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Abstract 

Purpose:  This study aimed to develop and validate CT-based models to predict pathological complete response 
(pCR) after neoadjuvant chemotherapy (NAC) for advanced adenocarcinoma of the esophagogastric junction (AEG).

Methods:  Pre-NAC clinical and imaging data of AEG patients who underwent surgical resection after preoperative-
NAC at two centers were retrospectively collected from November 2014 to September 2020. The dataset included 
training (n = 60) and external validation groups (n = 32). Three models, including CT-based radiomics, clinical and 
radiomics–clinical combined models, were established to differentiate pCR (tumor regression grade (TRG) = grade 
0) and nonpCR (TRG = grade 1–3) patients. For the radiomics model, tumor-region-based radiomics features in the 
arterial and venous phases were extracted and selected. The naïve Bayes classifier was used to establish arterial- and 
venous-phase radiomics models. The selected candidate clinical factors were used to establish a clinical model, which 
was further incorporated into the radiomics–clinical combined model. ROC analysis, calibration and decision curves 
were used to assess the model performance.

Results:  For the radiomics model, the AUC values obtained using the venous data were higher than those obtained 
using the arterial data (training: 0.751 vs. 0.736; validation: 0.768 vs. 0.750). Borrmann typing, tumor thickness and 
degree of differentiation were utilized to establish the clinical model (AUC-training: 0.753; AUC-validation: 0.848). The 
combination of arterial- and venous-phase radiomics and clinical factors further improved the discriminatory perfor-
mance of the model (AUC-training: 0.838; AUC-validation: 0.902). The decision curve reflects the higher net benefit of 
the combined model.

Conclusion:  The combination of CT imaging and clinical factors pre-NAC for advanced AEG could help stratify 
potential responsiveness to NAC.
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Key points

•	 Radiomics method can predict that AEG patients can 
achieve pCR after NAC.

•	 The combination of radiomics and clinical factors 
can improve the predicting performance.

•	 Radiomics–clinical model can stratify patients 
according to potential responsiveness to NAC.

•	 Radiomics–clinical model can help clinicians to 
develop individualized and precise treatment plans.

Introduction
The incidence of adenocarcinoma of the esophagogas-
tric junction (AEG) has been increasing in recent years 
[1]. AEG is defined as adenocarcinoma with a tumor 
center located within 5  cm above or below the ana-
tomical esophagogastric junction (EGJ) that crosses or 
touches the EGJ. Radical surgical resection and com-
plete lymph node dissection are the basis of treatment, 
but most patients with AEG are already in the advanced 
stage when diagnosed, and surgical resection alone has a 
high rate of local recurrence and poor survival [2]. Neo-
adjuvant chemotherapy (NAC) followed by radical sur-
gery has become a recommended treatment modality 
for advanced gastric cancer patients. NAC can reduce 
tumor load, lower tumor stage, improve the rate of radi-
cal resection and ultimately may prolong the survival of 
AEG patients [3–5]. However, the prognostic improve-
ment that is achieved using NAC is largely dependent 
on the pathological response of the lesion after chemo-
therapy. The histological tumor regression grade (TRG) 
is an objective indicator used to evaluate the efficacy of 
therapy for AEG patients when cancer cells in the lesion 
are absent or when only a small number remain [6, 7]. 
In patients with a mild pathological response or poor 
response, NAC not only does not benefit the patient, but 
there is also a risk for toxic effects during chemotherapy 
and tumor progression, and delayed surgery may result in 
a decreased rate of radical resection and increased surgi-
cal complication rates [3, 8–11]. The current evaluation 
of the efficacy of NAC is based on the response evalua-
tion criteria in solid tumors (RECIST) [12]. However, the 
indeterminate wall morphology of the GI tract and the 
fibrotic changes caused by NAC limit the application of 
RECIST; additionally, RECIST cannot be used to predict 
treatment response before treatment, and thus, there 

is a delay before it can be used [13–18]. Therefore, it is 
crucial to evaluate the efficacy of NAC in a timely and 
accurate manner before treatment to enable early identi-
fication of patients who will respond to NAC, and so that 
those who will respond poorly can immediately receive 
surgical treatment. Such an approach could help develop 
individualized treatment plans for AEG patients, improve 
patient prognosis and save valuable medical resources.

Along with traditional CT-based response evaluation, 
the radiomics method has great potential for revealing 
deep imaging information. The method adopts a com-
bined medical-industrial approach to transform tradi-
tional images into deep-level digital quantitative features; 
the technique can be used to uncover the potential bio-
logical characteristics and heterogeneity within the 
tumor using the imaging data and to provide information 
beyond the morphological and functional characteristics 
of the tumor [19–22]. Several radiomics-based studies 
regarding the neoadjuvant treatment of esophageal and 
gastric cancers have been reported [3, 4, 23–25]. How-
ever, the use of this technique for the pre-NAC predic-
tion of NAC response for AEG alone is rarely reported in 
most clinical studies of esophageal or gastric cancers, and 
most studies are single-center studies that lack independ-
ent external validation [26].

The purpose of our study was to retrospectively analyze 
the clinical, pathological and enhanced CT imaging data 
of patients with advanced AEG before NAC. The mod-
els used for predicting pathological complete response 
(pCR) to NAC were developed and externally validated. 
We hope the study will provide evidence for under-
standing tumor response-related quantitative imaging 
characteristics and contribute to the development of 
individualized and precise treatment strategies for AEG 
patients.

Materials and methods
The study protocol was approved by the Medical Ethics 
Committee of Zhengzhou University, and the need for 
informed consent was waived.

Patient selection
Clinical, pathological and CT imaging data of AEG 
patients who underwent surgical resection after preop-
erative NAC at the First Affiliated Hospital of Zhengzhou 
University and Henan Provincial Cancer Hospital were 
retrospectively collected from November 2014 to Sep-
tember 2020. The patient enrollment criteria included the 
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following: (1) AEG confirmation by gastroscopic biopsy 
pathology prior to treatment; (2) pre-NAC clinical stage 
of cT2–4N0–3M0 stage; (3) NAC treatment in 2–6 cycles; 
(4) lack of other antitumor therapy administered before 
NAC; (5) enhanced CT scan obtained within 1  week 
prior to NAC treatment with complete imaging data; (6) 
lesion covering at least 3 slices on CT cross section and a 
maximum plane diameter of at least 2 cm; and (7) radi-
cal resection performed after NAC treatment with com-
plete postoperative pathology data. The exclusion criteria 
included: (1) combined history of other malignancies; (2) 
poor CT image quality or lack of raw DICOM data; (3) 
adverse event during NAC or less than 2 cycles of NAC; 
(4) combined heart, lung and other important organ dys-
function in which a CT examination could not be per-
formed; and (5) incomplete CT imaging data or clinical 
and pathological data.

Patients with AEG from the First Affiliated Hospital of 
Zhengzhou University were included in this study as the 
training group (n = 60), and 32 patients with AEG from 
Cancer Hospital of Zhengzhou University were included 
as the external validation group (n = 32).

Clinical data
The chemotherapy regimens included the following: 
(1) XELOX regimen: oxaliplatin given intravenously at 
130  mg/m2 for 2  h on Day 1, repeated every 3  weeks; 
patients received capecitabine at a dose of 1000  mg/m2 
(bid, 1–14 d) orally twice daily; (2) SOX regimen: oxali-
platin 130  mg/m2 intravenously + oral capsules 80  mg/
m2 in combination for 14  days twice daily. Patients and 
families signed informed consent forms. The treatment 
consisted of between 2 and 6 cycles unless disease pro-
gression, intolerable toxicity, or death occurred. All 
patients underwent radical surgical resection within 
1 week of the end of NAC treatment.

The clinical data collected in our study included 
age, sex, carcinoembryonic antigen levels (CEA, nor-
mal range 0–5  ng/mL), carbohydrate antigen 199 level 
(CA199, normal range 0.01–37 U/ml), carbohydrate 
antigen 125 levels (CA125, normal range 0.01–35 U/
ml), and serum albumin levels (normal range 35–55 g/l). 
TNM staging of tumors performed using CT images was 
evaluated according to the 8th edition of the American 
Joint Committee on Cancer (AJCC) staging [27]. The 
Borrmann typing of the AEG was documented [28]. The 
postoperative pathological TRG grading was recorded 
as a criterion for evaluating the efficacy of NAC. A TRG 
grade of 0 is defined as complete response, with no viable 
cancer cells remaining in the primary lesion and lymph 
nodes; TRG grade 1 is defined as moderate response, 
with single or small clusters of cancer cells remaining 
in the lesion; TRG grade 2 is defined as mild response, 

with significant disappearance of cancer cells under the 
microscope but some amount of cancer cells remain-
ing, but with less interstitial fibrosis; and TRG grade 3 is 
defined as poor response, with no significant disappear-
ance of cancer cells under the microscope or only a few 
cancer cells remaining. Patients were divided into the 
pCR group (tumor regression grade [TRG] = grade 0) 
and the nonpCR group (TRG = grade 1–3) based on the 
postoperative pathological histological TRG evaluation. 
In the training group, there were 19 patients in the pCR 
group and 41 patients in the nonpCR group. In the exter-
nal validation group, there were four patients in the pCR 
group and 28 patients in the nonpCR group. The clinical 
characteristics of the enrolled patients are summarized in 
Table 1.

CT image acquisition
All patients underwent contrast-enhanced CT scans, and 
informed consent forms were signed before inspection. 
The CT scans were acquired with a 64-row CT scan-
ner (Discovery CT 750 HD, GE Healthcare, Waukesha, 
WI, United States) or a 256-row CT scanner (Revolu-
tion CT, GE Healthcare, Waukesha, WI, United States). 
Preparation for the examination occurred as follows: 
Patients fasted for more than 8  h before the examina-
tion and were given an intramuscular injection of sco-
polamine 10–20  mg 15–20  min before the examination 
to reduce gastrointestinal motility (Hangzhou Min-
sheng Pharmaceutical PG Roup Co., Ltd., Specifications: 
10 mg/ml) and breath-holding exercises were performed. 
The patients also drank 800–1000  mL of warm water 
10–15 min before the examination. The scanning param-
eters were as follows: tube voltage 120 kV; tube current 
using automatic milliampere second technology with a 
pitch of 1.375/1.1; field of view (FOV) of 500 mm; matrix 
512 × 512 mm; and a scan thickness of 0.625–5 mm with 
scan spacing from 0.625 to 5 mm. The scan area at least 
encompassed the lower esophagus to the lower border of 
both kidneys. For the enhancement scan, 90–100 mL of 
nonionic contrast agent was injected through the elbow 
vein using a high-pressure syringe (iopromide, 370  mg/
mL, GE Medical Systems, 1.5 mL/kg and 3 mL/s). Using 
the low-dose trigger technique, when the descending 
aorta reached 100 HU after the injection of contrast 
medium, arterial phase images were collected 10 s later, 
and venous phase images were collected at intervals of 
30 s.

Image processing and ROI segmentation
The CT images in arterial and venous phases were iso-
tropically resampled by using trilinear interpolation in 
Artificial Intelligence Kit software (A. K, version: 3.3.0. 
R, GE Healthcare, USA) with a voxel size of 1 × 1 × 1 mm 
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to minimize the effect of different scanning protocols 
or equipment on the radiomics features [29]. Region of 
interest (ROI) segmentation was performed by delineat-
ing around the tumor outline for the largest cross-sec-
tional area in the CT axial plane (Fig. 1). Care was taken 
to avoid the gastric cavity and stomach contents, fatty 
tissue around the stomach wall and blood vessels when 
segmenting. Each ROI was outlined by a radiologist (L.C. 
6  years of experience in abdominal imaging diagnosis) 
and supervised by a radiologist (Z.H., 8 years of experi-
ence in abdominal imaging diagnosis). To ensure the 
reliability and reproducibility of the radiomics features, 

30 patients were randomly selected for their data to be 
segmented. For an analysis of interobserver agreement, a 
radiologist (L. CC) conducted the first-time whole-data-
set segmentation, and another radiologist (H.W., 7 years 
of experience in abdominal imaging diagnosis) who was 
supervised by a radiologist (L.L., 9 years of experience in 
abdominal imaging diagnosis) delineated the images of 
the 30 selected patients during the same period. For anal-
ysis of intraobserver agreement, the radiologist (L. CC) 
repeatedly conducted segmentation 1 month after the 
first delineation.

Radiomics feature extraction
The radiomics features were automatically extracted by 
using the Python package Pyradiomics [30]. A total of 
1409 radiomics features were separately extracted from 
the delineated ROI in the arterial and venous phases. 
There were 107 features extracted from the original 
images, including 32 first-order features (18 intensity 
statistical and 14 shape features). Among the 75 textural 
features, there were 24 gray-level cooccurrence matrix 
(GLCM), 16 gray-level run length matrix (GLRLM), 
16 gray-level size zone matrix (GLSZM), 14 gray-level 
dependence matrix (GLDM) and 5 neighboring gray 
tone difference matrix (NGTDM) features. In addition, 
the same number of first-order grayscale statistical fea-
tures and texture features were extracted based on dif-
ferent transformed images. A total of 744 features were 
extracted based on wavelet decomposition images with 
8 filter channels, 279 features were extracted based on 
Laplacian of Gaussian (LoG) transform images (sigma 
parameters selected as 1.0 mm, 3.0 mm and 5.0 mm), and 
279 features were extracted based on local binary pat-
tern (LBP)-filtered images (2nd-order spherical harmonic 
function, spherical neighborhood operator with radius 
1.0 and fine fraction 1) [30]. The features were extracted 
by discretizing the CT values of the ROI region based 
on a fixed interval width (bin width = 25 HU). Then, 
the intra/interclass correlation coefficients (ICCs) were 
calculated based on the features extracted from the 30 
randomly selected patients. The features with intra- and 
interobserver ICC values simultaneously greater than 
0.7 were retained for assessment of arterial- and venous-
phase features, respectively [31].

Radiomics feature selection and model establishment
The training dataset was used for feature selection and 
modeling, and the same procedure and set of parameters 
were applied to the external dataset for model validation.

The same method described above was used to perform 
feature preprocessing and feature screening in the arte-
rial and venous phases and to build independent arterial 

Table 1  Clinical characteristics of the enrolled patients in the 
training group and the external validation group

NAC neoadjuvant chemotherapy, TRG​ tumor regression grade, CA carbohydrate 
antigen, CA199 (normal range 0.01–37 U/mL), CA125 (normal range 0.01–35 U/
mL), CEA carcinoembryonic antigen (normal range 0–5 ng/mL)

*Statistically significant level: p < 0.05

Training group 
(n = 60)

Validation 
group 
(n = 32)

p value

Gender

Male 49 24 0.993

Female 11 8

Age (years) 60.60 ± 9.33 62.50 ± 5.86 0.340

Serum CA125 
(Elevated)

6 1 0.300

Serum CA199 
(Elevated)

8 5 0.241

Serum CEA (Elevated) 18 9 0.112

Serum albumin 
(Reduced)

29 1 0.315

Borrmann typing

I–II 32 10 0.010*

III–IV 28 22

Tumor thickness (cm)

18.19 ± 5.75 15.39 ± 5.14 0.036*

Degree of differentiation

Low 25 20 0.087

Middle-high 35 12

T-staging before NAC

4 31 21 0.122

2–3 29 11

N-staging before NAC

0–1 38 17 0.578

2–3 22 15

TRG​

0 19 4 0.218

1 12 10

2 15 9

3 14 9
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and venous radiomics models. The feature selection and 
modeling were performed as follows.

(1)	 Outlier processing occurred with values greater 
than the third quartile + 2 × quartile distance being 
converted to the 95th percentile; values less than 
the first quartile − 2 × quartile distance were con-
verted to the 10th percentile.

(2)	 Features with relatively low variance values less 
than 1.0 were excluded.

(3)	 Missing data were filled with the median value, and 
the Z Score standardization method was applied for 
data standardization and normalization.

(4)	 The less redundant features were retained by using 
correlation analysis with a cutoff value of 0.9.

(5)	 Features with importance coefficients greater than 
the maximum importance coefficient/3 assessed 
using the gradient-boosted decision trees (GBDT) 
feature importance ranking based on decision tree 
methods were retained.

(6)	 Radiomics models were established using the naïve 
Bayes classifier, and the predicted probability of the 
model output was used as the Radscore for each 
individual model.

Based on the above feature screening and modeling 
methods, our study developed two radiomics models 
based on pCR outcome: (1) an arterial radiomics model 

with Radscore_AP_pCR and (2) a venous radiomics model 
with Radscore_VP_pCR.

Clinical feature selection and model establishment
The clinical features were screened using GBDT (selec-
tion of the top three features of importance) and uni-
variate logistic regression (p < 0.1). Model building was 
performed using the naïve Bayes classifier, and the pre-
dicted probability of the model output was used as the 
model score of the clinical model. Based on the above 
feature screening and modeling methods, clinical models 
for predicting pCR (Score_clinic_pCR) were established.

Combined model establishment
Based on the established Radscores and clinical factors, 
radiomics–clinical combined models were developed 
using the naïve Bayes classifier. Four combined models 
were built, including the following: (1) arterial–venous 
combined model; (2) arterial–clinical combined model; 
(3) venous–clinical combined model; and (4) arterial–
venous–clinical combined model.

Evaluation of model predictive performance
The performance of the model was evaluated by using 
receiver operating characteristic curve (ROC) analysis to 
obtain the area under the ROC curve (AUC). The sensi-
tivity, accuracy, negative predictive value and positive 
predictive value were calculated from the cutoff values of 

Fig. 1  Hypofractionated adenocarcinoma of the esophagogastric junction (AEG) in a 63-year-old man. A CT venous phase axial image before 
neoadjuvant chemotherapy (NAC), Borrmann staging type I, thickest tumor diameter of 3.4 cm. B Schematic diagram of region of interest (ROI) 
segmentation on ITK-SNAP software. C CT venous phase axial image after NAC, lesion near disappearance, and insignificant gastric wall thickening. 
D Postoperative pathological images; fibrous tissue hyperplasia with chronic inflammatory cell infiltration was seen; no tumor cells remained; 
and tumor regression was obvious (HE × 200). Hypofractionated AEG in a 36 years old man. E CT venous phase axial image before neoadjuvant 
chemotherapy (NAC), Borrmann staging type III, thickest tumor diameter of 3.2 cm. F Schematic diagram of region of interest (ROI) segmentation 
on ITK-SNAP software. G CT venous phase axial image after NAC, significantly smaller lesions with reduced enhancement. H Postoperative 
pathological images showed more chronic inflammatory cell infiltration in the mucosal and lamina propria layers with focal fibrosis (HE × 200)
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the model score corresponding to the maximum Youden 
index to evaluate the discriminatory performance of the 
model. The cutoff value of the training group data was 
applied to the validation group data to obtain their cor-
responding discriminatory efficacies in the external vali-
dation group. The calibration ability of the model was 
mainly tested using calibration curve analysis and the 
Hosmer–Lemeshow test for goodness of fit (p > 0.05 indi-
cates no significant difference between the predicted and 
actual values). To compare the AUC of different models, 
Delong’s test was applied (p < 0.05 indicates a significant 
difference). A decision curve analysis (DCA) was used to 
assess the net clinical benefit or clinical utility obtained 
by the model at different threshold probabilities.

Statistical analysis
Statistical analysis was performed using R software (ver-
sion 3.6.3, http://​www.r-​proje​ct.​org). Continuous vari-
able comparisons between two groups were made using 
independent samples t tests (for data conforming to a 
normal distribution) or Mann–Whitney U tests (for data 
not conforming to a normal distribution). Categorical 
variables were tested by the chi-square test or Fisher’s 
exact test. A two-sided p value of < 0.05 was considered 
statistically significant. The following R packages were 
applied: “icc” for intra/interclass correlation coefficient; 
“glmnet” for logistic regression; “pROC” for ROC analy-
sis; “rmda” for DCA; calibration function in the “rms” 
package for calibration analysis, “gbm” for GBDT feature 
importance analysis, “naïveBayes” function for Naïve 
Bayes classifier, “adabag” package for AdaBoost classifier, 
“e1071” package for SVM classifier, and “rpart” package 
for decision tree classifier.

Results
Model establishment for predicting pCR
Arterial model for predicting pCR
By using intra/interclass consistency analysis, 395 radi-
omics features with ICCs > 0.70 were retained among 
1409 features. After removing features with a variance 
less than 1.0, 150 features were retained. Then, 43 fea-
tures were retained after correlation analysis by using a 
cutoff value of 0.9. Six features were retained by GBDT 
feature importance ranking (Fig.  2A), and the arterial 
model was established using the naïve Bayes classifier. 
The AUC values and 95% confidence intervals for the 
analysis of AEG using single arterial features for predict-
ing pCR in the training and external validation groups are 
summarized in Additional file1: Table  S1, and the ROC 
curves are shown in Additional file1: Fig. S1A, B. The 
arterial model radiomics features and the differences in 
Rad-scoreAP_pCR in the training and external validation 
groups are summarized in Additional file1: Table S2.

Venous model for predicting pCR
By using intra/interclass consistency analysis, 410 radi-
omics features with ICCs > 0.70 were retained among 
1409 features. After removing features with variance less 
than 1.0, 165 features were retained. Then, 52 features 
were retained after correlation analysis by using a cutoff 
value of 0.9. Seven features were retained by GBDT fea-
ture importance ranking (Fig. 2B), and the venous model 
was established using the naïve Bayes classifier. The AUC 
values and 95% confidence intervals for the analysis of 
AEG using single venous features for predicting pCR in 
the training and external validation groups are shown in 
Additional file1: Table S3, and the ROC curves are shown 

Fig. 2  The ranked importance of GBDT selected features for each independent model. A Arterial-phase radiomics features. B The venous-phase 
radiomics features. C The clinical factors

http://www.r-project.org
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in Additional file1: Fig. S1C, D. The venous model radi-
omics features and the differences in Rad-scoreVP_pCR in 
the training and validation groups are shown in Addi-
tional file1: Table S4.

Clinical model for predicting pCR
The results of the GBDT feature importance ranking are 
plotted in Fig. 2C, and the univariate logistic regression 
results for the clinical factors are summarized in Addi-
tional file1: Table S5. The Borrmann classification, tumor 
thickness, and differentiation degree were finally selected 
and incorporated into the naïve Bayes classifier to estab-
lish the clinical model.

The evaluation of model performance
The AUC values, specificity, sensitivity, accuracy, posi-
tive predictive value and negative predictive value of the 
seven models developed in this study for predicting pCR 
in the training and external validation groups are shown 
in Table 2. The ROC curves are shown in Fig. 3A, B. The 
results of the Delong test used to compare the AUC 
values of the seven models in the training and valida-
tion groups are shown in Additional file1: Table S6. The 
calibration curves were used to visualize the calibration 
of all models (Fig.  3C, D), the Hosmer–Lemeshow test 
was used to assess the goodness of fit (Additional file1: 

Table S7), and the decision curves were used to confirm 
the clinical usefulness of the models (Fig. 3E, F).

To explore the reliability of the developed model, we 
also used other modeling methods (logistic regression, 
support vector machine, decision tree, AdaBoost) for the 
establishment of a pCR radiomics model and a clinical 
model based on the same feature sets, and the results are 
shown in Additional file1: Tables S8–S10. These results 
indicated that the Naïve Bayes classifier could achieve 
better model performance in the radiomics and clinical 
models.

Discussion
In this retrospective study, we analyzed the clinical, 
pathological and enhanced CT imaging data of patients 
with advanced AEG before NAC at two medical centers 
to develop radiomics, clinical, and combined models for 
predicting pathologically determined TRG grading. The 
results showed that the combined radiomics–clinical 
model has the potential to be a reference for evaluating 
tumor response and developing treatment strategies for 
patients with AEG.

Preoperative NAC has been shown to reduce the stage 
of AEG, increase the rate of radical surgical resection, 
and improve the long-term prognosis of patients [2–5, 11, 
32]. However, 40–70% of patients have a poor response 
to NAC. Some patients miss the best opportunity for 

Table 2  Efficacy of different models in the training group and the external validation group for predicting pathological complete 
response (pCR)

Model Arterial model Venous model Clinical model Arterial–venous 
combined model

Arterial–clinical 
combined model

Venous–clinical 
combined model

Arterial–venous–
clinical combined 
model

Training group

AUC​ 0.736 0.751 0.753 0.768 0.836 0.818 0.838

95%CI 0.607–0.865 0.614–0.888 0.622–0.884 0.639–0.896 0.728–0.943 0.708–0.927 0.736–0.941

Threshold 0.510 0.856 0.351 0.667 0.332 0.543 0.160

Specificity 0.610 0.829 0.683 0.927 0.805 0.878 0.659

Sensitivity 0.789 0.632 0.789 0.474 0.789 0.632 0.895

Accuracy 0.667 0.767 0.717 0.783 0.800 0.800 0.733

NPV 0.862 0.829 0.875 0.792 0.892 0.837 0.931

PPV 0.484 0.632 0.536 0.750 0.652 0.706 0.548

External validation group

AUC​ 0.750 0.768 0.848 0.795 0.893 0.884 0.902

95%CI 0.535–0.965 0.489–1 0.710–0.987 0.560–1 0.780–1 0.762–1 0.792–1

Threshold 0.510 0.856 0.351 0.667 0.332 0.543 0.160

Specificity 0.536 0.750 0.857 0.857 0.786 0.893 0.500

Sensitivity 0.750 0.750 0.750 0.500 1 0.500 1

Accuracy 0.562 0.750 0.844 0.812 0.812 0.844 0.562

NPV 0.938 0.955 0.960 0.923 1 0.926 1

PPV 0.188 0.300 0.429 0.333 0.400 0.400 0.222
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direct operation due to tumor progression during the 
process of NAC [33, 34]. Therefore, it is clinically rel-
evant to monitor the efficacy of NAC during treatment 
and to identify patients who respond to NAC in a timely 
and accurate manner. Radiomics integrates meaning-
ful quantitative imaging features for modeling, which is 
a major difference from methods utilizing the traditional 
visual interpretation of images [35–39]. Chen et al. [40] 
used the features of the CT venous phase and established 
a predictive model to distinguish between advanced 
gastric cancer patients with potentially pathologically 
significant reactions and those with mild reactions and 
were able to effectively stratify patients according to their 
response to NAC. Mazzei et al. [41] performed a multi-
center study to predict NAC response by delta radiomics 

in locally progressive gastric cancer. The only significant 
TA variable was the delta gray-level cooccurrence matrix 
(GLCM) contrast, with a model AUC value of 0.763. 
However, there are few reports on the predicted efficacy 
of NAC for AEG alone. Therefore, we attempted to estab-
lish prediction models that help decision-making for the 
development of individualized and precise treatment 
strategies for AEG patients.

In this study, 6 and 7 potential radiomics features were 
selected following screening of the arterial and venous 
phase images, respectively, and the types of features that 
appeared in both the arterial and venous phases were 
LargeDependenceEmphasis (GLDM), InterquartileRange 
(first-order) and SizeZoneNonUniformity (GLSZM). The 
GLDM matrix describes the dependence of the voxel 

Fig. 3  The performance of different models. A, B ROC curves of different models for predicting pathological complete response (pCR) of 
adenocarcinoma of the esophagogastric junction (AEG) in the training group (A) and external validation group (B). C, D Calibration curves 
of different models predicting pCR in the training group (C) and external validation group (D). The 45-degree sloping line indicates the ideal 
calibration, and the closer the model calibration curve is to the ideal calibration line, the better the agreement between the model predicted 
probability and the actual probability. E, F Decision curves of different prediction models in the training group (E) and external validation group (F). 
The X-axis is the threshold probability range, and the Y-axis is the net benefit. The black line labeled "NONE" indicates that no lesions are assumed 
to be pCR, and the gray line labeled "ALL" indicates that all lesions are assumed to be pCR. The further away from both the black and gray lines, the 
higher the net benefit of the model compared to performance utilizing the "NONE" and "ALL" assumptions. When comparing the decision curves of 
different models within the same range of threshold probability, the larger the area under the curve for the same threshold probability interval, the 
higher the net benefit of the model at that threshold probability
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intensity. The LargeDependenceEmphasis feature had 
higher values in the pCR group, while the Interquartil-
eRange and SizeZoneNonUniformity features had lower 
values in the pCR group. These feature characteristics 
might indicate that smaller grayscale distribution inter-
vals and a more uniform grayscale distribution of the 
lesion may suggest the possibility of pCR. It has also been 
reported that lower GLSZM variants, which represent 
lower tumor heterogeneity, may be useful in assessing the 
response to bevacizumab treatment in colorectal cancer 
[42].

More features were retained in the venous phase 
images than in the arterial phase images. When the 
tumor regressed after NAC, the new capillaries and pro-
liferating fibroblasts with rich blood supply were trans-
formed into scar tissue and fibrous connective tissue, and 
the blood supply in the tissues was reduced. Therefore, 
venous phase images can reflect the blood supply char-
acteristics of AEG more clearly and comprehensively. In 
future studies, venous phase images can be selected as 
the source of radiomics features.

In the pCR-based prediction model, the AUC values 
obtained using the venous model were higher than those 
obtained using the arterial model in both the training 
and external validation groups (0.751 vs. 0.736, 0.768 vs. 
0.750), which was consistent with the fact that the venous 
phase images reflect the AEG blood supply more clearly 
and comprehensively. Among all clinical characteris-
tics analyzed, the Borrmann type, tumor thickness, and 
degree of tumor differentiation had predictive value for 
NAC efficacy. The combination of multiphase radiom-
ics and clinical factors could be used to further improve 
the discriminatory performance beyond that achieved 
with independent models. When the Rad-scoreAP_pCR, 
Rad-scoreVP_pCR and clinical factors were combined 
simultaneously, an AUC value of 0.838 was achieved in 
the training cohort and a value of 0.902 was achieved in 
the external validation cohort. The potential reasons for 
the good performance of the combined model may be 
related to the intratumoral heterogeneity reflected by 
the radiomics features and clinical features that describe 
the biological behavior of the tumor as well as the cell 
cycle regulation and chemokine signaling that are occur-
ring, which are important factors affecting the efficacy 
of NAC [43]. Several studies have reported that tumors 
with greater heterogeneity tend to be more aggressive in 
terms of proliferation, metastasis and angiogenesis and 
may be more resistant to NAC [44, 45]. The complete 
mechanism underlying the correlation between radiom-
ics features and NAC response has not been elucidated, 
and studies utilizing radiogenomics are necessary to 
provide evidence in addressing this issue [46], including 
studies on the characteristics and the textural features 

of responsive lesions and the composition of the solid 
region of the tumor and the surrounding infiltrative envi-
ronment, which can be described by quantitative radiom-
ics features.

The current study demonstrated the potential use of 
enhanced CT radiomics features for predicting pCR 
after NAC in AEG patients. The external validation of 
the established model also guarantees the reliability of 
the model performance. It is worth noting that there are 
some remaining limitations of this study. First, the CT 
images were obtained from different CT scanners, and 
there were some differences in the CT scanning protocols 
of the patients. However, we minimized these differences 
to the greatest extent by resampling the CT images of the 
enrolled patients and normalizing the extracted radiom-
ics features. Standardized scanning protocols need to be 
uniformly applied in future prospective studies. Second, 
for TRG classification, some patients with progressive 
disease after NAC could not be operated on and were not 
included in our study. Because the NAC protocol has not 
yet been unified, in our study, patients who underwent 
the XELOX protocol and SOX protocol were selected, 
which is consistent with the actual clinical treatment sit-
uation at present but also introduces a certain selection 
bias. In addition, our study only included data from two 
centers, the sample size was still small, the molecular typ-
ing of AEG was not performed, and the effect of genes 
on NAC was not considered. The naïve Bayes classifier 
selected in the current study is a probabilistic classifier 
that is suitable for a small dataset. Large sample studies 
combined with genetic information are needed to fur-
ther improve and validate the testing efficacy and gener-
alizability of the model. A predictive model with better 
efficacy that could be translated into clinical practice is 
needed.

Conclusion
In conclusion, a radiomics method based on enhanced 
CT imaging before NAC was validated as a potential 
method for predicting whether advanced AEG patients 
could achieve pCR after NAC in our study. The combi-
nation of radiomics and clinical factors can be used to 
effectively improve the predictive performance. The pre-
diction model established in our study can be used to 
stratify patients according to their potential responsive-
ness to NAC, which can help provide a basis for clinicians 
to develop individualized and precise treatment plans.
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