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ABSTRACT

Copy Number Variants (CNVs) are structural rear-

rangements contributing to phenotypic variation that

have been proved to be associated with many dis-

ease states. Over the last years, the identification

of CNVs from whole-exome sequencing (WES) data

has become a common practice for research and

clinical purpose and, consequently, the demand for

more and more efficient and accurate methods has

increased. In this paper, we demonstrate that more

than 30% of WES data map outside the targeted re-

gions and that these reads, usually discarded, can be

exploited to enhance the identification of CNVs from

WES experiments. Here, we present EXCAVATOR2,

the first read count based tool that exploits all the

reads produced by WES experiments to detect CNVs

with a genome-wide resolution. To evaluate the per-

formance of our novel tool we use it for analysing two

WES data sets, a population data set sequenced by

the 1000 Genomes Project and a tumor data set made

of bladder cancer samples. The results obtained from

these analyses demonstrate that EXCAVATOR2 out-

performs other four state-of-the-art methods and that

our combined approach enlarge the spectrum of

detectable CNVs from WES data with an unprece-

dented resolution. EXCAVATOR2 is freely available

at http://sourceforge.net/projects/excavator2tool/.

INTRODUCTION

Copy Number Variants (CNVs) are structural rearrange-
ments involving DNA segments of at least 50 bp (1,2) that
can be presentwith an altered copy number compared to the
reference genome. CNVs are unbalanced events, i.e. they al-
ter the total number of base pairs in a genome since they in-

volve loss (deletion) or gain (duplication) of segments. Dur-
ing the last 10 years the advances in genomic technologies
have enhanced the ability to detect these alterations, reveal-
ing that they are spread along the human genome (3–7).
Latest comprehensive study estimated that from 4.8% to
9.5% of the genome contributes to CNVs of size 50 bp–
3 Mb (7). Moreover, the total amount of bases associated
with CNVs exceeds the number of bases involved in sin-
gle nucleotides polymorphisms (SNPs) by an order of mag-
nitude (8). CNVs may participate to phenotypic variation,
underlying both adaptive traits and different classes of dis-
eases (9). Pathogenic CNVs have been found so far associ-
ated with autism (10), neurological disorders (11), Crohn’s
disease (12) and cancer (13,14) and they are also suspected
to be associated with complex diseases such as type I dia-
betes (15) and cardiovascular disease (16,17).
Over the past decade, the introduction of next genera-

tion sequencing (NGS) technologies has greatly improved
CNVs detection, allowing base-pair resolution of break-
points (18). The advent of these platforms favoured the ac-
complishment of large-scale re-sequencing projects, such
as the 1000 Genomes Project and The Cancer Genome
Atlas, but the cost and the computational complexity of
downstream analysis still limit the routine use of whole-
genome sequencing (WGS) to large scale projects. Whole-
exome sequencing (WES), on the other hand, represents a
cost-effective alternative to WGS for the study of disease-
associated variants affecting the coding regions of the
genome (10,19–22) and is extensively used for diagnostic
purposes.
Most of the computational methods developed for the

discovery of CNVs from WES data are based on read
count (RC) approach (2,20,23–25). All the methods imple-
ment different strategies to normalise the depth of coverage
(DoC), which is known to be heavily biased by uneven cap-
ture and enrichment ef�ciency across exons. In nearly ev-
ery case, the available algorithms exploit solely the DoC of
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captured regions, limiting the possibility to investigate vari-
ations along the full-length genome. Therefore alterations
in intergenic regions are completely excluded from the in-
vestigation loosing the opportunity to study the impact of
CNVs on non coding genome from WES so far. Moreover,
since the exons only encompass a sparse 1% of the genome,
most breakpoints fall out of the targeted exons and there-
fore they are usually misplaced by current algorithms.
Almost all commercial enrichment kits lack speci�city

for the target regions, resulting in up to 60% of produced
reads which map to sequences outside the target design
(26). These off-target reads are generally ignored by clas-
sical computational methods for the analysis of WES data
that focus on the on-target reads only. Recently, Kuilman
et al. introduced CopywriteR (27), an R based method that
makes use of off-target reads to build uniformly distributed
DNAcopy number pro�les.Here, we show, for the �rst time,
that the distribution of In- and Off-Target RCs have simi-
lar statistical properties. We demonstrate that bias reduc-
tionmethods previously developed for targeted regions also
work for Off-target data and that properly normalized Off-
Target RCs allow for the prediction of the absolute number
of DNA copies with an accuracy comparable to In-Target
RCs.
Following these observations we developed a novel re-

lease of our EXCAVATOR tool (20), names EXCAVA-
TOR2. EXCAVATOR2 enhances the identi�cation of ge-
nomic CNVs (overlapping or non-overlapping exons) from
WES data by integrating the analysis of In-targets and Off-
targets reads. It extends the RC approach to the whole
genome sequence and exploits the Shifting Level Model
(SLM) algorithm (28,29) to segment the two combined pro-
�les. Thereafter, the FastCall algorithm (30) allows to clas-
sify each segmented region into �ve possible states (two-
copy deletion, one-copy deletion, normal, one-copy dupli-
cation and multiple-copy ampli�cation). In order to show
the versatility of our tool in different experimental settings,
we applied it to twoWES data sets: a population study and
a cancer genomic study. As a �rst step we evaluated the per-
formance of EXCAVATOR2 to identify genomic CNVs in
a data set made of HapMap samples sequenced by the 1000
Genomes Project and we compared it to other four state-
of-the-art methods for WES data that include CoNIFER,
XHMM and the recently published CODEX and Copy-
writeR tools. As a further step, EXCAVATOR2 and Copy-
writeR were used for the analysis of the WES data of 14
matched tumor/control of Bladder samples, and their re-
sults were compared with those obtained from high-density
SNP-array assays. The new methodological advances have
been included in a new version of the tool that is freely avail-
able at http://sourceforge.net/projects/excavator2tool/.

MATERIALS AND METHODS

WES data inspection, WMRC description and biases nor-
malization

In order to study the distribution of reads generated by
WES experiments we used a Survey Data set made of 30
WES samples sequenced by using three capture kits: Nim-
bleGen SeqCap EZ Exome v2.0 44 Mb, Agilent SureSelect

Human All Exon 50 Mb and Illumina TruSeq Exome En-
richment 62Mb. This data set includes both public available
data generated by two previous comparative studies (31,32)
and exomes sequenced in our laboratories. More details are
available in Section 2.1 and Table S1 of SupplementaryMa-
terial.
Although commercial WES kits are designed to cap-

ture speci�c genomic regions, mainly transcribed sequences,
we found that a substantial fraction of reads systemati-
cally aligned outside the designed targeted regions (see Re-
sults). In order to extend the RC approach to Off-target
regions and exploit this measure to increase the poten-
tiality of identifying regions with altered copy number in
intronic/intergenic DNA segments we divided the genome
into two distinct classes of genomic features: (i) all the re-
gions targeted by WES kits (according to respective man-
ufacturers design) and (ii) non-overlapping genomic win-
dows that belong to intronic/intergenic regions. We de-
�ned the Window Mean Read Count (WMRC) measure
that expands the ExonMean Read Count (20). Speci�cally,
WMRC corresponds to:

WMRCw = RCw

W
, (1)

where W=

{

ExonSize if In−Target

{5K,10K,...}bp if Of f−Target

and RCw is the number of reads aligned to a genomic re-
gion of length W. W varies according to the size of each
designed targeted DNA segment or, in case of Off-target,
it corresponds to the selected �xed size of non-overlapping
windows in which the intergenic chromosome is divided.
We studied the relationship between WMRC data and

classical genomic systematic biases: (i) local GC-content
and (ii) mappability, that have already been proved to in-
�uence read depth in targeted regions (33,34). We applied
previously adopted RCmedian normalization approach in-
troduced by Yoon et al. and extended in our previous work
(34) for mitigating the effect of both CG-content and map-
pability in WMRC, separately for In- and Off-Target win-
dows (details are in Supplementary Section 1).

Integration into EXCAVATOR2

The newWMRC was introduced into a new version of EX-
CAVATOR tool (20). Starting from the .bed �le of the target
regions, EXCAVATOR2 �rst creates the new pseudo-target
splitting intronic/intergenic regions into non-overlapping
windows of �xed length and skipping 200 bp stretches �ank-
ing the target exons. WMRC biases are corrected for In-
and Off-Target regions independently exploiting the me-
dian normalisation approach (Supplementary Section 1).
We used the log-transformed ratio (log2 ratio) between
the WMRC values of test and control samples. WMRC
ratio is median-normalised for both In- and Off-Target.
Then normalised WMRC is segmented by means of the
previously described Heterogeneous Shifting Level Model
(HSLM) segmentation algorithm (28,29). Finally, FastCall
algorithm (30) classi�es each segmented regions as one of
the �ve possible discrete states (two-copy deletion, one-
copy deletion, normal, one-copy duplication and multiple-
copy ampli�cation). The FastCall calling procedure takes
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into account sample heterogeneity and exploits the Expec-
tation Maximisation algorithm to estimate the parameters
of a �ve gaussian mixture model and to provide the prob-
ability that each segment belongs to a speci�c copy num-
ber state. The new functionalities were included in a new
version of the tool. EXCAVATOR2 is freely available at
http://sourceforge.net/projects/excavator2tool/.

Validation data sets

To evaluate the accuracy of our novel computational ap-
proach for predicting the absolute number of DNA copies
of genomic regions from WES data in a population study,
the exomes of 8 healthy individuals sequenced by the 1000
Genomes Project (Supplementary Table S2) were selected.
They were previously genotyped by both McCarroll (35)
and Conrad (36) using array-based technologies. Speci�-
cally, McCarroll estimated regions with altered copy num-
ber in 270 individuals by using SNP 6.0 arrays, performing
all the experiments in duplicates, using two different compu-
tational approaches for analysing array data and con�rm-
ing the presence of CNV at 27 loci in 30 individuals using
q-PCR. In Conrad’s study on the other hand, a customised
high-density tiling CGH array was exploited to accurately
detect the genotype of common CNV loci in 450 HapMap
samples (inferring integer copy numbers only in the range
of 0 to 5). With this technology the power of detection and
resolution improved signi�cantly.
We also built a gold standard data setmade of 100 healthy

individuals randomly picked out from the catalogue of the
1000 Genomes Project and belonging to 3 different popu-
lations (37 CEU-Utah residents with northern and western
European ancestry, 17 JPT-Japanese people from Tokyo, 32
YRI-Yoruba people from Ibadan and 14 CHB-Han Chi-
nese individuals from Beijing). The exomes were sequenced
during phase3 of the Project in 2 different Centres using
various sequencing libraries and WES enrichment kits (see
Supplementary Table S3 for details). All the individuals
were genotyped by the International HapMap Consortium
(37) and also by the 1000 Genomes Consortium (6). The
HapMap Consortium (HapMap) made use of two distinct
SNP arrays (Af�metrix 6.0 and Illumina 1M) and regional
PCR-Sanger sequencing to outline alterations of copy num-
ber at genomic level for both common and rare alleles. In
addition, the sequencing-based genotypes of CNVs iden-
ti�ed by the Pilot 1 and 2 of the 1000 Genomes Project
(1KG Pilot) for those individuals were considered to assess
the ability of our method to detect CNVs. We compared
our results to recently published CopywriteR (27) and to
a selection of three existing RC-based computational meth-
ods, largely used for CNV identi�cation fromWESdata (i.e.
CoNIFER, XHMM and CODEX). A complete descrip-
tion of the data set and running parameters of each tool
are available in Supplementary Section 2.2 and 3.
Finally, to test the performance of our method in detect-

ing somatic CNVs we analysed 28 WES from Urothelial
bladder cancer samples (Supplementary Table S4). The so-
matic data set comprises 14 pairs of tumor and matched
normal samples (38) enriched using the Agilent SureSelect
Human All Exon plus v3 50 Mb or v4 51 Mb. Same sam-

ples were also genotyped by F.X. Real’s laboratory using
Illumina HumanOmniExpress-12 v1.0 SNP-array.

RESULTS

WES read count in Off-Target regions

To study the distribution of the reads aligned along the
genome we used a WES Survey Data set (see Materials and
Methods) made of 30 sequencing experiments and we split
the genome into regions of three different categories: In-
Target,Off-Target orFlanking. FollowingAsan (39) we con-
sidered as Flanking stretches of 200 bp adjacent to each of
the boundaries of the targeted regions. The 30 WES experi-
ments were chosen to balance the three enrichment kits (10
SureSelect, 10 SeqCap and 10 TruSeq) and with diversi�ed
sequencing throughput in order to have a general overview
of reads distribution. All reads were aligned to the human
reference genome (hg19). Reads overlapping the targeted re-
gions of each exome kit (In-Target), reads surrounding en-
riched regions (Flanking) and reads mapping outside those
regions (Off-Target) were counted separately (see Supple-
mentary Section 2.1 for more details). Despite the sequenc-
ing throughput variability, the overall mean percentage of
reads that unambiguously maps to Off-Target regions is
nearly 30% for all three different enrichment kits (see Figure
1). Speci�cally, 23–43% of reads for TruSeq, 20–50% for Se-
qCap and 21–35% for SureSelect (see Supplementary Fig-
ure S1 for per sample details).
In order to exploit this large amount of extra-target reads,

we studied the properties of RC distribution across Off-
Target regions and how it is in�uenced by classical sources
of bias, like GC content and mappability. To this end, we
calculated theWMRC (see Materials andMethods) for dif-
ferent window sizes and we found that they are similarly in-
�uenced by local nucleotide content and sequence unique-
ness in Off-Target regions (see Figure 2, panel A and C for
Off-Target and Supplementary Figure S2 panel C and E for
In-Target) as it has been already proved for targeted regions
in our previous study (20). The median normalisation ap-
proach allowed to mitigate both GC-content and unique-
ness biases in Off-Target regions (Figure 2, panel B and D,
respectively) as well as in In-Target regions (Supplementary
Figure S2 panel D and F).

Copy number resolution

To measure the capability of our method to correctly pre-
dict the absolute number of DNA copies of each genomic
region, we calculated the normalised WMRC for In-Target
and Off-Target regions from eight WES data from the 1000
Genomes Project. The ratio of normalisedWMRC between
each test and the control (NA10847) was compared to the
copy number ratio of regions inferred by McCarroll and
Conrad studies (35,36). McCarroll identi�ed an average of
112 ampli�cations (with size of around 50 Kb on average)
and 123 deletions (with size of around 33 Kb on average)
per sample (Supplementary Table S2), while Conrad recog-
nised in those samples 356 duplications and 441 deletions
(with size of around 10 Kb on average for both variants).
The WMRC-based copy number pro�les are highly cor-

related with McCarroll prediction for both In-Target and
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Figure 1. Mapping statistics. The distribution of mapped reads into In-Target, Flanking and Off-Target regions are shown for the 30WES samples belong-
ing to the Survey Data set. They are split per enrichment kit. TS62M states for Illumina TruSeq Exome Enrichment 62 Mb, SS50M is Agilent SureSelect
Human All Exon 50 Mb and SCV2 is the NimbleGen SeqCap EZ Exome v2.0 44 Mb. The absolute and relative means of mapped reads are respectively
showed on the left and right.

Off-target regions (Pearson R = 0.9 and R = 0.86, respec-
tively; see Figure 3 panel B and C) and the correlation of
combined WMRC reaches R = 0.89 (Figure 3, panel A).
Interestingly, the analyses performed on Conrad data set
demonstrate that the use of Off-Target reads can improve
the prediction capability of RC data: the correlation be-
tween real CN and WMRC for Off-Target is larger than
for In-Target regions (Supplementary Figure S3). In con-
clusion, these results clearly demonstrate the capability of
WMRC to accurately predict copy numbers fromWES data
in Off-Target as well as in In-Target regions.

1KG data analysis

In order to evaluate the capability of our method to iden-
tify CNVs in a population study we analysed the WES data
of a cohort of 100 healthy individuals from the catalogue
of the 1000 Genomes Project. We analysed the same data
set also with four other different tools that include XHMM
(25), CoNIFER (23), the recently published CODEX (21)
and CopywriteR (27) using the collections of all genomic
CNVs genotyped by HapMap or by 1KG Pilot projects for
the inspected 100 individuals as a gold standard (see Sup-
plementary Section 2.2 and 3 for details).
To compare the performance of the �ve methods in iden-

tifying (i) all genomic CNVs and (ii) CNVs in targeted re-
gions, we calculated precision (P) and recall (R) rates. For
each tool P corresponds to the fraction of calls overlap-
ping the reference set (TP) and the total number of calls
(TP + FP), while R is the fraction of TP calls with respect
to the whole reference set of CNVs (TP + FN). For the
comparison at genomic level, the gold standard consisted
of the whole set of CNVs identi�ed by HapMap/1KG Pilot
projects for the selected 100 individuals while, to measure
the performance in targeted exons, the gold standard was
restricted to the HapMap/1KG Pilot CNVs overlapping re-

gions covered by each enrichment kit. To classify the calls
made by each tool, we used the approach previously de-
scribed by Yoon et al. (40) andMagi et al. (29) for calls clas-
si�cation: a detected segment is considered a true positive
(TP) if there is at least 10% overlap with the gold standard
CNVs for the same sample identi�ed by HapMap/1KG Pi-
lot, and is considered a false positive (FP) if there is no over-
lap or is smaller than 10%. Since the capability of detecting
regions with altered copy number is in�uenced by the length
of the segment, we distinguished three classes of events:
Small (length≤ 20Kb),Medium (length> 20Kb and≤ 100
Kb) and Large (length > 100 Kb). Figure 4 summarises the
results using the F-measure (the harmonic mean of preci-
sion and recall). We run our tool with 3 different windows
size for Off-Target regions (5 Kb, 10 Kb, 20 Kb) and we
obtained the best results with the 20 Kb windows. Over-
all, EXCAVATOR2 outperforms all the other tools with the
highest F-measure with respect to HapMap and 1KG Pilot
calls sets (Figure 4, panel (A,C) and (B,D), respectively).
Speci�cally, EXCAVATOR2 has the highest precision rates
in identifying genomic CNVs (panel A for HapMap, panel
B for 1KGPilot) as well as in identifying CNVs that overlap
only targeted exonic regions (panel C for HapMap, panel D
for 1KG Pilot). CopywriteR shows higher recall than EX-
CAVATOR2 only for Large and Medium genomic events
in the HapMap data set (panel A), while CODEX’s recall
rates are only higher with respect to CNVs overlapping tar-
geted exons for all except Large events (panel C and D).
The precision levels of XHMM and CONIFER are simi-
lar to those of CopywriteR and CODEX but with signi�-
cant lower recall rates. As expected, the best absolute perfor-
mance in terms of precision and recall involves LargeCNVs.
Remarkably, Figure 4 also shows that the two gold stan-
dard data sets used in this comparison give different results
in terms of algorithm performance. In particular, almost all
tools obtain lower sensitivity in recognising Medium and

 b
y
 g

u
est o

n
 N

o
v
em

b
er 2

1
, 2

0
1
6

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2016 5

Figure 2. Pre- and post-normalisation WMRC distribution in Off-Target
regions. The in�uence of mappability and GC content percentage on
WMRC are shown in (A) and (C) and compared with normalised signals
(B) and (D).

Small CNVs from HapMap than from 1KG Pilot. These
differences can be mainly ascribed to the different nature of
CNV events comprised in the two sets. HapMap data set
was generated by using Af�metrix 6.0 and Illumina 1M ar-
ray platforms, while the 1KG Pilot data set includes struc-
tural variants identi�ed with three different computational
approaches (split read, paired-end and depth of coverage)
from low-coverage whole genome sequencing data.

Somatic calls

To evaluate whether our method can give insight into can-
cer genomic studies we used EXCAVATOR2 and Copy-
writeR to analyse WES data from 28 Urothelial bladder
cancer samples. To measure the accuracy and resolution
of the two methods in discovering CNVs, same samples
were also genotyped by F.X. Real and his group using high-
resolution Illumina HumanOmniExpress SNP-array. First,

we observed that CopywriteR produced a signal character-
ized by higher variance than EXCAVATOR2 (see Figure 5,
panel B for EXCAVATOR2 and C for CopywriteR) com-
pared to the SNP-array (Figure 5, panel A). To measure the
noise level generated by the two approaches we calculated
theMedian Absolute Deviation (MAD) values of their seg-
mented signals. As shown in Figure 5D, CopywriteRMAD
(mean = 0.43, range = 0.02–0.98) was higher than that of
EXCAVATOR2 (mean= 0.26, range= 0.13–0.65) while the
mean MAD for SNP-array was smaller at 0.09 (see Fig-
ure 5D). This can be mainly ascribed to the normalization
approaches adopted by the two tools and to the capabil-
ity of segmentation algorithms to discriminate between the
real biological signals and the experimental noise. More-
over tumor samples are characterised by clonal heterogene-
ity and somatic CNVs belonging to subclones with different
percentages produce signals that can be confounded with
the experimental noise of normal copy state. Thus, P and
R are not the most appropriate statistics to compare so-
matic CNVs with a SNP-array gold standard. Hence, we
studied the correlation between the SNP-array segmented
pro�les and those inferred by EXCAVATOR2 and Copy-
writeR along the genome. To this end, for each paired
tumor/control samples we juxtaposed the median value of
each region segmented by our tool and by CopywriteR (see
Supplementary Sec. 2.3 and 3) with the log2 ratio median
values of the SNP-array signal and calculated the global
and per CNV-size correlations. The table in Figure 5E in-
dicates that segmented pro�les inferred by EXCAVATOR2
well correlates with those fromSNP-array, and outperforms
CopywriteR irrespective of the CNV size. In addition, the
use of combined signals from In- and Off-Target allows our
method to better detect CNVs in exon-rich regions and to
be more accurate in breakpoints detection with respect to
CopywriteR. As an example, we reported a 20 Kb deletion
involving an exon-rich region detected by SNP-array (see
panel F of Figure 5) that was correctly identi�ed by EX-
CAVATOR2 with similar breakpoints (panel G) but com-
pletely missed by CopywriteR (panel H). Additional exam-
ples are shown in Supplementary Figure S4.

DISCUSSION

Recent studies have remarked the increasingly relevance of
CNVs identi�cation for elucidating the molecular mech-
anisms underlying several diseases. Germline CNVs con-
tribute to phenotypic variation and recurrent somatic CN
alterations (gains and losses) in tumor genomes often in-
volve genes with key-roles as oncogenes or oncosuppres-
sors. Thus, improving the accuracy of breakpoint mapping
and copy number prediction is fundamental for straight-
forward genotype–phenotype correlations and diagnostic
classi�cation of CNVs. The last years have seen the emer-
gence of several tools for the detection of CNVs from the
analysis of WES data. The �rst generation of these tools,
as CoNIFER, XHMM, ExomeCNV, EXCAVATOR and
CODEX, exploits only coverage information from targeted
regions. All these tools use a similar procedure consisting
of two stages: a normalization step to mitigate systematic
biases due to GC content, mappability and capture ef�-
ciency, and a segmentation step for the identi�cation of the
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Figure 3. Copy number correlation with McCarroll calls. Boxplots summarize the capability of WMRC data to predict the exact number of DNA copies
of a CNV region. Normalised WMRC ratio were calculated for eight samples using NA10847 as control and compared with copy number ratios from
McCarroll characterisation. R is the Pearson correlation coef�cient. (A) all genomic regions, (B) In-Target regions and (C) Off-Target regions.

Figure 4. CNV calls assessment for the population data set. CNV events identi�ed in 100 samples from 1000 Genomes Project catalogue by using Codex,
CONIFER, CopywriteR, EXCAVATOR2 and XHMMwere validated respect to the (A andC) HapMap Consortium and (B andD) 1KG Pilot genotyping
calls. Results are reported from the comparison with all (A and B) genomic CNVs and restricted to only the targeted regions (C and D). Precision-recall
plots are shown with light grey curves representing F-measure levels. CNV events are distinguished based on their size (Small: ≤ 20 Kb , Medium > 20 Kb
and ≤ 100 Kb and Large > 100 Kb).
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A D

E

B

C

F G H

versus

versus

Figure 5. Analysis on somatic data set. A total of 14WES tumour/control samples pairs of Urothelial Bladder cancer were analysed using EXCAVATOR2
and CopywriteR, and results were compared to the SNP-array genotyping. Copy number pro�les for the chromosome 5 of patient 251 with segmentation
values depicted in red are shown for (A) SNP-array, (B) EXCAVATOR2 and (C) CopywriteR. MAD values for all 14 samples pairs are represented
in (D). Table (E) shows the Spearman correlation coef�cient values for different CNV sizes between the array-based pro�les and those resulting from
EXCAVATOR2 and CopywriteR. Finally, the ‘zoomed’ in region containing a potential deletion in the chromosome 5 of the patient 64 is showed with CN
pro�les and calls from (F) SNP-array, (G) EXCAVATOR2 and (H) CopywriteR.

boundaries of the altered region and the estimation of the
absolute or relative number of DNA copies. ExomeCNV is
the �rst tool implemented for the detection of CNVs from
WES data. It estimates copy number values by using uncal-
ibrated read-depth. CoNIFER and XHMM employ singu-
lar value decomposition (SVD) and principal-component
analysis (PCA) techniques to identify and remove the prin-
cipal sources of variation underlying the non-uniform read-
depth among captured regions. SVD and PCA normaliza-
tion procedures require the analysis of many samples at
once, thus limiting their application to large-scale sequenc-
ing projects. CODEX, as CoNIFER and XHMM, uses la-
tent factormodels to remove systematic biases (GC content,
mappability, capture and ampli�cation ef�ciency) assuming
a Poisson log-linear model that is more suitable for discrete
count data rather than the continuous Gaussian model em-
ployed by the other two methods. In this way CODEX es-
timates a ‘control coverage’ for no CNV that it compares
with the observed coverage for each exon and each samples.
The �rst release of EXCAVATOR combines a three-step

normalization procedure with a novel heterogeneous hid-
den Markov model algorithm and a calling method that
classi�es genomic regions into �ve copy number states.
CopywriteR is instead the �rst published method that
makes direct use of off-target reads to build uniformly dis-
tributed genomic copy number pro�les. It uses MACS-
based peak calling to identify all regions that are well cov-
ered by reads (peaks) and keeps only the background reads

which are used to build a compensated binned Depth of
Coverage pro�le. The compensated DoC is normalized us-
ing loess-based corrections for mappability and GC con-
tent and �nally segmented by means of circular binary seg-
mentation method. In this way the authors claim to re-
duce the noise and they show that the segmented pro�le
built from reads after peaks removal is ‘close’ to the one
from low-coverage WGS. This choice, together with a �l-
tering step aiming at removing extreme values for coverage,
length, mappability and GC content, allowed the method
to (globally) outperform both CoNIFER and XHMM and
also our previous version of EXCAVATOR when com-
pared with calls from the International HapMap Consor-
tium, McCarroll and Conrad genotyping studies (27). In
this work, we present the �rst computational approach that
combines together reads aligned to In- and Off-targeted re-
gions ofWES experiments to identify CNVs. This approach
signi�cantly improves the detection of CNVs in targeted
regions with respect to all other state-of-the-art computa-
tional methods and (globally) outperforms CopywriteR in
identifying CNVs at genomic-level. We proved that around
30% of the reads produced by WES experiments align out-
side the targeted regions. These reads are often regarded
as the ‘junk’ of WES experiments, because they consume
a substantial amount of sequencing throughput but are of
no value for the common scope of WES, that is, identi-
fying variants in targeted exons. In order to exploit this
amount of extra-exonic data, we measured the RC in these
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regions and we found that they is affected by the same
sources of biases and is able to predict the exact number
of DNA copies with nearly the same accuracy. For this rea-
son we extended the EMRC that we introduced in (20) by
de�ning the WMRC which accounts for both In-Target ex-
ons and Off-Target windows of �xed size. We integrated
the WMRC into a new tool, EXCAVATOR2 that we used
to analyse two different data sets and we showed that it
outperforms the other state-of-the-art tools in calling ge-
nomic CNVs. In particular, EXCAVATOR2 is able to iden-
tify CNVs involving large intergenic regions with few ex-
ons that are usually missed by �rst generation methods, in-
cluded the previous version of our tool. Indeed, only EX-
CAVATOR2 detected and correctly genotyped a heterozy-
gous deletion implicated in epilepsy (11). The deletion spans
around 270 kb of intergenic regions across exons 2–3 of
CNTNAP2 (Contactin-associated protein-like 2; OMIM
604569) which was predicted to produce an out-of-frame
transcript p.Gln33Argfs*7 (NM 014141:c.98402 del). Fur-
thermore, as shown, EXCAVATOR2 is able to detect also
CNVs belonging to exon-rich regions that CopywriteR fails
to catch. This is due to the fact that it removes regions that
are well covered by reads and only keeps the background
to build CN pro�les. All together the results obtained for
the two data sets, a population-based and a cancer study,
clearly prove that our combined approach improves the pre-
cision of calling CNVs overlapping targeted exons from
WES data and enlarges the spectrum of detectable CNVs
to off-target events. Therefore, EXCAVATOR2 can be ef-
fectively employed for the identi�cation of CNVs in small
as well as large-scale re-sequencing studies with best perfor-
mance and so maximizing the utility of exome sequencing
data in genetic and cancer studies. Lastly, it’s of particular
interest that all WES experiments can be re-analysed using
ourmethodwith the bene�cial effect to identify novel CNVs
in extra-exonic regions by having the full-genome CN pro-
�le.
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