Carlo error related to the estimation
of underlying allele frequencies, as the sample sizes in the
trios are small. We also performed admixture estimation
with BAPS for these data, both conditional on the esti-
mated genetic mixture with K = 3 and K = 30. Neither of
the two analyses yielded any significant admixture esti-
mates at 5% significance level, i.e. no false positive admix-
ture cases were detected for these data.

Comparing a priori specified biological hypotheses about 

the population structure

To illustrate the introduced feature for a direct compari-
son of biological hypotheses concerning genetic popula-
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tion structure, we consider microbiological data from
[35]. The data consist of 18 seawater microbial commu-
nity samples from Tokyo Bay area fingerprinted using ter-
minal restriction fragment length polymorphisms (T-
RFLP). The microbial composition of a sample was char-
acterized by a number of markers, each of which repre-
sents the quantitative abundance of a certain bacterial
species. There are 71 marker loci in total and we consider
them here in the same binarized form as referred to in
[35]. The 10 sample sites are located in the Keihin canal
approximately linearly from a position containing an
open sewage pipe end towards the canal's outlet to Tokyo
Bay, and, at 8 out of the 10 sites, both surface and bottom
were successfully extracted.

The environmental factors present in the sampling design
suggest that the prominent salinity gradient between sur-
face and bottom water might lead to a genetic separation
of the microbial communities existing at the two water
levels. On the other hand, the form of the canal and the
waste water load nearby the sewage pipe might create a
separation of the area closest to the sewage pipe (two sam-
ples) from the narrow canal area (10 samples), which
would further be separated from the remaining samples,
as these are located in the open bay area and correspond-
ingly affected more by the sea currents. Thus, these envi-
ronmental factors may suggest a genetic structure with
three clusters in the data. Finally, given the relatively high
levels of nutrient loading in the water throughout the
canal and bay area, it could be plausible that the genetic
structure of the sampled region consists solely of a single
cluster. To compare these hypotheses, we assigned each an
equal a priori probability (p(Hi) = 1/3), and calculated the
posterior probabilities using the model of unlinked mark-
ers at the individual level. The resulting probabilities for
the three hypotheses are approximately 1.00, 0.00 and
0.00, respectively, which indicates that for these data the
salinity differences seem to have a greater role in shaping
the microbial communities, than the closeness to the
waste water source.

Discovering alleles with a deviating ancestry

In our earlier work [4] we created a simulated admixture
scenario based on extensive human microsatellite data
from [36], where first- and second-generation admixture
cases were combined with individuals representing non-
admixed ancestry. The allele frequencies for the underly-
ing simulated populations were set equal to the posterior
mode estimates for the clusters inferred by BAPS analysis
of the original data. Here we use an analogous simulation
framework to illustrate the possibilities for the discovery
of alleles with a deviating ancestry. Our simulated data
consists of 700 individuals in total, for which genotypes
were generated over 377 microsatellite loci using the allele
frequencies in the earlier inferred BAPS clusters (Eurasia,

Africa, Oceania, East Asia and America). In addition to the
individuals with pure ancestry in one of the underlying
five populations, the dataset contains three groups of
individuals whose parents represent distinct genetic ori-
gins, as well as one group for which the parents them-
selves have admixed ancestry.

The simulated human microsatellite data were first ana-
lyzed using a genetic mixture model for unlinked markers
with the a priori upper bound for the number of clusters
set equal to 10. The resulting posterior mode clustering
was then used for admixture inference and the results are
shown in Figure 3. In this graphical presentation we have
used the default option in BAPS, where the estimated
admixture coefficients are distinct from pure ancestry only
for individuals assigned with a significant p-value (the
default threshold value being 5%). This type of a presen-
tation facilitates the visual interpretation of the results, as
statistically spurious admixture coefficient estimates dis-
tinct from zero are filtered out. It is seen that all individu-
als with an admixed ancestry were considered significant,
and that additionally two out of 430 individuals with a
pure ancestry (population A, blue color) were spuriously
inferred to be admixed.

In Figure 1, putative loci associated with a deviating ances-
try are shown for an individual with admixed ancestry
between the populations marked with the red (popula-
tion C) and green (population D) colors in Figure 3. In the
genetic mixture analysis this individual was assigned to
the green cluster, and thus, the Bayes factor assesses the
statistical evidence for an ancestry distinct from the popu-
lation D for each allele at each locus. In Figure 1 the alleles
at those loci out of the 377 in total are shown, where the
loge Bayes factor exceeds the default threshold (2.3), such
that the relative height of each color in the bars corre-
sponds to the posterior probability of the allele having its
origin in the population with the corresponding color. For
the convenience of visualization and numerical summa-
ries of the Bayes factors, it is assumed that diploid molec-
ular data are ordered and that the lower and upper panels
of the figure correspond to the first and second chromo-
some, respectively. For datasets where this information is
not available, the graphical representation simply reflects
the ordering of the alleles within the genotypes in the
dataset.

The role of the posterior probabilities is here to aid the
interpretation of the allele screening results based on the
Bayes factors. Namely, they enable a simultaneous visual-
ization of the pattern of the deviating ancestry suggested
for a particular individual, and also, they can be used to
further assess the statistical evidence. As a conservative
strategy, it is suggested that the evidence for a deviating
ancestry is considered strong, if the Bayes factor exceeds at
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least the default threshold and the posterior probability of
any of the suggested deviating origins of the allele is at
least 80%. Albeit this strategy reduces the statistical power
to detect interesting alleles with putatively deviating
ancestry, it also reduces considerably the extent of false
positives among the findings. From Figure 1 it can be con-
cluded that fairly conclusive evidence for the ancestry in
the population C (red) can be obtained for roughly 10
alleles scattered over the first chromosome that had its
ancestry in population C (the lower plot). The loge Bayes
factor values for the origin in the true population (C) vary
approximately over the interval [2.60, 5.98] for these
cases. It is also seen that false conclusive evidence for a
deviating origin for any other ancestral source population
is only obtained for a single allele (loge Bayes factor 3.01),
which is inferred to have ancestry in the population
labelled A. The pattern in Figure 1 can be compared with
that arising for an individual with a pure ancestry in a
population E, which is shown in Figure 2. Here, only two
alleles are suggested to have fairly conclusive evidence for
a deviating ancestry by the combination of the Bayes fac-
tors and posterior probabilities, and in contrast to the pre-
vious individual, no single alternative ancestral source is
inferred to have contributed significantly over several
locations in the genome. However, it may still be of bio-

logical interest to screen for putatively deviating loci using
this tool, even under a similar situation where no signifi-
cant signs of admixture have been detected for a particular
individual.

Admixture analysis under a genetic linkage model

To reasonably mimic characteristics of datasets for which
the linkage mixture and admixture models are intended,
we use a real bacterial data published in [37], to generate
a set of synthetic multilocus DNA sequences with which
the admixture inference is performed. The real data con-
sists of DNA sequences for seven housekeeping genes for
a sample of 120 strains representing the Burkholderia cepa-
cia complex, with the total length of 2773 bases over all
the genes. Our simulated dataset was generated by imitat-
ing the level of observed molecular divergence among
these Burkholderia strains. Firstly, an arbitrary strain was
selected as a global strain profile, being the ancestor of the
whole simulated population. Then, local ancestors for
three subpopulations were generated from the chosen glo-
bal ancestor, by inserting mutations in the DNA sequence
of the global strain, such that they occur at a rate of 0.035
per site. Thus, on average, the local ancestors are separated
from the global strain by 0.035*2773 = 97 mutations.
Finally, to obtain the synthetic data for the non-admixed

Posterior estimates of the admixture coefficients for 700 individuals with 377 microsatellite loci simulated using five underlying populations indicated by the black vertical lines (A = Eurasia, B = Africa, C = Oceania, D = East Asia, E = America)Figure 3
Posterior estimates of the admixture coefficients for 700 individuals with 377 microsatellite loci simulated 
using five underlying populations indicated by the black vertical lines (A = Eurasia, B = Africa, C = Oceania, D = 
East Asia, E = America). The populations with two labels indicate that the individuals are admixed between the two origins 
(one parent from each population). The populations with four labels indicate that the individuals have ancestry in the corre-
sponding populations (admixed parents). The allele frequencies used in the simulation are the posterior mode estimates under 
a Dirichlet prior from the human data reported in [32] using the same clusters as in [4].
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strains, mutations were inserted into the DNA sequences
of the local ancestors, such that they occur at a rate of
0.0054 per site, i.e. the strains are on the average separated
from their local ancestor by 0.0054*2773 = 15 mutations.
The numbers of generated strains with non-admixed
ancestry were 25, 20 and 20, for the three subpopulations,
respectively. Additionally, five strains with a considerable
degree of recombination between the subpopulations 1
and 2 were included in the data. The molecular profiles of
these strains were created independently of each other,
such that at approximately 25% of the sites the observed
bases were generated according to the mutation model
from the local ancestor of population 2, and correspond-
ingly, at approximately 75% of the sites from the local
ancestor of population 1.

The simulated data with 70 strains described above were
analyzed using the second-order Markov linkage cluster-
ing model of [5], with the a priori upper bound K for the
number of clusters set equal to 10, and using five replicate
runs of the stochastic estimation algorithm. The three
underlying clusters were correctly discovered in the analy-
sis, and we performed the linkage admixture analysis con-
ditional on the obtained posterior optimal genetic
mixture, where the admixed strains were allocated to the
cluster corresponding to the first underlying population.
In the admixture analysis based on the default number of
simulations used in BAPS 5.1, all the admixed strains were
assigned with p-values equal to 0.00, and all other strains
with p-values equal to 1.00. This finding reflects the infor-
mation content of the molecular data, as no false positive
or negative results were obtained. The average estimated
admixture coefficient for the ancestry in population 2 is
0.09 for the admixed strains, which underestimates to
some extent the contribution of this origin to the genomes
of the strains. However, it should be noticed that in this
type of a DNA sequence data, many of the sites with a

deviating ancestry in fact carry identical bases in all under-
lying populations, which means that they are not inform-
ative in the admixture likelihood, and thus, it is expected
that the contribution from a deviating ancestral origin
cannot be very precisely estimated, even under ideal cir-
cumstances from the statistical perspective.

Illustrative example of challenging genetic mixture 

analyses

As a final illustration of the issues related to the informa-
tion provided by the sampling design in genetic mixture
clustering, we consider the recent human dataset from
[38]. The data contains genotypes at 678 autosomal mic-
rosatellite loci for 1484 individuals collected from 78 geo-
graphically defined populations, out of which 24
represent native populations in Americas, and the remain-
ing ones are localized in Africa, Eurasia and Oceania. First,
we performed a genetic mixture analysis by clustering
these data at the sample population level using the a priori
upper limit K = 30 and 10 replicate runs of the estimation
algorithm, which yielded the posterior optimal clustering
solution with 11 clusters corresponding to random mat-
ing units (Table 1). [38] used the STRUCTURE software in
various genetic admixture analyses of this data; however,
they did not report results from any global analysis having
more than six clusters, although their separate analysis of
the Americas region revealed considerable substructure in
that region, which is quite similar to the results of our
genetic mixture analysis in Table 1. A similar strategy was
earlier followed by [36], who reported for a subset of the
data in [38] only global clustering solutions up to six clus-
ters, due to convergence problems in the STRUCTURE
estimation.

To investigate the genetic structure of the human data at a
finer scale, we also performed genetic mixture clustering
at the level of individuals in BAPS, using a range of a priori

Table 1: Posterior mode clustering of the human data from [34] using the genetic mixture analysis at the sample population level in 

BAPS.

Cluster: Included sample populations:

Cluster 1 Han, Han-NChina, Dai, Daur, Hezhen, Lahu, Miao, Oroqen, She, Tujia, Tu, Xibo, Yi, Mongola, Naxi, Cambodian, Japanese, 
TundraNentsi, Yakut

Cluster 2 Melanesian, Papuan

Cluster 3 Orcadian, Adygei, Russian, Basque, French, Italian, Sardinian, Tuscan, Mozabite, Bedouin, Druze, Palestinian, Balochi, Brahui, 
Burusho, Hazara, Kalash, Makrani, Pathan, Sindhi, Uygur

Cluster 4 Kogi, Arhuaco

Cluster 5 TicunaArara, TicunaTarapaca

Cluster 6 BantuSouthAfrica, BantuKenya, Mandenka, Yoruba, BiakaPygmy, MbutiPygmy, San

Cluster 7 Karitiana

Cluster 8 Piapoco, Maya, Chipewyan, Cree, Ojibwa, Kaqchikel, Mixtec, Mixe, Zapotec, Guaymi, Cabecar, Aymara, Huilliche, Guarani, 
Kaingang, Quechua, Zenu, Inga, Wayuu, Embera, Waunana

Cluster 9 Pima

Cluster 10 Surui

Cluster 11 Ache
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upper bound values K. The challenge posed by a large-
scale dataset with a complex structure, i.e. several small
clusters associated with relatively low levels of genetic dif-
ferentiation from the remaining populations, was clearly
illustrated by these data. For small to moderate a priori
upper bound values, the stochastic estimation algorithm
used in BAPS was unable to detect more than six clusters
in the individual level analysis, and the analytical compar-
ison of the solutions' log marginal likelihood values
revealed that they were inferior to the earlier derived esti-
mate with 11 clusters (Table 1). To gain better under-
standing of the behavior of the stochastic estimation
algorithm, we increased the a priori upper bound value
successively, until the posterior mode estimates started to
converge to the vicinity of the 11-cluster solution. From K
= 500 upwards, new clusters were successively identified,
and with K = 800, the algorithm was finally able to dis-
cover a genetic mixture with a higher posterior probability
than the 11-cluster solution obtained in the clustering at

the sample population level. This new optimum con-
tained 11 clusters as well; however, some of the individu-
als were re-allocated into alternative clusters different
from those containing the majority of their sample popu-
lation data. We finally performed an admixture analysis
conditional on the optimal genetic mixture estimate from
the individual level analysis. The posterior mode esti-
mates of the admixture coefficients significant at the 5%
level using the default options in BAPS are shown in Fig-
ure 4.

Discussion and conclusion
The apparent popularity of the Bayesian approach to solv-
ing inference problems in population genetics has led to a
surge of interest to develop new models and methods for
analyzing a variety of questions related to the genetic
structure of a population, its intrinsic ancestral patterns
and the assignment of individuals to distinct origins. Our
experiences from the development of the approaches

Posterior admixture estimates for the human data reported in [34] based on the optimal genetic mixture estimate with 11 clusters under the BAPS uniform prior clustering model for individualsFigure 4
Posterior admixture estimates for the human data reported in [34] based on the optimal genetic mixture esti-
mate with 11 clusters under the BAPS uniform prior clustering model for individuals.



BMC Bioinformatics 2008, 9:539 http://www.biomedcentral.com/1471-2105/9/539

Page 13 of 14

(page number not for citation purposes)

implemented in the BAPS software have crystallized the
need for models and algorithms that reasonably scale up
to large and complex datasets, both with respect to the
time-complexity and the accuracy of the inferences.

Our example concerned with the extensive human dataset
from [38] illustrated how difficult it can be to detect
minor underlying clusters when the size of the clustering
space increases considerably, unless these clusters are
strongly separated from the remaining data in genetic
terms. Even with the intelligent stochastic search opera-
tors implemented in BAPS, clusters may go undetected
under such circumstances, unless the initialization phase
manages to discover suitable existing boundaries within
the user-specified limits (maximum number of allowed
clusters).

It is important to notice that the information contained in
the sampling design provides often a statistically powerful
means for guiding the model estimation towards optimal
clustering solutions, as illustrated by the comparison of
the sample and individual level genetic mixture analysis
of the human data. In fact, we also performed a modified
genetic mixture clustering at the individual level, by start-
ing the analysis from the optimum solution obtained
from the sample population clustering. This analysis con-
verged to the same global optimum with 11 clusters under
the a priori bound K = 30, as the default BAPS analysis ini-
tialized using the prior boundary K = 800. This finding
suggests that our estimation algorithms could be further
improved by utilizing various strategies in the initializa-
tion phase, although the currently implemented methods
have been successfully applied for a wide range of chal-
lenging applications.

It is clear that any of the existing Bayesian approaches to
genetic population structure inference needs to evolve to
meet the challenge from the large-scale and/or genome-
wide genotyping that is available for a continuously
increasing number of organisms. Here we have discussed
an array of statistical tools that represent a step towards
that direction; however, a multitude of innovative strate-
gies for model learning, such as Bayesian variational esti-
mation and more intelligent ways of screening for initial
model estimates, could still be utilized to enhance the
possibilities to reliably fit genetic structure models. This
will be a priority research area for us in the near future to
benefit the whole research community interested in ques-
tions related to statistical learning of genetic population
structure.
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