
Research Article

Enhanced Bearing Fault Detection Using
Step-Varying Vibrational Resonance Based on
Duffing Oscillator Nonlinear System

Yongbin Liu,1,2 Zhijia Dai,1 Siliang Lu,1,2 Fang Liu,1,2 Jiwen Zhao,1,2 and Jiale Shen1

1College of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, China
2National Engineering Laboratory of Energy-Saving Motor & Control Technology, Anhui University, Hefei, Anhui 230601, China

Correspondence should be addressed to Siliang Lu; lusliang@mail.ustc.edu.cn

Received 28 November 2016; Revised 5 June 2017; Accepted 10 July 2017; Published 13 August 2017

Academic Editor: Mariano Artés

Copyright © 2017 Yongbin Liu et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bearing is a key part of rotary machines, and its working condition is critical in normal operation of rotary machines. Vibrational
signals are usually analyzed to monitor the status of bearing. However, information on the status of bearing is always buried in
heavy background noise; that is, status information of bearing is weaker than the background noise. Extracting the status features
of bearing from signals buried in noise is di
cult. Given this, a step-varying vibrational resonance (SVVR)methodbased onDu
ng
oscillator nonlinear system is proposed to enhance the weak status feature of bearing by tuning di�erent parameters. Extraction
ability of SVVR was veri�ed by analyzing simulation signal and practical bearing signal. Experimental results show that SVVR
is more e�ective in extracting weak characteristic information than other methods, including multiscale noise tuning stochastic
resonance (SR), Woods–Saxon potential-based SR, and joint Woods–Saxon and Gaussian potential-based SR. Two evaluation
indices are investigated to qualitatively and quantitatively assess the fault detection capability of the SVVR method. 	e results
show that the SVVR can e�ectively identify the weak status information of bearing.

1. Introduction

Bearing plays an important role in ensuring the normal
operation of mechanical components [1–3]. According to
statistics, approximately 30% of rotary machine faults are
caused by bearing failure. Vibrational signals acquired from
bearing are usually used to monitor the working condition
of bearings [4]. However, vibrational signals acquired by an
accelerometer are always buried in heavy background noise.
Weak signal detection (WSD) methods have been widely
used to simultaneously enhance weak signals and suppress
heavy noise. For example, Xiang and Shi proposed a WSD
method based on information fusion and chaotic oscillator
[5]. Moreover, Zhao et al. proposed a WSD method called
improved harmonic product spectrum for train bearings fault
detection [6]. Zhang et al. proposed a bearing fault detection
method based on compressive measurements technology
[7]. Additionally, Lu et al. proposed a new WSD method
based on second-order stochastic resonance (SR) nonlinear

physical model to enhance the periodicity of weak signals
[8].

Two approaches in detection methods are available for
denoising background noise. 	e �rst approach in WSD is
noise suppression. 	e common related denoising methods
include principal component analysis [9], kernel principal
component analysis [10], empirical mode decomposition [11],
independent component analysis [12], and wavelet transform
[13].

	e other approach in WSD involves the use of noise
or high-frequency signal to enhance weak signals. 	e rep-
resentative approaches include SR [14–16] and vibrational
resonance (VR) [17]. 	e ampli�cation mechanism of SR is
described as follows: the energy of a particle in a bistable
system is initially too small to allow the particle to move
across the potential well. 	e energy of the particle becomes
su
ciently high only with the help of a proper noise, which
allows the particle to move across the well, resulting in
interwell oscillation; this unconventional phenomenon is
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Figure 1: Simple block diagram of VR.

known as SR [18]. Since Benzi et al. proposed SR in 1981,
SR has greatly attracted the attention of many researchers,
especially those in the �eld of nonlinear system [19–21].
However, the use of SR is restricted by small parameters
(driving frequency and amplitude of weak low-frequency
signal are signi�cantly smaller than one) [22].

Another nonnormal phenomenon named VR, a non-
linear �lter similar to SR, was discovered by Landa and
McClintock [23]. From the perspective of physics, a particle
�lled with energy is considerably weak and thus fails to move
across a potential well. 	e particle can move across the
potential well only with the assistance of the perturbation for
an appropriate high-frequency signal. Owing to the perturba-
tion of the high-frequency periodic force, the particle energy
would be transferred, and the weak signal is instantaneously
enhanced. VR was recently used as a special nonlinear �lter
in many nonlinear systems. For example, a time-delayed
mechanism is used to control VR in a multistable system
[24]; additionally, VR based on fractional-order damping
in a Du
ng system [25] and a new nonlinear physical
model, namely, ultrasensitive vibrational resonance [26],
were proposed to be applied in the �eld of nonlinear system.

A WSD method called step-varying vibrational reso-
nance (SVVR) is proposed to extract the fault characteristic
frequency of a series of defective bearing signals. In this
paper, VR based on Du
ng oscillator system combined
with the parameter adjustment method is applied to solve
the engineering problem. 	e optimal output signal can be
obtained by selecting the optimal parameters. Finally, the
periodicity of the weak signal would be improved.

	is paper is organized as follows. Section 2 introduces
a theoretical background of VR physical model. Section 3
combines the VR model with fourth-order Runge-Kutta
(RK4) algorithm to obtain output signal. Section 4 uses a sim-
ulation signal to evaluate the �ltering e�ect of SVVRmethod.
Section 5 uses a set of defective bearing signals, which
were processed by di�erent WSD methods, to qualitatively
and quantitatively verify the fault detection performance of
SVVR. Section 6 provides a summary of this paper.

2. Theoretical Background of VR

2.1. VR Physical Model. Figure 1 shows the simple block
diagram of VR. 	e diagram includes two signals with
di�erent frequencies, namely, weak low- and high-frequency
periodic signals expressed as �(�) and �(�), respectively.
	e output signal �(�) is obtained when two superimposed
signals are processed by a nonlinear system.	e VRmodel is
expressed as follows:

�2�
��2 = −

�� (�)
�� − ����� + � (�) + � (�) , (1)

where � is the damping parameter, �(�) = 	 cos(2
��), and�(�) = � cos(Ω�), where � is driving frequency of �(�) andΩ
denotes angular frequency of �(�).�(�) is a bistable potential
well function as shown in

� (�) = −12��2 +
1
4��4, (2)

where � and � denote the potential well parameters with
positive values. Equation (3) is deduced by substituting �(�),�(�), and �(�) into (1), as shown in

�2�
��2 = �� − ��3 − �

��
�� + 	 cos (2
��) + � cos (Ω�) . (3)

2.2. System Response Analysis. For brevity, let ��/�� = �;
equation (3) can then be divided into the following equation
sets:

��
�� = �
��
�� = �� − ��3 − �� + 	 cos (2
��) + � cos (Ω�) .

(4)

In (4), let 	 = 0, � = 0, ��/�� = 0, and ��/�� = 0;
then three equilibria, namely, �∗+ = (�+, �+) = (√�/�, 0),
�∗ = (�0, �0) = (0, 0), and �∗− = (�−, �−) = (−√�/�, 0), are
obtained.

Given that (3) exists in two di�erent frequencies, output�(�) can be separated into fast and slowmotions, respectively
[27]. Let � = �+Ψ, where� andΨ are slow and fast variables
with periods of �� = 2
/2
� = 1/� and �� = 2
/Ω,
respectively [25]. Equation (5) is deduced by substituting � =� + Ψ into (3), as follows:

�2�
��2 +

�2Ψ
��2 = �� + �Ψ

− � (�3 + 3�2Ψ + 3�Ψ2 + Ψ3)
− ����� − ��Ψ�� + 	 cos (2
��)
+ � cos (Ω�) ,

(5)

and (6) is deduced from (5) as follows:

�2�
��2 +

�2Ψ
��2 + �

��
�� + ��Ψ�� − �� − �Ψ + ��3

+ 3��2Ψ + 3��Ψ2 + �Ψ3
= 	 cos (2
��) + � cos (Ω�) ,

(6)

and the linear equation of the fast variable Ψ is shown in

�2Ψ
��2 + �

�Ψ
�� − �Ψ = � cos (Ω�) , (7)

and Ψ is obtained as shown in

Ψ = �
� cos (Ω� + Θ) , (8)
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in which

�2 = (−� − Ω2)2 + (�Ω)2 ,
Θ = −tan−1 �Ω

−� − Ω2 .
(9)

Equation (10) is obtained by substituting (8) into (6) and by
integrating the total items at the range of [0, T�], as follows:

�2�
��2 + �

��
�� + �1� + ��3 = 	 cos (2
��) , (10)

where �1 = 3��2/(2�2) − �.
	e branch point is given by

�� = [2�
2 |�|
3� ]

1/2

. (11)

	e following equation is obtained considering the deviation� of� from�∗:
�2�
��2 + �

��
�� + �� + 3��∗�2 + ��3 = 	 cos (2
��) , (12)

where � = �1+3��∗2. Equation (13) is obtained regardless of
the nonlinear part in (12); that is, let � = 0; the deduced result
is shown as follows:

�2�
��2 + �

��
�� + �� = 	 cos (2
��) . (13)

Equation (13) is obtained as � = 	� cos(2
�� +  ), in which

	� = 	/√�:
� = (� − (2
�)2)2 + (�2
�)2 ,
 = −tan−1 �2
�

� − (2
�)2 .
(14)

	us, the response amplitude " is obtained as follows:

" = 1
√(� − (2
�)2)2 + (�2
�)2

.
(15)

Figure 2 shows the analysis result for resonance response.
Parameters are con�gured as follows:	 = 0.1, � = 1/2
,Ω =10, � = 0.5, � = 1, � = [0.05, 0.1, 0.15, 0.2], and � varies from
0 to 150 with 1 data interval. Response amplitude " increases
as � increases, subsequently peaks decrease, and �nally "
gets close to zero. As shown in Figure 2, di�erent values of �
induce the occurrence of the resonance phenomenon. 	us,
optimal output signal is obtained by adjusting variables, such
as �, and other parameters.

3. SVVR Strategy

3.1. SVVR with Numerical Implementation. Section 2 pro-
vides the theoretical background of the VR model, which
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Figure 2: Resonance response curve.

is a continuous-time function. Given that practical bearing
signals contain noise components, noise is added to the
simulation signal. Equation (16) is then expressed as

�2�
��2 = −�� (�) − �

��
�� + � (�) + � (�) + $ (�) , (16)

where $(�) is an additive Gaussian white noise with mean
value ⟨$(�)⟩ = 0 and autocorrelation coe
cient ⟨$(�), $(0)⟩ =2'*(�) [28, 29]. On the perspective of physics, white noise
does not exist in nature. If the bandwidth of the added noise is
far larger than the signal bandwidth, it can be approximately

regarded as white noise. 	e noise intensity 2' = -2Δ�,
where - is an objective physical quantity which means the
variance root of noise [30]. 	e sampling time-interval Δ� is
the noise correlation time.

	e input signal consists of a weak low-frequency sinu-
soid �(�), an additive Gaussian white noise $(�), and an addi-
tional high-frequency sinusoid �(�). 	e weak low-frequency
sinusoid �(�) is the driving signal.

	e continuous-time function �(�) of (16) is solved using

�1 = −�� (� [7]) − ��1 + � [7] + � [7] + $ [7] ;
�2 = −�� (� [7] + �1ℎ2 ) − ��2 + � [7] + � [7]

+ $ [7] ;
�3 = −�� (� [7] + �2ℎ2 ) − ��3 + � [7 + 1] + � [7 + 1]

+ $ [7 + 1] ;
�4 = −�� (� [7] + �3ℎ) − ��4 + � [7 + 1] + � [7 + 1]

+ $ [7 + 1] ,

(17)
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where

�1 = � [7] ;
�2 = � [7] + �1ℎ2 ;
�3 = � [7] + �2ℎ2 ;
�4 = � [7] + �3ℎ;

� [1] = 0,
� [1] = 0;
� [7] = � [7 − 1] + (�1 + 2�2 + 2�3 + �4) ℎ6 ,

7 = 2, 3, 4, . . . , >;
� [7] = � [7 − 1] + (�1 + 2�2 + 2�3 + �4) ℎ6 ;

7 = 2, 3, 4, . . . , >,

(18)

where discrete matrices �[7], �[7], �[7], �[7], and $[7] are
obtained by discretizing the continuous-time functions �(�),�(�), �(�), �(�), and $(�), respectively. Discrete output �[7]
is obtained through multiple iterative computation. Signal-
to-noise ratio (SNR) is selected as an evaluation index. 	e
de�nition of SNR is shown as follows:

SNR = 10 log10 ?�
∑�/2	=1 ?	 − ?�

= 10 log10 ? [round (�
/Δ�) + 1]
∑�/2	=1 ? [C] − ? [round (�
/Δ�) + 1] ,

(19)

where D is the discrete-time array length, ?[⋅] denotes the
signal’s power in spectrum, ?� denotes the driving signal’s
energy, ?	 is the input signal’s total energy, the sum term

∑�/2	=1 ?	−?� denotes the energy of the noise components, and�
 is the driving frequency. Frequency resolution is de�ned
as Δ� = ��/D, where �� is the sampling frequency of input
signal.

3.2. Algorithm Flow Chart of SVVR Method. Six parameters,
namely, bistable potential well parameters � and �, damping
parameter �, amplitude of high-frequency signal �, angular
frequency of high-frequency signalΩ, and calculation step of
RK4 algorithm ℎ, can be tuned.	e optimal output signal can
be obtained when each adjustable parameter searches for an
optimal value. Figure 3 shows the algorithm �ow chart, and
the algorithm steps are demonstrated as follows.

(1) Signal Preprocessing. 	e uncorrelated noise signals possi-
bly a�ect the accuracy of fault signal detection. A band-pass
�lter is used to eliminate the uncorrelated noise components
in the �rst step. Subsequently, Hilbert transform is used to
demodulate the fault signal, which was processed by the
band-pass �lter.

Start

Use band-pass �lter and
Hilbert transform to
preprocess the fault signal

Initialize the maximum SNR and
the search scopes of six parameters

Change the adjustable parameters in the

search range; obtain the SVVR output

signal and the corresponding SNR

Search for the maximum SNR
and obtain the corresponding
optimal parameters

Whether located within
the search scopes or not

No

Yes

Obtain the optimal

SVVR output signal

Change the
search scopes of
the parameters

End

Figure 3: 	e algorithm �ow chart.

(2) Parameter Initialization. First, an initialized value for
maximum SNR is given. 	e search scopes of the adjustable
parameters are subsequently initialized. A six-layer loop is
used to delimit the search scopes.

(3) Determination of the Optimal Parameters and Maximum
SNR. 	e output signal is obtained using (17). Each tuned
variable then obtains an independent numerical value. 	e
objective function is shown in (20). When the optimal
parameters �opt, �opt, �opt, �opt, Ωopt, and ℎoptall lay within
the search scopes, the fourth step is performed; otherwise,
the process returns to the second step. Five tuned parameters,
namely, �, �, �, Ω, and ℎ, should fall within the bounded
ranges even if their theoretical values range from 0 to +inf.

maximize SNR (�, �, �, �, Ω, ℎ)
subject to �, �, �, Ω, ℎ ∈ (0, +∞) ,

� ∈ (0, 1) .
(20)

(4) Signal Postprocessing. When the optimal ranges of param-
eters are determined, the maximum SNR and optimal
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Figure 4: Comparison of the periodicity and noise suppression performance of twoWSDmethods: (a) input signal; (b)MSTSR output signal
(optimal parameters: � = 0.7, � = 8J − 4, ℎ = 0.01, and K = 6); and (c) optimal SVVR output signal (optimal parameters: � = 1.9, � = 2.9,� = 0.009, ℎ = 0.015, � = 1.6, andΩ = 23236 rad/s).

parameter values are acquired simultaneously. Finally, the
optimal output signal is obtained according to the optimal
parameters.

4. The Performance Evaluation of SVVR

4.1. Simulation Signal Analysis. A simulation signal is used
to verify the validity of the SVVR method. Multiscale noise
tuning SR (MSTSR) is implemented in the simulation signal
to highlight the superiority of the SVVR method [13].
MSTSR is a parameter-tuning approach, and four parameters,
namely, wavelet decomposition levelK, bistable potential well
parameters � and �, and calculation step ℎ, can be tuned.
	e di�erence between MSTSR and traditional SR methods
depends on noise types. 	e noise in the traditional SR is an
additive Gaussian white noise, whereas that in MSTSR is a
multiscale noise. 	us, the �ltering e�ect of MSTSR method
is more e�ective than that of the conventional SR method. A
key step in MSTSR lies in the construction of the 1/� noise.
Discrete wavelet transform is applied to obtain the multiscale
noise and reconstruct the input signal. RK4 algorithm is then
conducted to solve the equation set. Finally, MSTSR output
can be obtained.

A simulation signal is constructed by combining a sinu-
soid with an additive Gaussian white noise. 	e number of
sampling points > is 4000, and the sampling frequency �� is

12 kHz. 	e parameters of the input signal are set as follows:	 = 1, �
 = 100Hz, and ' = 25. Processed results are
shown in Figure 4. Figure 4(a) shows the raw signal both in
time and in frequency domains. Noise components are con-
siderably heavy such that the wave interval is buried in heavy
background noise. From the perspective of power spectrum,
noise interference is obvious and the driving frequency �

cannot be e
ciently recognized in the frequency domain.
Figure 4(b) displays the processed MSTSR output signal. 	e
periodicity of MSTSR signal is better than that of the original
signal, and its waveform interval is distributed optionally.
Although �
 can be pinpointed in the power spectrum, the
energy of one noise component is higher than �
. Figure 4(c)
displays the processed optimal SVVR output signal. Its peri-
odicity improved compared with that of the MSTSR output
signal, and �
 is extracted in the frequency domain and most
of the noise components are suppressed at the same time.	e
SNRs from each sub�gure imply that the SVVR method is
more e�ective in extracting the weak feature component than
the MSTSRmethod. A higher SNR indicates a more accurate
detection performance for fault signals [31–34].

4.2. Frequency Response Analysis. 	e analysis result of fre-
quency response is shown in Figure 5. 	e parameters are
con�gured as follows: � = 0.0008, � = 1000, � = 0.8,Ω = 8971 rad/s, ℎ = 0.062, � = 0.3, 	 = 1, ' = 2,
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�� = 3 kHz, > = 3000, and �
 is changed from 5Hz to 350Hz
with 5Hz data interval. Each data point is processed approx-
imately 1000 times using the ensemble average method to
display the smooth performance of the curve. 	e frequency
response analysis of SVVR shows that it is a band-pass �lter.
Consequently, SVVR can �lter both high- and low-frequency
noise components.

4.3. Antinoise Performance Analysis. 	e analysis result of
antinoise performance is displayed in Figure 6. 	e param-
eters are con�gured as follows: �
 = 100Hz, 	 = 1, and ' is
changed from 1 to 20 with one-step variation. Figure 6 shows
that all the SNRs decrease with the increase in '. Although
Figure 6 presents a decaying trend, the SVVR output SNR is
higher than the MSTSR output SNR and input SNR. 	us,
SVVR shows a better antinoise capability compared with
MSTSR.

Table 1: Physical dimensions of the tested rolling bearing.

Roller diameter
(inch; d1)

Pitch diameter
(inch; d2)

Number of the
rollers (r)

0.3126 1.537 9

Fan end Drive end

Dynamometer
Driving
motor

Load
motor

Torque
transducer

Figure 7: Experimental test platform.

5. Engineering Application

In this section, the defective bearing signals are selected
for analysis. Two WSD methods, namely, the Woods–Saxon
potential-based SR (WSSR) [35] and the joint Woods–Saxon
and Gaussian potential-based SR (WSGSR) [36], are applied
to evaluate the fault extraction capability of SVVR. 	e
mathematical expression of the Woods–Saxon potential is
shown in

Mws (�) = − �01 + exp ((|�| − >1) /N) , (21)

whereV0, R1, and c are the depth, radius, and the steep extent
of theWoods–Saxon potential, respectively.	e expression of
the Gaussian potential is

MG (�) = −�1 exp(− �2
>22) , (22)

where �1 and >2 are the depth and radius of the Gaussian
potential, respectively. By combining (21) and (22), then the
Woods–Saxon and Gaussian joint potential is deduced in

MwsG (�) = Mws (�) − MG (�)
= − �01 + exp ((|�| − >1) /N)
+ �1 exp(− �2

>22) .
(23)

	e acquired defective bearing signals are downloaded
freely from the bearing data center of Case Western Reserve
University (CWRU) [37]. 	e experimental test platform
and physical dimension of the tested bearing are shown in
Figure 7 and Table 1, respectively. 	e sampling frequency ��
is 12 kHz, and the number of sampling points > is 8192. 	e
fault characteristic frequencies for the inner race, outer race,
and rolling element are denoted as �BPFI, �BPFO, and �BSF,
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Table 2: Acquisition information of the rolling bearing from the bearing data center of CWRU.

Fault types Size of fault (' ×Q; inch) Approximate rotational speed (r/min) 	eoretical fault characteristic frequency (Hz)

Inner race 0.011 × 0.014 1797 162.2

Outer race 0.011 × 0.021 1730 103.4

Rolling element 0.011 × 0.014 1772 139.2
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Figure 8: Processed results using fast kurtogram for detecting an inner race fault. Central frequency �� = 2750Hz, bandwidth �� = 500Hz,
and level R = 3.5.

respectively. 	ese fault characteristic frequencies can be
calculated according to the physical dimension of the tested
bearing [38]. 	e related calculation equations for di�erent
fault characteristic frequencies are shown as follows:

�BPFI = S��2 (1 + �1�2 cosT) ,

�BPFO = S��2 (1 − �1�2 cosT) ,

�BSF = ���22�1 [1 − (
�1�2 cosT)

2] ,

(24)

where S is the quantity of the rollers, �1 is the roller diameter
of the bearing, �2 is the pitch diameter of the bearing, T is
the bearing’s contact angle, and �� is the rotating frequency
of the bearing, respectively. 	e rolling bearing size and the
fault characteristic frequencies at di�erent locations of the
fault bearing are listed in Table 2.

5.1. Fault Detection for the Inner Race of the Bearing. 	e
bearing signal with defective inner race is initially selected
for analysis. Acquired vibrational signals in the time and
frequency domains are shown in Figure 9(a). 	e impulse
interval in the time domain is di
cult to recognize because
of the considerably poor periodicity. 	en, a band-pass �lter
is used to �lter the uncorrelated noises of the original fault
signal. Recently, many new methods have been proposed
to determine the bandwidth and central frequency of the

band-pass �lter [39–42]. 	e fast kurtogram method is
introduced in this section to choose the proper bandwidth
and central frequency of the band-pass �lter automatically
and intelligently. 	e fast kurtogram is used to detect the
inner race, outer race, and rolling element of the defective
bearings, and the processed results are shown in Figures 8,
10, and 12, respectively.

	en, Hilbert transform is used to demodulate the fault
signal which was processed by the band-pass �lter. 	e
processed results of the enveloped signal are displayed in
Figure 9(b). It can be seen from Figure 9(b) that the fault
characteristic frequency �BPFI can be pointed out from the
frequency domain, but the noise interference is signi�cantly
heavy, such that �BPFI is overwhelmed by the noise compo-
nents. 	erefore, MSTSR is used to enhance the weak signal.
	e analyzed results are displayed in Figure 9(c). 	e time
domain shows that the periodicity has been improved, but
the impulse interval is still disturbed by the noise. From
the view of the frequency domain, some low-frequency
components are higher than �BPFI. 	e processed results
for WSSR and WSGSR output signals are shown in Figures
9(d) and 9(e), respectively. Although the periodicities of
the MSTSR, WSSR, and WSGSR output signals are better
than the envelope signal, the noise components are higher
than �BPFI in their corresponding frequency domains. 	e
processed results of the SVVR output signal are shown in
Figure 9(f). 	e periodicity in the time domain is better
than those of the other signals, and the impulse interval is
recognized.	e power of�BPFI is the highest one in the power
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Figure 9: Analysis results for the bearing signal with a defective inner race: (a) original signal; (b) envelope signal with a �ltering band at
2500–3000Hz; (c) optimal MSTSR output signal (optimal parameters: � = 1J− 6, � = 8827, ℎ = 0.008, andK = 6); (d) optimal WSSR output
signal (optimal parameters:>1 = 0.3,�0 = 16, N = 0.03, and ℎ = 0.09); (e) optimalWSGSR output signal (optimal parameters: >1 = 1, >2 = 1,�0 = 18, V1 = 0.8, N = 0.4, and ℎ = 0.2); and (f) optimal SVVR output signal (optimal parameters: � = 1.2, � = 5, � = 0.008, ℎ = 0.05,� = 0.06, and Ω = 36505 rad/s).
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Figure 10: Processed results using fast kurtogram for detecting an outer race fault. Central frequency�� = 3375Hz, bandwidth �� = 750Hz,
and level R = 3.

spectrum, and the other noise components tended to zero.
From the perspective of noise �ltering, �BPFI is extracted in
the frequency domain, and the noise components around�BPFI are almost eliminated.

5.2. Fault Detection for the Outer Race of the Bearing. 	e
bearing signal of the defective outer race is analyzed in this
section.	e obtained results are shown in Figure 11.	e pro-
posed SVVR method presents a better �ltering performance
than MSTSR, WSSR, and WSGSR in the time and frequency
domains. 	e periodicity of the fault signal is improved, and�BPFO can be recognized from the power spectrum. 	us,
SVVR is better than the other WSD methods in detecting
bearing fault signals.

5.3. Fault Detection for the Rolling Element of the Bearing.
	e processed results for the bearing signal with a defective
rolling element are shown in Figure 13. 	e results show that
the proposed method also detects the objective frequency�BSF e�ectively.	e periodicity is enhanced, and�BSF is high-
lighted in the frequency domain. 	e signal enhancement
mechanism for SVVR is described as follows. Initially, only
one harmonic force is involved; therefore, this force cannot
help the particle move across the potential well. 	e particle
energy can be enhanced and can move across the potential
well with the assistance of the perturbation of a proper high-
frequency periodic harmonic force. 	us, the particle can
move freely in the bistable potential well bene�ting from the
stimulation of the high-frequency signal and, �nally, theweak
signal can be enhanced.

5.4. Quantitative Analysis. Two evaluation indexes are used
to evaluate the fault detection capability of SVVR quanti-
tatively. 	e �rst evaluation index is SNR, and the analysis
results are listed in Table 3. 	e SNRs of the fault signals
processed by SVVR are higher than those of the other

Table 3: SNRs with various bearing fault types processed by
di�erent WSD methods.

Fault types
Envelope
signal

SNR (dB)

MSTSR
output

SNR (dB)

WSSR
output

SNR (dB)

WSGSR
output

SNR (dB)

SVVR
output

SNR (dB)

Inner race −12.02 −8.41 −11.66 −11.27 −3.00
Outer race −19.81 −9.23 −12.91 −11.23 −4.27
Rolling
element

−26.01 −12.80 −13.42 −12.70 −0.41

methods. Table 3 shows that SVVRhas a better fault detection
capability compared with the other methods.

Another evaluation index Ind proposed by Wang et al. is
discussed to evaluate the fault detection capability of SVVR
[43]. Ind is de�ned as shown in

Ind = ∑5=1 ES [U × round (��/Δ�) + 1]
(∑�	=1 ES [C] /D) , (25)

where ES[⋅] represents the discrete envelope spectrum, �� is
the fault characteristic frequency, Δ� is the frequency reso-
lution of the fast Fourier transform, andD is the time series
length of the envelope spectrum. Equation (25) considers the
power of �� and its harmonics. A high Ind indicates that ��
and its harmonics are highlighted in the envelope spectrum,
demonstrating the capability to detect bearing faults [43].	e
computed Inds with various fault types of the bearing are
listed in Table 4. 	e Ind calculated using SVVR is higher
than those of the otherWSDmethods.	us, SVVR can detect
defective bearing signals more e�ectively.

5.5. Discussion. Some discussions are listed as follows:

(1) 	is paper used the traversal algorithm to search
for the optimal parameters, but the convergence rate
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Figure 11: Analysis results for the bearing signal with a defective outer race: (a) original signal; (b) envelope signal with a �ltering band at
3000–3750Hz; (c) optimal MSTSR output signal (optimal parameters: � = 0.4, � = 1, ℎ = 2J−4, andK = 6); (d) optimal WSSR output signal
(optimal parameters: >1 = 0.08,�0 = 36, N = 0.6, and ℎ = 1J−4); (e) optimalWSGSR output signal (optimal parameters: >1 = 0.05, >2 = 2.1,�0 = 25, �1 = 0.5, N = 0.4, and ℎ = 4J − 5); and (f) optimal SVVR output signal (optimal parameters: � = 7.2, � = 3.8, � = 6J − 6, ℎ = 0.03,� = 4J − 5, andΩ = 16736 rad/s).
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Table 4: Ind’s with various bearing fault types processed by di�erent
WSD methods.

Fault types
Envelope
signal
Ind

MSTSR
output
Ind

WSSR
output
Ind

WSGSR
output
Ind

SVVR
output
Ind

Inner race 248.6 519.2 276.9 133.3 1369.6

Outer race 359.4 1000 386.2 352.1 1120.9

Rolling
element

89.4 205 106.9 186.9 649.4

of the traversal algorithm is so slow that it needs a
long calculation time. In future works, intelligence
algorithms such as genetic algorithms [34], ant colony
algorithms [44], and arti�cial �sh swarm algorithms
[45] should be used to improve the algorithm e
-
ciency.

(2) 	e fault type of the bearing may not be related to
the resonance frequency band of the band-pass �lter.
We can calculate the di�erent fault characteristic fre-
quencies of the fault bearings in accordance with the
theoretical equations. If the fault type of the bearing is
unidenti�ed in advance, the fast kurtogram method
can still be used to determine the bandwidth and
central frequency of the band-pass �lter automatically
and intelligently.

(3) Since this study concentrates on VR model and on
the �ltering e�ect of VR, the classical evaluation
index, SNR, is applied to evaluate the fault detection
capability of the proposed SVVR method. However,
SNR requires the prior knowledge of the interested
signal and this information may not be available
in practice. To address this issue, many adaptive
methods have been proposed to adaptively enhance
weak signals without prior knowledge related to the

driving frequency by considering other indexes. For
instance, Wang et al. proposed an adaptive index
named weighted power spectrum kurtosis for detect-
ing the fault characteristic frequency of the rolling
element bearing [45]. Zhou et al. proposed a synthetic
index method for extracting the fault characteristic
frequency of the rolling element bearing adaptively
[46]. In this regard, to make this method more
practical, some adaptive indexes could be introduced
in the proposed SVVR method, and adaptive VR will
be a further study in the future.

(4) Di�erent dynamical systems may a�ect the output
response of VR. In this study, the classical bistable
potential is used in VR model to enhance weak
signals. Other potentials, such as monostable poten-
tial, tristable potential, and exponential potential,
might be introduced in weak signal enhancement and
bearing fault diagnosis. 	is point deserves to be a
further study in the future.

6. Conclusion

	e WSD method SVVR is proposed to extract the fault
characteristic frequency, which is overwhelmed by heavy
background noise. Weak signals can be enhanced by opti-
mizing the parameters. Finally, the periodicity of the weak
input signal can be recognized in the time domain. 	e
proposed method has following advantages: (1) the output
signal presents good periodicity; (2) antinoise performance
analysis shows that the SNR is increased; and (3) frequency
response analysis indicates that SVVR serves as a band-pass
�lter because it can �lter low- and high-frequency noise com-
ponents. Consequently, SVVR can e�ectively suppress heavy
background noise. Simulation and engineering signals are
used to verify the practicability of SVVR. SVVR can improve
the fault detection capability, thereby bene�ting for bearing
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Figure 13: Analysis results for the bearing signal with a defective rolling element: (a) original signal; (b) envelope signal with a �ltering band
at 3750–4500Hz; (c) optimal MSTSR output signal (optimal parameters: � = 2J − 14, � = 8800, ℎ = 0.034, and K = 6); (d) optimal WSSR
output signal (optimal parameters: >1 = 0.002, �0 = 10, N = 1.5, and ℎ = 0.004); (e) optimal WSGSR output signal (optimal parameters:>1 = 1J − 3, >2 = 3.7, �0 = 12, �1 = 0.5, N = 1.3, and ℎ = 0.007); and (f) optimal SVVR output signal (optimal parameters: � = 1.9, � = 4.6,� = 8J − 5, ℎ = 0.044, � = 0.006, and Ω = 12354 rad/s).
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fault recognition. 	e proposed method shows application
prospects in rotary machine fault detection and other �elds
concerned with weak periodic signal enhancement.
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