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Steric character is one of the most fundamental factors to determine the reactivity of the substrate in organic
synthesis. In bimolecular reaction, the sterically-bulky group situated close to the reactive center generally
prevents the approach of the reaction partner retarding the bond formation. This report describes, to the
contrary, significantly enhanced reactivity of 2,6-disubstituted phenyl azides observed in catalyst-free
1,3-dipolar cycloaddition with alkynes, unexpectedly reacting faster than unsubstituted phenyl azide and even
more faster than unhindered alkyl azide, despite the steric hindrance adjacent to the reactive azido group.
Experimental and computational studies have indicated that the steric hindrance eliciting the inhibition of
resonance between azido group and the aromatic ring is the primary cause of this apparently-paradoxical
phenomenon. This is the first type of steric acceleration, indicating a possibility of designing a highly reactive
functional group by strategically locating it in the sterically-congested environment.

C
lick reaction, epitomized by copper(I)-catalyzed azide–alkyne cycloaddition, has become one of the most
reliable methods to connect molecules covalently in broad disciplines including materials chemistry and
chemical biology.1–5 In particular, strain-promoted click reaction, a copper-free variant exploiting a

cyclooctyne derivative that reacts spontaneously with an azide, has realized harmless chemical modification of
biomolecules in cultured cells and in living animals.6–15 Recently, we have developed the ‘‘double-click’’ reaction
to conjugate conveniently an azido-biomolecule with a small azido compound using Sondheimer diyne (1)16 as a
bis-dipolarophile (Fig. 1a).17 In this reaction, an efficient assembly of two azides takes place by virtue of the two
highly strained triple bonds of 1 providing bis-cycloadduct in high yield. The practical utility of the double-click
strategy has been demonstrated by efficient labeling of azido-glycoconjugates on the cell surface as well as an
azido-installed recombinant protein with a fluorescein-conjugated azide. While the double-click technique has
been shown comparable in labeling efficiency to the single-click procedure, experimental and computational
studies presented that the monoyne intermediate, considered as the initial cycloadduct of this reaction, is
remarkably reactive than the starting diyne 1, which might pose an insufficient conjugation.

To make the double-click conjugation system more efficient, we have conceived the idea of performing a
sequential double-click reaction18 using diazidobenzene derivative 2, which bears two sterically-differentiated
azido groups, with an anticipation to connect first alkyne at the less hindered side and then the second alkyne at
the remaining sterically-hindered side (Fig. 1b). Contrary to our expectations, however, the click reaction of
diazide 2 with strained alkyne 3a proceeded predominantly at the sterically-hindered side furnishing 4b in high
yield (Fig. 1c, see Supplementary Information). This unexpected but very intriguing result prompted us to
elucidate the origin of enhanced reactivity of sterically-hindered azido group.

Results
The distinguished reactivity of sterically-hindered aryl azide was demonstrated through the study on the substrate
scope of the azide in double-click reaction with diyne 1. First, we compared the reactivities of two typical
sterically-hindered azides, 1-adamantyl azide (5b) and 2,6-diisopropylphenyl azide (5c), with unhindered benzyl
azide (5a) by monitoring the reaction with 1 in methanol-d4 by 1H NMR spectroscopy. As a result, while the
reaction of 1 with bulky 5b was retarded drastically (18% yield of bis-cycloadducts at 4 h) compared to that with
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benzyl azide (5a) (87%, 30 min), the reaction with 5c was rather
hastened under the same conditions affording the product quantita-
tively within 5 min (see Supplementary Information). To our sur-
prise, the second-order rate constant (k) for the reaction of 1 with 5c
in methanol at 25 uC (k 5 6.7 3 1021 M21 s21) was ten times as large
as that for 5a (k 5 6.3 3 1022 M21 s21).17

Exploring further the double-click reaction with a focus on the
substituent effect of aryl azides more clearly showed that the bulki-
ness around the azido group is the key factor to enhance the reaction
rate (Fig. 2, Table 1). Although all of the reactions of diyne 1 with
various aryl azides 5d–5j afforded a regioisomeric mixture of bis-
cycloadducts in an excellent yield, the reaction rates varied greatly
depending on the substrate. Notably, the reaction with unsubstituted
phenyl azide (5d) proceeded about seven times slower than 5a and,
more importantly, 76 times slower than 5c (entry 1 vs 8, Table 1).
para-Methoxy and para-trifluoromethyl groups showed only limited
effects (entries 2 and 3, Table 1), indicating that the electronic nature
of the substituent is not a decisive factor to affect the reaction rate.
The reactivity of mono-ortho-substituted phenyl azides was neither

enhanced nor diminished to a large extent (entries 4 and 5, Table 1).
In contrast, the reactions with 2,6-disubstituted phenyl azides were
dramatically accelerated, as the size of substituents became bulkier
(entries 6–8, Table 1).

A valuable hint to understand the role of bulky substituents in
enhancing the reactivity of sterically-surrounded azido group was
provided from UV absorption spectra of the azides (Fig. 3a). The
intensity of the peak at long-wavelength region observed for 5d
(lmax 5 248 nm) decreased considerably in 5c, suggesting that the
conjugated state of the azido group with the aromatic ring between
these azides differs substantially. The stationary structure of azides at
the ground state optimized by a density functional theory (DFT)
(B3LYP/6-31G(d)) method19 supported this implication indicating
that the azido group of 5d lies coplanar with the benzene ring, while
that of 5c is largely twisted out of the plane, forced by the bulky

Figure 1 | Double-click reactions using a bis-reactive compound for efficient assembly of molecules. (a) The double-click method for convenient

conjugation of an azido-biomolecule with a small azido compound mediated by the Sondheimer diyne (1). (b) An initial plan of sequential double-click

conjugation by diazidobenzene derivative 2 bearing two sterically-differentiated azido groups. We envisaged that the first cycloaddition with an alkyne

would proceed at the less hindered side and the remaining sterically-hindered azido group could be used for the second cycloaddition with another

alkyne. (c) Click reaction of diazide 2 with strained alkyne 3a unexpectedly affording 4b as the major product. This result indicated that the reaction

occurred predominantly at the more sterically-hindered azido group of 2. The regiochemistry of 4b was unequivocally determined by X-ray structure

analysis (CCDC 810844).

Figure 2 | Reaction scheme for Table 1. The double-click reaction of

Sondheimer diyne (1) with various aryl azides 5 was examined.

Table 1 | Double-click reaction of diyne 1 and aryl azide 5.

Entry 5 R1 R2 R3 6
Yield (%)*
(trans/cis){ k (M21 s21) krel

1 5d H H H 6d 94 (43/57)1 8.8 3 1023 1
2 5e H H OMe 6e 89 (36/64) 3.3 3 1022 3.8
3 5f H H CF3 6f 97 (50/50) 7.9 3 1023 0.9
4 5g Me H H 6g 98 (52/48) 1.2 3 1022 1.4
5 5h iPr H H 6h 95 (60/40) 8.9 3 1023 1.0
6 5i Me Me H 6i 92 (64/36) 3.2 3 1021 36
7 5j Et Et H 6j 93 (73/27) 3.8 3 1021 43
8 5c iPr iPr H 6c 95 (96/4) 6.7 3 1021 76
*Isolated yield as a mixture of regioisomers.
{Ratio was determined based on 1H NMR analysis of isolated regioisomeric mixture.
Stereochemistry of 6 was unequivocally determined by X-ray analysis of purified regioisomer
(CCDC 810837–810843 for cis-6b, 6c, 6e, 6g, 6h, 6i, 6j and 810930–810936 for
corresponding trans-isomers) except 6f.
1Data from ref. 17.
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substituents at both ortho-positions (Fig. 3c). The calculation of
rotation energy of the azido group also exhibited that 5d takes
predominantly the highly-conjugated structure, showing a sharp
contrast with 5c, which rather prefers the markedly-twisted con-
formation (Fig. 3b). Interestingly, the rotational barrier of the steri-
cally-hindered azido group of 5c was significantly lower than that of
5d. These data have implied that the reactivity enhancement could be
attributed to the inhibition of resonance20 between the aromatic ring
and the azido group lowering its motional energy.

To gain a mechanistic insight, we initially calculated and com-
pared the frontier molecular orbitals21 of 1, 5c, and 5d, which, how-
ever, did not afford a reasonable explanation (see Supplementary
Information). Fortunately, instead, the distortion/interaction model,
a generalized theory for 1,3-dipolar cycloadditions recently proposed
by Houk and coworkers,22,23 led us to a comprehensive understand-
ing. They elegantly explained the enhanced clickability of strained
cycloalkynes by dividing the activation energy into distortion and
interaction energies, demonstrating that the energy required to
distort the 1,3-dipole and dipolarophile into their transition-state
geometries is the crucial factor as well as the frontier molecular
orbital interaction energy. To apply this theory, the transition state
(TS) structures for the first cycloaddition of 1 with 5d and 5c, TS-d1
and TS-c1, were also obtained at the same level of the theory (Fig. 3d).
The activation energy for the reaction of 1 with 5c was estimated to be
2.5 kcal mol21 lower than that with 5d, providing a good agreement
with the experimental result (Fig. 3e). The difference in distortion
energies, unexpectedly, was almost equal to that of the activation
energies indicating that there is little difference in interaction ener-
gies, which must include the factor of steric repulsion arising between
the reactants. Considering that the difference in individual distortion
energy of diyne 1 between each reaction was comparatively smaller
(0.4 kcal mol21) than that between azides (2.3 kcal mol21), the

enhanced reactivity of 5c can be mostly attributed to its decreased
distortion energy compared with 5d.

The generality on the higher reactivity of bulky 5c over unhin-
dered 5d was easily examined by reacting them with other simple
alkynes. As a result, not only strained cyclooctyne derivative 3a but
also unstrained alkyne such as dimethyl acetylenedicarboxylate (3b),
under the Huisgen reaction conditions,24 predominantly afforded 5c-
derived cycloadducts in the reaction with an equimolar mixture of 5c
and 5d, clearly demonstrating the prominent clickability of doubly
sterically-hindered aryl azides despite the steric barrier (Fig. 4a). On
the other hand, an inverted selectivity was observed in the reaction of
aryl azides with an acetylide (Fig. 4b).25 The preferred formation of
5d-derived triazole 8dc agrees well with the proposed stepwise mech-
anism, which should be disadvantageous for hindered substrates.

Discussion
We have unexpectedly found that sterically-congested azido group
of 2,6-disubstituted phenyl azides, despite the steric hindrance,
reacts significantly faster than unsubstituted phenyl azide, as well
as unhindered alkyl azide in catalyst-free 1,3-dipolar cycloaddition
with an alkyne. Although a similar trend was previously reported in
iron-catalyzed hydrogenation of sterically-hindered aryl azides, no
mechanistic explanation has been given so far.26 Our studies on
substrate scope and computations have clearly shown that the
enhanced reactivity of 2,6-disubstituted phenyl azides can be attri-
buted to the increased distortability of the azido group elicited by the
inhibition of resonance with the aromatic ring. The slower reaction
observed for benzyl azide (5a) than 2,6-disubstituted phenyl azides
can be reasonably explained by taking the contribution of the hyper-
conjugation between azido group and the hydrogen of alkyl chain
into account. Indeed, the calculated distortion and activation ener-
gies of methyl azide in the cycloaddition with diyne 1 are also larger

Figure 3 | Twisted-conformation of 2,6-diisopropylphenyl azide (5c) enhancing its clickability. (a) Absorption spectra of 5d and 5c in MeOH

(100 mM). (b) Calculated rotation energy for azido group of 5d and 5c. (c) Side and overhead views of the global minima on the potential energy surface

obtained for 5d and 5c. (d) Calculated transition state (TS) structures for the first cycloaddition of 1 with 5d and 5c and the side views of azides at the TS.

h indicates the rotational angle of the azido group from the aromatic plane. (e) Distortion, interaction and activation energies (in kcal mol21) for the first

cycloaddition at the B3LYP/6-31G(d). *The energy required to distort the geometry of each reactant to the transition state (TS). {The interaction energy

between the distorted fragments at the TS. 1The energy difference of each fragment between the optimized and the TS geometries. "The values including

zero-point corrections (ZPCs). All calculations were performed by a density functional theory (DFT) method (B3LYP/6-31G(d)) with a GAMESS suite of

program codes on a TSUBAME 2.0 system at Tokyo Institute of Technology.
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than those of 5c.17 All of these results suggest that the extended
conjugation containing azido group makes it hard to deform to the
TS structure, thus decreasing the reactivity. In contrast, the sterically-
demanding aromatic azido group, in which the resonance is can-
celled to some extent, achieves increased distortability, thereby
exerting the high reactivity. Not only in the reaction with strained
alkyne, but also with simple alkyne such as dimethyl acetylenedi-
carboxylate (3b), the decrease of distortion energy of doubly steri-
cally-hindered aromatic azido group largely eclipses the steric
repulsion between the substrates, thereby, in total, significantly low-
ers the activation energy. To our knowledge, this is the first report
demonstrating the enhanced reactivity of sterically-hindered group
by the effect of steric inhibition of resonance. There are some reac-
tions accelerated by the steric assistance, but this is a novel type of
steric acceleration in that the intrinsic reactivity of the azido group
has been invoked by the steric participation of neighboring groups.
This work indicates, though it may sound paradoxical, a possibility of
designing a highly reactive functional group by strategically locating
it in an appropriate sterically-congested environment.

Methods
Representative procedure for the double-click reaction. To a solution of diyne 1
(10.0 mg, 50.0 mmol) in MeOH (5.00 ml) was added a solution of 2,6-
diisopropylphenyl azide (5c) (24.4 mg, 120 mmol) in MeOH (1.25 ml) at room
temperature. After stirring for 30 min at the same temperature, the mixture was
concentrated under reduced pressure. The residue was purified by flash column
chromatography (silica-gel 10 g, CH2Cl2/MeOH 5 100/1) to give a mixture of trans-
6c and cis-6c (28.9 mg, 47.6 mmol, 95.4%). The ratio of trans-6c and cis-6c was
determined to be 96/4 based on the 1H NMR analysis. The isomers were separated by
flash column chromatography (silica-gel 10 g, CH2Cl2/MeOH 5 100/1) and
recrystallized. The geometry of each isomers was confirmed by X-ray
crystallographical analysis (CCDC 810931 (trans-6c) and CCDC 810838 (cis-6c)).
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Figure 4 | Competition between doubly sterically-hindered azide 5c
and unhindered azide 5d in the reaction with various alkynes. (a)

Competition between 5c and 5d in the cycloaddition reaction with alkyne

3. (b) Competition between 5c and 5d in the reaction with acetylide

generated in situ. Yields were determined based on 1H NMR analysis.
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