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Enhanced conversion efficiency for harmonic generation with
double resonance
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Conversion efficiency for cw harmonic generation is calculated for the situation in which both fundamental and
harmonic waves are resonant. Compared with the situation of a singly resonant cavity at the fundamental,
the doubly resonant geometry can lead to an increase
efficiency can thus be achieved with nonlinear crystals
pump power for the fundamental input.

The idea of using a resonant cavity to enhance con-
version efficiency in cw second-harmonic generation
was first discussed by Ashkin et al.,' who found that
the conversion efficiency can be greatly increased
by resonating either the fundamental or the har-
monic field. Because of its simplicity, the scheme of
employing a resonator to build up the fundamental
power is the one most widely used in practice and has
recently led to the achievement of high cw conversion
efficiency.2 -7 For such a scheme, the conversion ef-
ficiency Y7 for the ratio of generated second-harmonic
power P2,out to the injected fundamental power P1,j1n is
found from the relation2' 4' 7

lJ7j (Ti + L1 + ,nE )2 4TI'7 ,mEN, (1)

where T1 is the transmission coefficient for the input
coupler of the buildup cavity for the fundamental field
and L1 is the total round-trip linear loss exclusive of
T1 for this field and where we have assumed that
(T1,Ll) << 1. ENL is the single-pass nonlinear con-
version efficiency. Given the values of L1, P1,in, and
ENL, one can optimize the transmission of the input
coupler T1 for impedance matching of the input2'4 to
find the optimum conversion efficiency 77P, with

(1 + E +4,6NLmP,m )' (2)

where eNL ENL/L1 2 provides a figure of merit
for singly resonant intracavity harmonic genera-
tion. From this expression, it is clear that high
conversion efficiency requires that 4 ENLP1im >> 1 or
ENLP1,h. >> (L1/2)2, i.e., that the nonlinear conversion
be much bigger than the linear loss. For fixed
linear loss L1, we can achieve this end by increasing
either ENL or P in. Unfortunately, the latter option
is usually accompanied by unwanted thermal effects
that degrade the performance of the buildup cavity
so that Eq. (2) breaks down before 770P is reached. 4 6

Alternatively, the available fundamental power P1ii
may be too small for efficient harmonic generation in
some applications.

Of course, the option of increasing the material
nonlinearity as expressed by ENL (relative to L1) is
clearly the pathway of choice and has been followed

of the effective nonlinear coefficient. High conversion
of relatively low nonlinear coefficients and with modest

in the experiments that have achieved high con-
version efficiency with crystals with large nonlinear
coefficients, such as LiNbO3, KNbO3, and KTP.2 7

However, not withstanding some promising new
methods,6 crystals with large ENL are available only
for limited regions in wavelength. Faced with this
state of affairs, we describe in this Letter a technique
for enhancing ENL by resonating the harmonic as well
as the fundamental field. Although Ashkin et al.1
did discuss the possibility of using a harmonic
resonator to enhance ENL, they did not pursue the
scheme of resonating both fundamental and harmonic
waves, perhaps because of the associated technical
complexity.

As the starting point in our analysis, we consider
the situation where both the fundamental and the
harmonic fields are separately resonant, either in two
independent but overlapping cavities (as shown in
Fig. 1) or in the same physical cavity (not shown) with
high finesse at both the fundamental and harmonic
frequencies. The transmission coefficients for input
and output couplers of the two cavities are denoted
by T1 and T2, respectively. Lk is the total round-trip
linear loss exclusive of Tk in the cavity k, whereas
dk is the effective cavity round-trip length. k =
1, 2 corresponds to the fundamental and harmonic
fields of frequencies (oi and &92 = 2col, respectively.
By assuming that the fields in the two cavities are
coupled through a nonlinear crystal with coupling
constant K, we find that the equations describing the
coupled system at steady state are given by8

Fig. 1. Geometry of doubly resonant scheme for har-
monic generation.
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-rial + K*al*a2 + e1 0,

-r2 a2 - - Kai2 =O. (3)
2

Here the cavity decay rate rk = c'ir/dkFk, with the
cavity finesse Fk- 2ir/(Tk + Lk). The coupling coef-
ficient K can be expressed in terms of the single-pass
nonlinear conversion efficiency ENL by?

JKj2 = ENL 4d7 AC4 (4)
d,2 d2 A,

ak is the amplitude of the field in cavity k and is
related to the intracavity power Pk by

pk= Ch 0 k Ia 1k2
dk

(k = 1, 2).

In Eqs. (3), e1 is connected to the input power P ,i,, by

T1 P1,1, = Ijes2 hcojdj/c, (6)

and the output power P2,ut is simply related to P2 by

P2,out = T 2 P2 * (7)

From the above, we can find the overall conversion
efficiency 7 =P 2 ,o0 t/Pj ln from the fundamental input
field to the harmonic output field. With a little
algebra we have

jij(Ti + Li + 47PimEN/T 2 )2

4TT 2 _

(8)

where all the quantities are measurable.
Let us now define a new set of variables that are

associated with the doubly resonant situation:

relatively small input power should be sufficient for
the same efficiency, as is demonstrated in Fig. 2,
where we plot the efficiency iq for frequency doubling
versus the input power P1,in for the schemes with
[curves (i)-(iii)] and without [curve (iv)] a harmonic
enhancement cavity. Different linear losses L2 for
the harmonic field are assumed in the schemes for
curves (i)-(iii), whereas the loss L1 of the fundamen-
tal field and the value of ENL are taken from Ref. 10
(ENL = 6 X 10-5 W-', L1 = 0.017). The input and
output coupling coefficients T1 and T2 are optimized
for best conversion efficiency at input power of 0.3 W.
The improvement with the harmonic cavity is clear
in this figure.

The increase ENT - Eel is unfortunately accompa-
nied by an increase in the effective round-trip loss
of the fundamental Li - L-el . The increase arises
from the passive losses L2 of the harmonic cavity
as expressed by the ratio ,B2 = L2/T2. Therefore a
trade-off must be made between minimizing /32 and
maximizing E ef in order to optimize the conversion
efficiency q. Given ENL, Pjr,t, L,, and L2, we find the
optimized values of TI, T2, and 71 as

op P[2(s+ + s_) - 1/3]
7 (S+ + s- + 1/3)2

op OP >

T'P + L2 T +L,

-' T0P/L, = s+ + s_ + 1/3,

(2P)"3 + 1/3,

,62-1 T2°P/L2 = 2(s+ + s-) - 1/3,

2(2P_)3 - 1/3,

(lla)

(12a)

(llb)

(12b)

(llc)

(12c)

(9a) with

(9b)

(9c)

with B2 -L 2/T2 . Equation (8) can then be written
as

(Tleff + Lelf +F77Pjj.E ff)2 = 4Teff> FPj.ENL,

(10)

which is precisely of the form of Eq. (1) for the con-
version efficiency of 7 in the absence of the harmonic
cavity. But here the nonlinear coefficient ENL is
enhanced by the factor 4/T2 to produce an effective
value ENL, which can be understood as an increase
of the effective crystal length brought about by the
harmonic enhancement cavity.

To illustrate the effectiveness of this technique,
we apply it to a specific example of doubling with
an LBO crystal, which is not generally an efficient
crystal for cw harmonic generation. To achieve a
moderate efficiency for the scheme of resonating only
the fundamental, a large input power is required.'0
However, with the harmonic enhancement cavity, a

s+ = [1/27 + P ± rP(P + 2/27)]1/3.
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Fig. 2. Harmonic conversion efficiency 77 plotted as a
function of input fundamental power Piin for doubly
[curves (i)-(iii)] and singly [curve (iv)3 resonant schemes
as derived from Eqs. (9) and (1). The parameters are
ENL = 6 X 10-5 W-1 , Li = 0.017 for all four schemes, and
L2 = 0.003, T, = 0.064, T2 = 0.019 (curve i); L2 = 0.017,
Ti = 0.039, T2 = 0.06 (curve ii); L 2 = 0.1, T, = 0.024,
T2 = 0.18 (curve iii); T, = 0.018 and no harmonic
enhancement cavity (curve iv).

=L- 4EjL/T 2 ,

T~eff = T 1T2 - 1 1
T2 + L2 1 + ,B2

1 + 2/3
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where F1,2 {1 - [(1 - T1,2)(1 - Ll2)]'1}
In summary, we have calculated the conversion

(i) efficiency for harmonic generation with both the fun-
damental and harmonic waves in resonance. Com-
pared with the scheme of only the fundamental res-
onance, here the single-pass nonlinear conversion
efficiency is increased by a factor of approximately
the finesse of the harmonic cavity such that rela-
tively small input power is enough to achieve high

._____________ .conversion efficiency. Because of the deleterious role
10 100 1000 of losses, the technique should be most powerful for

crystals such as KDP, LBO, and BBO, which have
P very low losses L1,2 and also have relatively small

nonlinear coefficients ENL. Since the technique re-
lies on doubly resonant cavities, we caution that it
is vulnerable to subtle changes in cavity properties,
such as thermal lensing,4 6 as well as to some non-
linear loss effects in some crystals. 4 However, the

T2°PIL2/ technique can be made to work in a robust fashion,
as demonstrated in Ref. 11, where 4 mW of harmonic
output was generated for only 15 mW of fundamen-

IL, T tal input in a doubly resonant cavity. Finally, note
I P/L1 that although instability may occur for high input

power, as predicted from the time-dependent form of
1 0 100 1000 Eqs. (3) one can always choose the optimized input

n ~~(output) coupler T10(p2) to avoid such a case.
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Jr
Fig. 3. (a) Optimized conversion efficiency i7°P and (b)
optimized coupling coefficients T7jP/L, (,01-1), T2°P/L2
(32-') as a function of the dimensionless input power
P = ENLPj,,j1 L,2L2 -

Here P 8 P1,UjENL =ENLP,,i,/L
2 L2 is the normalized

input fundamental power and TNL 8ENLILL2

provides a figure of merit for doubly resonant
intracavity harmonic generation. The assumption
ENL/PimLi/L2 >> (L,/3)3 (that is, relatively strong
input power) is taken in the approximation from
relations (11) to (12). In Fig. 3 we plot the optimized
conversion efficiency 770P as well as T7jP/L, (=-81-1),
T2°P/L2 (=,82-1) versus the normalized input power P.
The dots in Fig. 3(a) correspond to curves (i)-(iii) in
Fig. 2 for P,,in = 0.3 W. Note that Fig. 3 is a universal
curve appropriate to any doubly resonant scheme
when the input power is expressed in terms of the
dimensionless parameter P [a similar universal curve
follows form Eq. (2) for P = eNLP ,A]. One caveat is
that relations (3)-(12) are correct only in the high-
finesse approximation, that is, for T,, T2, L,, L2 << 1.
In particular, the limit of T2 - 1 cannot be applied
to Eqs. (8) and (9) for the transition to Eq. (2). Of
course, a more general formula for the conversion
efficiency Y7 can be derived for arbitrary T and L.
Since the derivation is much more complicated, we
will present here only the final result for Y7, which
has the form of

77 I r f +r1 Xr '1P1,iE. 
1 -L 2 ) F1 -or + 2F2- ) T2(( L2) 2

= TF2 P 2 (13)
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