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The modern Eastern Equatorial Pacific (EEP) is a major oceanic source of 

carbon to the atmosphere1. During glacial periods, increased deep-sea carbon 

export in this region supported by additional input of dust-born iron2, 3 could 

have contributed towards lower atmospheric CO2 levels. Such a role for the EEP 

is supported by higher organic carbon burial rates4, 5 documented in underlying 

glacial sediments but the lower opal accumulation rates had cast doubts6, 7. Here 

we present a new silicon isotope record that suggests the paradoxical decline in 

opal accumulation rate in the glacial EEP resulted from a decrease in Si:C 

uptake ratio of diatoms under conditions of increased Fe availability from 

enhanced dust inputs. Consequently, our study provides support for an 

invigorated biological pump in this region during the last glacial period that 
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could have contributed to glacial CO2 drawdown. Additionally, using evidence 

from silicon and nitrogen isotope changes we infer that, in contrast to modern 

situation, the biological productivity in this region is not constrained by the 

availability of Fe, Si and N during the glacial period. Therefore, we hypothesise 

that an invigorated biological CO2 pump constrained perhaps only by P 

limitation was a more common occurrence in low-latitude areas of the glacial 

ocean. 

 

The Eastern Equatorial Pacific (EEP), an important area of biogenic opal production 

and burial in the ocean8, accounts for more than two third of the marine CO2 efflux to 

the atmosphere today1. This situation arises because primary productivity in the EEP 

is co-limited by silicic acid and iron availability9 and therefore the biological CO2 

pump is unable to compensate for the CO2 out-gassing that occurs through upwelling 

of deep waters10  (Fig.1). 

 In figure 2, we present glacial-interglacial records of biogenic accumulation as well 

as stable N and Si isotope records spanning the last 35 ka from a EEP marine 

sediment Core ODP 1240 (Fig. 1). Organic carbon concentrations in the sediment 

were double during the Last Glacial Maximum (LGM) compared to the Holocene and 

peak during the deglacial. The 230Th-normalised organic carbon accumulation rates 

also retain the same trend (Fig. 2). The doubling of organic carbon accumulation 

during the LGM is in agreement with previous studies showing that organic carbon 

export in the EEP was higher during the LGM4, 5,  and may imply an invigorated 

biological CO2 pump during this period (see supplementary material). Contradicting 

such an assertion, opal concentration in Core 1240 was reduced roughly by a factor of 

2 during the LGM, consistent with existing opal accumulation records in the region7, 
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6. Such differences in biogenic accumulation records cannot be explained by local 

changes in upwelling alone.   

The sedimentary ratio of Siopal to organic carbon (Si:C) in Core 1240 increases 

drastically during the glacial to interglacial transition with values almost 3 times 

higher during the early Holocene compared to the LGM (Fig. 2). This change in the 

relative accumulation of opal and carbon is seen across the entire EEP and therefore 

cannot be simply explained by factors such as differential distribution and 

preservation of these biogenic components (supp. mat.). 

The contrast between opal and organic carbon accumulation trends during the LGM 

in the EEP could be reconciled by invoking a shift in the phytoplankton communities 

from diatomaceous to coccolithophorid production. This would have reduced the C 

rain-rate ratios (the relative contributions of organic carbon and CaCO3 to total export 

production) in the glacial EEP and hence the capacity of the marine C reservoir to 

sequester carbon11. However, CaCO3 contents and accumulation rates in Core 1240 

do not show a clear glacial-interglacial pattern to support such a shift in the rain-rate 

ratio of particulate export (Fig. 2). The estimates of carbonate accumulation rates in 

the EEP either based on the 230Th normalisation technique or high resolution 14C 

stratigraphy unequivocally document reduced carbonate fluxes and production during 

the LGM12. Moreover, a recent study13 of carbonate accumulation corrected for 

sedimentary dissolution has even suggested that primary production in the EEP 

shifted from CaCO3 to opal production during the LGM compared to the Holocene. 

Thus, sedimentary opal records from the EEP, which show halved accumulation rates 

during the LGM compared to the Holocene epoch7, implying a less efficient 

biological CO2 pump, are in contradiction to the inferences based on enhanced 

organic carbon production and has until now remained a paradox. Resolving this 
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paradox has important implications in understanding the role of EEP in glacial CO2 

drawdown and the impact of enhanced Fe delivery on nutrient limitation and 

biological CO2 pump during the glacial periods.  

Availability of silicic acid in the surface water of the EEP is considered as the major 

control on opal production10 - a view that stems from modern observations of Si-

limitation in this region (Fig. 1). However, LGM conditions could have been 

drastically different for diatom growth when dust-borne iron delivery to the surface 

EEP was twice as much as today, as recorded by sediment cores in this area2, 3 

(Fig.2). The impact of this increased iron delivery on opal production in the Fe-

limited low latitude Pacific ocean2, 3 has never been fully explored. Results from in 

situ Fe-fertilisation experiments14, 15 reveal that the alleviation of Fe limitation in the 

EEP causes a 2 to 3 fold decrease in Si:C uptake ratios of siliceous producers due to 

decreased cell silicification14, 15. If this were to happen during the Fe-replete LGM this 

may have resulted in lower Si uptake during diatom growth and consequently reduced 

opal accumulation. In addition, given the large decline in Si:C uptake ratios 

documented in these experiments, silicic acid may have been available in surplus 

during diatom production. Thus, the reconstruction of glacial silicic acid utilisation in 

the EEP could be the missing link to unravel the opal accumulation “paradox” and to 

address carbon mass balance during the LGM.  

We evaluate the possibility of lowered Si utilisation during diatom growth under Fe-

replete glacial periods using a record of δ30Si of opal (Fig.2). During the Holocene 

δ30Si values are ~+1.3‰, a value close to the isotopic composition of silicic acid in 

intermediate water masses of the tropical Pacific16, 17. This indicates near complete 

utilisation of the available silicic acid, consistent with modern observations of its 

limitation in the EEP. In contrast, the LGM values were much lower (<0.9‰). This 
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lower δ30Si signature may reflect a decrease in the relative utilisation of silicic acid in 

the EEP during glacial period provided this shift is not affected by glacial change in 

the nutrient source.  

During the glacial, silicic acid leakage from the Southern Ocean, whereby enhanced 

dust-borne iron input to the Southern Ocean resulted in the conservation of silicic acid 

over other nutrients leading to its export to the low latitude18, 19, is one mechanism 

that could have potentially altered silicic acid supply to the EEP and its isotopic 

signature. It has been estimated that during the glacial, low latitude Pacific could have 

received 3 times more silicic acid through the sub-Antarctic mode waters, with a δ30Si 

signature as high  as +3‰20. Complete diatom utilisation of this additional supply of 

heavy Si(OH)4 in the EEP should have increased glacial opal burial accompanied by 

heavier shift in δ30Si. To the contrary, Core 1240 records a glacial decline in opal 

accumulation with lighter isotopic values (Fig.2). 

The reason for the apparent contrast becomes clear if one considers how glacial 

increase in dust-borne Fe inputs would have impacted silicic acid utilisation locally 

within the EEP.  The increased Fe input and the resultant decline in Si:C uptake 

ratios, as was proposed for the Southern Ocean, should have also operated in the 

glacial EEP leading to the conservation of silicic acid14, 18. This would explain the 

decline in opal accumulation and the lighter δ30Si values in the glacial intervals of 

Core 1240. Paradoxically, the increased silicic acid supply from the Southern Ocean 

appears to have occurred at the time the demand for this nutrient declined locally 

within the EEP -a contention that is supported by the similar glacial-interglacial 

histories of dust input in these two regions3. Thus, this new result documenting excess 

silicic acid in the glacial EEP strongly implies that the decline in opal accumulation in 

LGM sediments is not controlled by the availability of silicic acid and therefore could 
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be attributed to the consequence of Fe-fertilisation and lowered Si:C uptake ratios 

during diatom growth. Importantly, the glacial decrease in opal accumulation 

observed across the EEP6, 7 does not reflect a decline in C rain-rate ratio and the 

biological CO2 pump as previously suggested6.  

 

Our results suggest that the glacial scenario of nutrient limitation and the constraints 

on biological production in the EEP were drastically different from the modern 

situation depicted in Figure 1. In contrast to modern conditions, enhanced Fe delivery 

and the resultant switch to lower Si:C uptake ratio by diatoms led to conditions where 

Fe and Si are no longer limiting factors for biological productivity. Based on glacial 

δ30Si values in Core 1240 and applying a steady state model17 we estimate relative 

silicic acid utilisation during the LGM declined by about 25% from a near complete 

utilisation during the Holocene. This calculation assumes a constant Si(OH)4 source 

of around +1.2‰ in agreement with low latitude Pacific intermediate water values16, 

17. This estimate of decreased Si(OH)4 utilisation would be even greater if the leakage 

of isotopically heavy silicic acid from the sub-Antarctic is taken into account20. 

Similarly, the N-isotope record allows us to assess the potential for glacial nitrate 

limitation. The lack of Fe and Si co-limitation during the glacial should have led to 

increased nitrate utilisation and heavier glacial δ15N. In contrast, the N–isotope profile 

(Fig. 2) trends towards lower δ15N values during the LGM relative to the Holocene, 

consistent with other similar studies in this region21. However, given that nitrate 

utilisation is incomplete in the modern EEP a further δ15N decrease (>3‰) during the 

glacial period cannot be simply explained by changes in nitrate uptake by biota alone 

as it would entail a very large reduction in utilisation during this period. Therefore, we 

suggest that the low LGM δ15N values relative to the Holocene reflect additional 
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supply of isotopically lighter N due to reduced denitrification in the oxygen minimum 

zones (OMZ) off Peru and Mexico22, 23. Today the prevalence of denitrification in 

these margins bordering the EEP makes the source waters supplied to the EEP 

thermocline depleted in nitrate relative to phosphate (sub-redfieldian N:P) and with a 

relatively heavy N-isotope signature (+6.5‰ as opposed to the +4.8‰ ocean average) 

due to mixing with partially-denitrified heavy nitrate24. Thus, reduced denitrification 

during glacial periods would enhance the nitrate inputs into the EEP by increasing the 

N/P ratio of upwelling waters and provide nitrate that is isotopically lighter. In 

combination both these factors would lead to a shift to lighter sedimentary N-isotope 

signatures irrespective of any glacial change in local upwelling25, 26. Thus, the lighter 

N-isotope values provide evidence that nitrate is also not a limiting nutrient in the 

glacial EEP- a condition comparable to the modern situation. Therefore the data 

strongly suggest simultaneous removal of constraints imposed by Fe, Si and N 

limitation on biological production in the EEP during the LGM. This argues for a 

more invigorated biological CO2 pump in the glacial EEP perhaps ultimately 

constrained by the availability of dissolved phosphate. The resulting increase in 

carbon export and rain-rate ratio as documented in the glacial sediments of the EEP 

(supp. mat.) should have reduced CO2 evasion. Such an assertion is also consistent 

with the timing of the first phase of the atmospheric CO2 rise during the last glacial 

termination (~18 ka) which is contemporaneous, within dating uncertainties, to the 

decline in dust delivery and the increases in sedimentary Si:C and δ30Si in EEP 

records. 

 

Finally, we suggest that our results have much wider ramifications because the EEP 

provides an illustration of the constraints imposed on the biological CO2 pump in 
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low-latitude oceans of the glacial periods. In currently Fe limited open ocean High 

Nitrate Low Chlorophyll regions, such as the EEP and Southern Ocean, the switch to 

Fe-replete LGM conditions led to the generation of excess silicic acid during diatom 

growth, which in turn is subject to dispersal through surface and subsurface ocean 

circulation increasing the availability of silicic acid over much wider area of the 

glacial ocean18, 19. This additional silicic acid supply occurs at a time when its 

demand by biota is already reduced due to Fe-fertilisation, which should have caused 

drastic reductions in Si limitation over large areas of the glacial ocean.  

Also, the documented glacial decline in denitrification in the world’s OMZ is 

expected to have increased the availability of nitrate27, 23. For instance, NO3:PO4 ratio 

at the surface of the modern EEP is about 12.5, i.e. lower than N:P Redfield ratio of 

16. In contrast, a 30% increase in nitrate inventory during the last glacial period 

compared to today as suggested by modelling work28 could have been sufficient to 

cause the N:P ratio in the EEP to exceed the Redfield ratio. Such changes occurring 

more widely would have resulted in an invigorated CO2 pump in low latitude oceans 

ultimately constrained by the availability of dissolved phosphate as suggested by the 

case study reported here and predicted by recent model results29. Therefore, we 

hypothesise that P limitation was much more widespread during the glacial periods -a 

situation fundamentally different to that of the modern ocean.  

 

Method Summary 

Core ODP 202 1240 was retrieved from Cocos ridge (00°01.31N; 86°27.76W, 2,921 

m depth) in the EEP. The age model is based on 13 AMS14C dates on planktonic 

foraminifers25. Determination of the opal content (%) was performed by molybdate-

blue spectrophotometry on alkaline extracts. Organic C (%), total N (%) and δ15N (‰) 
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were determined on bulk sediments using a Carlo Erba elemental analyzer coupled to 

a VG Prism III mass spectrometer at the University of Edinburgh. 230Th  

normalization was performed using acid digestion on bulk samples and column 

chemistry followed by MC-ICPMS analyses.  

Purification of the diatom samples for silicon isotope measurement has been 

performed by chemical leaching of the carbonate and organic fractions, sieving and 

differential settling. Silicon isotope determination has been conducted in ETH Zürich 

on the Nu1700 high-resolution MC-ICPMS30.  
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Figure captions 
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Figure 1: Annually averaged CO2 partial pressure difference between the atmosphere 

and the ocean for year 1995 (modified from1; http://www.ldeo.columbia.edu/ 

res/pi/CO2/carbondioxide/). Also depicted is the hierarchy of nutrient limitation for 

diatom growth across the low latitude Pacific Ocean. Black lines delimit the area 

where the most severe limitation is imposed by iron, doted lines delimit the area of 

silicic acid limitation. Beyond these lines the ocean is firstly nitrate limiting (modified 

from9). Note the geographical correspondence between CO2 efflux maxima (warm 

colours) and iron and silicic acid limitation areas. Core site ODP 202 1240 is shown 

with a white dot. 

 

Figure 2: Sedimentary records from Core 1240 plotted versus calendar ages B.P;  (a) 

δ15N signal of bulk material (bold line = 2 points average), (b) the δ30Si signal of 

diatoms (errors bars are 1 sigma error of the mean), (c) Si:C ratio (bold line = 2 points 

average), elemental concentrations(solid line) and 230thorium normalized 

accumulation rates (dotted lines) of (d) organic carbon (wt.%), (e) opal (wt.%), (f) 

carbonate (wt.%), (g) dust fluxes in Core ODP 138-849A and 138-850A2, and (h) 

atmospheric PCO2 record from EPICA dome C ice core31. T1 and LGM stand for 

Termination 1 and Last Glacial Maximum, respectively. 

 
 

Methods 

Core ODP 202 1240 (00°01.31N; 86°27.76W, 2,921 m depth) was retrieved on Cocos 

ridge (see ODP report http://www-odp.tamu.edu/publications/202_IR/chap_11/ 

chap_11.htm).  

The age model is based on 13 AMS14C dates on planktonic foraminifers. 

Determination of the opal content (%) was performed by molybdate-blue 
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spectrophotometry on alkaline extracts according to the method published in32. 

Organic Carbon (%) and N (%) contents were determined by using a Carlo-Erba 

elemental analyser on 10 mg of freeze-dried and powdered bulk sediment. The 

isotopic composition of sedimentary nitrogen (δ15N) was measured with a VG Prism 

III mass spectrometer on freeze-dried and powdered bulk sediments. Thorium 230 

normalization was used to account for the effect of sediment focusing33 and 

performed using acid digestion on bulk samples and column chemistry followed by 

multi collector ICP-MS analyses at the Scottish Universities Environment Research 

Centre 34(supp. mat.).  

Purification of the diatom samples for silicon isotope measurement has been 

performed by chemical leaching of the carbonate and organic fractions, sieving and 

differential settling following a cleaning method published recently35. Silicon isotope 

determination has been conducted in ETH Zürich on the Nu1700 high-resolution MC-

ICPMS6. A small amount of biogenic opal (0.5 mg) was dried down with 

concentrated perchloric acid at ~180°C in Teflon© vials, and then dissolved in 100 μl 

of 1 M NaOH, before being diluted to 5 ml with 0.01 M HCl after 24 hours. 

Equivalent to 10 μg of opal was loaded onto a pre-cleaned 1.8ml DOWEX 50W-X12 

cation exchange resin bed (in H+ form) and eluted with 5 ml of purified water (Milli-Q 

element 18.2 MΩ.cm-1). The Si isotope composition was determined on the diluted 

solution (0.6ppm Si) on the Nu1700 high-resolution MC-ICPMS at ETH Zürich, 

using a standard-sample-standard bracketing protocol. All results in this study were 

calculated using the δ30Si notation for deviations of the measured 30Si/28Si from the 

international Si standard NBS28 in parts per thousand (‰). The long-term 

reproducibility was better than 0.07‰ δ30Si (1 s.d.)36.  Samples were measured at 
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least 5 times, which resulted in a 95 % confidence level below 0.08‰. Error bars on 

the δ30Si plot are calculated as 1 sigma error of the mean (Fig. 2). 
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