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Abstract: In order to enhance resource utilization and power efficiency in cloud data centers it is important to 

perform Virtual Machine (VM) placement in an optimal manner. VM placement uses the method of mapping 

virtual machines to physical machines (PM).  Cloud computing researchers have recently introduced various 

metaheuristic algorithms for VM placement considering the optimized energy consumption. However, these 

algorithms do not meet the optimal energy consumption requirements.  This paper proposes an Enhanced 

Cuckoo Search (ECS) algorithm to address the issues with VM placement focusing on the energy consumption. . 

. The performance of the proposed algorithm is evaluated using three different workloads in CloudSim tool. . 

The evaluation process includes comparison of the proposed algorithm against the existing Genetic Algorithm 

(GA,) Optimized Firefly Search Algorithm (OFS), and Ant Colony (AC) algorithm. The comparison results 

illustrate that the proposed ECS algorithm consumes less energy than the participant algorithms while 

maintaining a steady performance for SLA and VM migration. The ECS algorithm consumes around 25% less 

energy than GA, 27% less than OFS, and 26% less than AC.  

 

Keywords: - Virtual Machine Placement; Metaheuristic algorithms; Enhanced Cuckoo Search Algorithm; Cloud 

computing 

I. Introduction 

Cloud computing delivers a pool of on-demand computing resources over the Internet. The cloud 

data centres use virtualization technology (VT) to enable the resources of a single large server to be 

divided into several isolated execution environments running on numerous performance-isolated 

platforms known as virtual machines (VM) [1,2]. Recent research shows that enormous amounts of 

energy are consumed because of the incompetent usage of the resources. The fully ideal servers 

devour about 70% of their peak power [3] and are under-utilized [4]. The VT supports the 

datacenters to run with fewer physical servers, optimizing the usages of server and hence reduces 

the cost of the hardware and operation. The physical resources are shared dynamically in CC 

environment allowing running various applications on VMs on one physical machine (PM). 

Dynamic VM consolidation method gives better energy efficiency in Cloud data centres [5]. Thus, 

the information technology (IT) companies can save the costs of buying IT infrastructure and on 

maintenance.  

 

The study of the dynamic VM consolidation will find solutions for the following issues.   

1. To determine a PM is being overloaded or not. If yes, it will adopt the overloading detection 

algorithms to perform migration to migrate to other VMs; 

2. To determine a PM is being under-loaded. If under-loaded, it will adopt under-loading detection 

algorithms to initiate the process of bringing the PM to a sleep mode by migrating all VMs from 

it;  

3. To determine which VMs must be selected to migrate from the overloaded physical machine 

(VM selection) and 

4. To determine which physical machines must be chosen to place migrated VMs (VM placement) 

[6]. 
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The general challenge is to minimize the energy usage, operational cost and carbon dioxide 

emission. It aims to solve the issues in VM placement in Infrastructure as a Service (IaaS) by 

finding better methods to provide a solution for above challenges. The Cuckoo Search (CS) 

algorithm has three main components: selection of the best, exploitation by local random walk, and 

exploration by randomization via Lévy flights globally. Most metaheuristic algorithms use uniform 

distribution to generate new explorative moves. If the search space is large, Lévy flights are usually 

more efficient. A suitable combination of the above three components can thus lead to an efficient 

algorithm. The CS algorithm with Lévy flight locates the best solutions from the current solutions 

in the entire list of PMs by searching locally and globally at the same time for the optimal solution. 

It makes sure that the system will not be trapped in a local optimum. It is found that numbers of 

parameters to be tuned is less than those of Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) and adapts to a wider class of optimization issues [7]. The study proposes a 

hybrid cuckoo search algorithm named as Enhanced Cuckoo Search (ECS) which can consume less 

energy during VM placement while decreasing both SLA violation and VM migration.  

 

It is important to have knowledge of the characteristics of VMs and PMs, for example on 

processing elements, energy usage by CPU, the status of memory, and bandwidth, etc. The amount 

of loading of VM instance varies with time. If the loading crosses the upper threshold value of a 

PM, it makes system imbalanced. To avoid such problems, VM allocation must be performed 

efficiently by enhancing the resource utilization. In Cuckoo Search algorithm, agents representing 

the cuckoo’s travel around the search space and record the best solutions and have capacities to map 

the VMs into available PMs by optimizing the energy usage. So the problem is to design an 

efficient algorithm which can consume less energy during VM placement along with minimizing 

both SLA violation and VM migrations. The study will consider the concepts of the following: (1) 

VM placement with Lévy flight, (2) algorithms for overload detections, (3) policies of VM 

selection, (4) use of Status Index (SI) for CPU utilization prior to a VM selection. These strategies 

will help to resolve some of the issues that may arise due to heterogeneous nature of the cloud. 

 

To detect the system overload, this study uses different measures such as Static Threshold (THR), 

Median Absolute Deviation (MAD), Inter Quartile Range (IQR), Local Regression (LR) and Robust 

Local Regression (LRR). Each host occasionally executes an overload detection algorithm to avoid 

performance degradation and SLA violation. Some concept of the algorithms is discussed below but 

the details are provided in [6].   

 

1. A Static Threshold (THR) algorithms work in a situation where CPU utilization threshold value 

detects a host overload. 

2. The Median Absolute Deviation (MAD) is a measure of statistical dispersion and it is considered 

as a robust estimator. 

3. Inter Quartile Range (IQR) sets adaptive CPU utilization threshold based on another robust 

statistic, like the difference between the upper and lower quartiles 

4. Local Regression (LR) works for fitting models to localized subsets of data to build up a curve 

that approximates the original data. 

5. Robust Local Regression (LRR) works similar to LR but with extra robustness weight. 

 

Once the overloads are detected, it uses the different policies of VMs selection such as Maximum 

Correlation (MC), Minimum Migration Time (MMT), Minimum Utilization (MU) and Random 

Selection (RS) [6]. A brief explanation of the VM selection policies are given below, however, the 

details are provided in [6].  

 

1. Minimum Migration Time (MMT) chooses the VM that requires the minimum time to complete 

a migration relatively. The migration time is estimated as the amount of RAM utilized by the 

VM separated by the spare network bandwidth available for the host. 
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2. Random Selection (RS) selects a VM to be migrated from the host according to a uniformly 

distributed discrete random variable. 

3. Maximum Correlation (MC) selects VMs that have the highest correlation of the CPU utilization 

with the other VMs. 

 

The study of Fan et al. [3] found a strong relationship between the CPU utilization and power 

consumption. This study introduced a status index (SI) to record the situation of VMs based on their 

CPU utilization pattern: (1) Underutilized VMs: usage below 30%, (2) Nearly overloaded VM: 

usage above 60% and (3) Normal load: usage 31% to 59%. A sample diagram is given in figure 1. 

The index values are updated on every new assignment, VM migration and completion of a task. 

The statuses of VMs of each PM are maintained by a local manager and the global manager 

maintains the status of all PMs. On arrival of a new VM instance, it tries to map to the most 

appropriate (underutilized) VM avoiding a random search. Thus SI helps to minimize the migration 

time of VMs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Local Manager with Status Index that keeps record of CPU utilization percentage of VMs  

 

Thus the ECS algorithm adopts the combined merits of (1) algorithms for overload detections, (2) 

policies of VM selection, and (3) use of Status Index (SI) for CPU utilization prior to a VM 

selection. The results of ECS are compared with the results of the Genetic algorithm (GA), Optimal 

Firefly Search (OFS), and Ant Colony (AC). Analysis reports are provided to show the correlation 

between the impact of chosen algorithms for overload detection and policies of VM selection. The 

experimental results show that the proposed ECS algorithm consumes less energy with minimum 

numbers of SLA and VM migration. 

 

The rest of the paper is organized as follows. Section 2 describes the related work. In section 3 the 

problem formulation of VM Placement is explained. Then the proposed methodology for VM 

placement along with the advantages of Cuckoo search algorithm is discussed in section 4. In 

section 5 the experimental results of the evaluation of proposed algorithm are provided. Section 6 

concludes the study. 

 

II. Related Works 

In this section, we present the review of the existing related research work. The related work is 

divided into three subparts: first, we present a review of a few existing VM placement algorithm 

followed by a review of different areas where cuckoo search algorithm has been used and finally the 

concepts of different meta-heuristic algorithms used in this paper are explained.  

 

A. A Few existing VM placement algorithms 

 

VM placement is a crucial few applications of Cuckoo Search algorithm approach to better resource 
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Local                       1.<30%: VM2,3,4 

Manager                  2. >60%: VM1,5           
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utilization and energy efficiency in CC infrastructures. Various research works have pontificated 

the significance of the VM placement problem relevantly. For instance, M. Cardosa et. al. [8] have 

described the importance of placing VM into PM appropriately. The VM placement problem is an 

NP-hard problem which is generally constructed or done as an alternative to the vector bin-packing 

problem as per [9]. In [6] the authors proposed a Power-Aware Best Fit Decreasing (PABFD) 

algorithm for VM placement which is a modification of Best Fit Decreasing algorithm (BFD). The 

authors in [10][11][12][13][14] have also formulated numerous heuristics for  VM placement 

problem. For instance, a novel approach for VM clustering was introduced that uses the mixture of 

Gaussians (MoGs) with the Kullback-Leiber divergence to the model similarity between VMs[10]. 

The study in [11] the authors dealt with the tradeoff between cost and power dependent on tight 

performance constraint by packing as much VMs in a small number of physical machines and this 

reduced the cost of VM migration. The author in [14] designed a single-objective algorithm based 

on max-min ant system (MMAS) metaheuristic to reduce the total amount of PMs needed to handle 

the currently available load. Some metaheuristic algorithm is also widely used for solving the 

problem of VM placement, such as the genetic algorithm (GA), honeybee algorithm (HB), ant 

colony optimization algorithm (ACO) etc. In [16] the author proposed GA as a scheduling strategy 

for load balancing of VM resources. The cloud computing uses two types of scheduling. The first 

type is task scheduling where tasks are mapped to a virtual machine (VM). The second type is VM  

scheduling which is also known as resources scheduling. The resource scheduling in Cloud 

considers only the current state of the system but hardly considers system variation and historical 

data and as a result of which load imbalance of the system occurs. Therefore, to tackle this problem 

in VM resource scheduling the authors used GA by considering historical and current data as inputs 

to the system. This method helped in computing in advance the influence on the system once the 

required VM resources were deployed and then picks the least effective solution which resulted in 

best load balancing and at the same time avoided dynamic VM migration thereby reducing the cost 

of migration.  

 

In [16] Shailesh Sawant proposed a GA based VM resource scheduling strategy that focuses on 

system load balancing. The study is similar to the work done in [15] in which the GA approach 

finds the effect of the deployment of new VM resources in the system. The author proved that the 

traditional algorithm, when used for resource scheduling, ends up in an imbalance of load and the 

number of VM migration also increases. In [17] another GA based approach (GABA) was proposed 

which could self-reconfigure the VMs in CC data centres consisting of heterogeneous PMs. In [18] 

the VM placement problem is designed as a multi-objective optimization problem to minimize 

various issues such as power consumption, resource wastage and the cost of thermal dissipation. To 

tackle all these issues, the authors proposed an optimal GA with fuzzy multi-objective evaluation. In 

[19] the authors proposed eco-friendly algorithm by combining both honey bee and ant colony 

algorithm for cloud computing which reduced the operational cost by minimizing power 

consumption which in turn also diminished global warming to a great extent. The proposed Bee-

Ants colony system was used for proper energy efficient resource management where initially the 

jobs are divided into two parts. The first part looks at the proper management of overloaded. The 

underloaded CPUs with service rescheduling was carried out by honey bee algorithm. The second 

part which helps to manage the idle CPUs (power consumption management) is achieved by ant 

colony algorithm. In [20] a multi-objective ant colony system algorithm was proposed for the VM 

placement with the aim of obtaining a group of non-dominated solutions that manage the tradeoff 

between resource wastage and power consumption. The authors compared the proposed algorithm 

with multi-objective GA, two single-objective algorithms namely bin packing and MMAS. The 

outcome of the experiment proved that the proposed algorithm is much efficient than the algorithm 

it was compared to. The advantages of packing VMs competently in the consolidation of servers is 

described in [21] by W. Vogels. The authors in [22] and [23] explain the placement problem based 

on proxy method while the authors in [24] and [25] describe the object placement/replacement for 

simple replication of data. All these works [22],[23],[24],[25] aim to impose upon the elasticity that 
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can be obtained in deciding suitable placement. A novel virtual machine scheduling approach was 

introduced in which the scheduler allows virtual machines to obtain extra CPU shares [26]. 

 

A proposed efficient algorithm which was established in linear and quadratic programming helps in 

making the placement of VMs on PMs at an optimum level by minimizing the usage of the total 

number of nodes [27]. The server consolidation problems with the formulations of linear 

programming extended restrictions for the problem of VM allocation[28]. The restriction was that 

the VMs allocated to a PM should be based on some unique attribute so that the total number of VM 

migrations can be minimized and also a heuristic based on LP-relaxation was built to optimize the 

linear program solving cost. The energy-aware resource allocation in grid computing is also 

discussed in [29]. In [30] and [31] the authors used the method of constraint programming for VM 

placement problem. The authors in [30] addressed the problem of VM provisioning and placement 

as two constraint satisfaction problem and they proposed a framework for resource management by 

combining dynamic VM provisioning manager and VM placement manager which are utility based. 

On the other hand, the authors in [31] solved the constraint programming based dynamic 

consolidation problem by designing an entropy resource manager for similar clusters which 

considers both the issues of VM allocation and VM migration to the available nodes. The scheme of 

controlling the load of the task in order to decrease the total cost of task migration was studied in 

[53]. 

 

B. A Few applications of Cuckoo Search algorithm 

 

One of the newest nature-galvanized metaheuristic algorithms is the Cuckoo search (CS) algorithm, 

developed in 2009 by Xin-She Yang and Suash Deb [33],[34],[35]. Brood Parasitism (BP) method 

is adopted by some species of cuckoo. BP is a procedure of reproduction observed in birds that 

implicate the laying of eggs in some other birds’ nests wherein the eggs are left under the parental 
protection of the host parents (often between other species which is called inter-specific or within a 

species which is called intra-specific). Few species of cuckoos, for instance, the Ani and Guira 

cuckoos lay their eggs in neighbourhood nests and also they sometimes may remove others’ eggs to 
raise the hatching possibility of their own eggs. In CS algorithm, the method of BP is used and also 

this algorithm is intensified by the so-called Lévy flights [36] instead of the simple isotropic 

random walks. CS is found probably to be far more efficient and competent than GA and PSO 

(Particle Swarm Optimization) [33]. Cuckoos are known not only for their delightful sound but also 

for their combative approach to reproduction.  

 

Three idealized rules have been used in order to describe the standard CS with ease [37]. The rules 

are as follows: A nest is chosen at random. Each cuckoo lays one egg at an instant. The best 

solutions are represented by best nests with good quality eggs in it. These set of solutions are then 

carried over to the next generation. Hosts nests available are fixed. Whenever a cuckoo’s egg is 

discovered by a host then they are considered as worst solutions. They are dumped and not taken 

further to the next generation. A particular host can discover a cuckoo egg with a probability of pa ≥ 
(0, 1). In this case, the host bird can either slaughter or throw away the egg or simply relinquish and 

vacate the nest and build an entirely new nest. 

 

CS is a pleasant and efficient amalgamation of PSO, differential evolution (DE) and simulated 

annealing (SA) in one algorithm. Therefore, DE, PSO, and SA can be deliberated as a special 

condition of CS. Two types of searches can be performed by CS, namely, local search and global 

search. These two searches are regulated and supervised by a switching/discovery probability. 

Usually, the local search is very exhaustive with about one-fourth of the search time whereas three 

fourth of the total search time is taken by the global search. As a result of this the entire space can 

be explored by the global search process in the much efficient manner and, therefore, the 

probability of finding the global optimality is very high. One more benefit of CS is that it uses Lévy 
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flights for global searches instead of just taking standard random walks and because Lévy flights 

have infinite mean and variance, it helps significantly in exploring the search space. This advantage 

along with local search capabilities and global convergence makes CS very effective and efficient. 

The efficiency of CS has been shown in various research studies and applications in different fields 

[34][38][39][40][41][42]. 

 

C. Explanation of different meta-heuristics algorithms which are compared in this work 

 

1. The concept of Cuckoo Search (CS) Algorithm 

 

The CS concept has been taken and inspired by the brood parasitism of cuckoo birds. Cuckoo birds 

never build their nests. They tend to lay their eggs in the nests of other birds. The breeding 

behaviour of this nest searching technique can be used for various optimization problems.  Each 

solution is represented by an egg in the nest. The new egg represents a new solution. The aim of this 

searching technique is to replace a not-so-good solution in the nests by a comparatively better 

solution. Its simplest form can be taken as one egg in a nest. The algorithm can be extended to more 

complicated cases with multiple eggs in multiple nests. 

 

In CS algorithm, the action of cuckoos is connected with Lévy flights so as to obtain a new nest in 

an efficient manner. A French mathematician Paul Lévy discovered Lévy flights that denote a 

pattern of random walks distinguished by their step lengths which follow a power-law distribution. 

This pattern is usually presented by small random steps adopted in the long term by huge jumps 

[33][43][44]. CS is one of the most newly designed metaheuristic algorithms developed by Yang 

and Deb and the details are given in their study report [47]. Some principles and rules are given 

below. 

 

A nest is chosen at random. Each cuckoo lays one egg at a time. The best solutions are represented 

by best nests with good quality eggs in it. These set of solutions are then carried over to the next 

generation. Hosts nests available are fixed. Whenever an egg is discovered by a host, they are 

considered as worst solutions. They are dumped and not taken further to the next generation. A host 

can discover a cuckoo egg with a probability of pa ≥ (0, 1). In this case, the host bird can either 

slaughter or throw away the egg or simply relinquish and vacate the nest and build an entirely new 

nest. The Lévy flights (Lévy (λ)) is given as in equation number 1. The global random walk of 
Le'vy flights is given as in equation number 2. 

 

The way in which exploitation and exploration of the solution space as performed by a cuckoo are 

considered to be the strength of CS. Some kind of intelligence is used by this cuckoo to search for a 

more effective and efficient solution. In [45] it was seen that the cuckoos engross themselves in 

some kind of vigilance where they find the much better nests and as a result of this a new class of 

cuckoos can be created that have the capability to change the host nest at the time of evolution and 

to refrain from forsaking of eggs. The cuckoos observe the host nests very carefully before the 

brooding process, and once it finds a nest which is the best choice at that point of time, then it 

chooses that particular nest. Thus, it can be said that a fraction of cuckoos performs a local search 

around current solutions. This new fraction of cuckoos having being influenced by the observed 

behaviour take up two crucial procedures, which are as follows: Firstly, by using Lévy flights a 

cuckoo move towards a new solution which denotes a new area. Secondly, the cuckoo can search 

for a better solution from the current solution wherein it performs a local search. 

 

There are three types of cuckoos that can be fabricated from the entire population of cuckoos, which 

are given below: A cuckoo searching in different areas for new solutions obtains a better solution 

from their current best position. These set of cuckoos can be chosen randomly from the entire 

population. A portion (pd) of cuckoo looks for new solutions distant from the best solution. Another 
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portion (pp) of cuckoo explores new solutions from the current best position and attempt to enhance 

them. These cuckoos proceed from one place to another by using Lévy flights to find the best 

solution in each place without being caught in the trap of local best. 

 

The solutions found in the local search and the solutions found at distant from its current best 

solutions are the key factors that guide the entire population of cuckoos in their search process. This 

process enhances exhaustive search around numerous best solutions, and simultaneously 

randomization is also performed effectively using Lévy flights for finding new areas. In the 

expansion of standard CS, the search process was performed in fewer iterations and giving better 

defiance to any promising traps and inactivity in local optima. Thus it becomes more efficient. The 

new method described that from each of the solution, by exploring other options using Lévy flights, 

the cuckoos attempt to locate the best solution in a region by searching at the local level. 

 

2. The concept of Optimal Firefly Search Algorithm (OFS) 

 

Xin-She Yang has developed firefly search algorithm in late 2007 and 2008 at Cambridge 

University [48]-[49]. In this algorithm, the flushing characteristics of fireflies were projected in the 

form of algorithm where three main assumptions were made. Inspired by the FA algorithm a new 

OFS algorithm is designed where the assumptions were modified. 

 

In OFS algorithm, the first assumption was made that the VMs are the female fireflies and PMs are 

the male fireflies unlike the assumption made in original FA where the fireflies are considered to be 

unisex. The male firefly will be attracted towards female firefly depending on the brightness. If the 

PM has less brightness, then it will be attracted towards brighter VM. The brightness is considered 

to be more if the PM/VM is not overloaded or lightly loaded, and the brightness is less if it is 

overloaded. 

 

In the original FA it is considered that attractiveness and brightness are proportional to each other. 

In the second assumption, the same is also assumed in the OFS and if there is a less bright VM and 

if two PMs are available then that VM will be attracted towards the PM with more brightness. Also, 

as the distances increase the attractiveness and brightness decreases. In this case when the resource 

utilization of both the PM and VM increases then only the distance between them will increase. 

 

The third assumption is depicted in the view of an objective function. In OFS, the brightness of 

male and female fireflies are determined by the objective function which is the resource utilization 

of the PMs and VMs. A VM/PM will have more brightness if the use of resources is in between the 

lower and upper threshold values. If a PM is having the use of resources below the lower threshold 

then it will be considered as less bright and even if the resource utilization is above the upper 

threshold, then also the PM becomes less bright. From the above assumptions, the OFS algorithm 

was applied to solving the problem of VM placement in Cloud Data Center. 

 

3. The concept of Genetic Algorithm for VM Placement [16] 

 

A genetic algorithm is a heuristic based search technique. It is particularly useful in problems where 

objective functions dynamically change. Typically, a genetic algorithm starts with a population of 

the solution, applies genetic operators on this which results in an optimal solution [50]. A variation 

of a genetic algorithm known as grouping genetic algorithm can also be applied to the VM 

placement problem. These algorithms can take into account additional constraints while optimizing 

the cost function.  This is particularly useful in cases where we need to operate on groups [52]. 

 

The genetic algorithm mainly involves the following aspects: 
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(a) Chromosome modelling - This is an encoding schema used to encode details of the problem that 

is to be passed from one generation to the other. 

(b) Population Initialization - The feasibility of the solution is dependent on the feasibility of the 

initial solution. 

(c) Crossover  - It is a genetic operator used to vary the programming of a chromosome from one 

generation to next. 

(d) Mutation - Mutation is a genetic operator that alters one or more gene values in a chromosome 

from its initial state.  This helps to prevent the population from stagnating at any local optima. 

(e) Generation Alternation - This is where we select one of the solutions from the next generation 

of solution 

 

4. The concept of Ant colony algorithm 

 

The concept of the multi-objective ant colony algorithm [51] was simulated in the CloudSim 

environment. The solution generated by the ant colony algorithm is a permutation of VM 

assignment. The algorithm works in a number of stages. The first is the initialization stage where 

parameter values are set, and the values of pheromone trails are also set. Next the VM requests are 

sent to each ant which is then assigned to the physical hosts by using a rule that is pseudo-random. 

This rule is dependent on a heuristic that supervises the ants in choosing the most favorable VMs 

and also the information about the concentration of the current pheromones. All the artificial ants 

will build their local pheromone updates and then a global update is performed with each solution 

of the current solutions.   

 

Also, by considering the outcome of multi-objective ant colony algorithm it is observed that the 

algorithm in [51] is compared with other existing algorithms with respect to performance and 

scalability by setting up simulation experiments with programs in Java as in [51]. However, the 

algorithm was simulated on homogeneous server environments where a solution was randomly 

chosen from the several non-dominated set of solutions. It has been observed that the multi-

objective ant colony algorithm performed significantly better than some other algorithms to which it 

was compared. 

 

III. Problem Formulation for VM Placement 

 

A. VM placement with Lévy flight 

 

Consider a set of VMs represented by VM= {vm1, vm2, …., vmn} to be placed on a set of 

heterogeneous physical machines (PMs). The VM are represented as vmi = (PEj, CPUi, RAMi, 

BWi), 1 ≤ i ≤ n. The values PEj, CPUi, RAMi, BWi denote processing elements (PEj), Power 

consumption by CPU (CPUi), MBytes of physical memory (RAMi), and Kbits/s of network 

bandwidth (BWi) respectively. Some key parameters of the study and system model are motivated 

from an earlier study [6]. Let PM = {pm1, pm2,.., pmm} denote a set of PMs. Each PM are 

represented as pmj = (pej, cpuj, ramj, bwj), 1 ≤ j ≤ m. The study concerns more to three types of 

computing resources such as processors, physical memory, and network bandwidth. The value of 

pej, cpuj, ramj, bwj denotes the total resource capacity of the jth PM. In addition, xij , 1 ≤ i ≤ m, 1 ≤ j 
≤ n and yi, 1 ≤ i ≤ m are decision variables, xij = 1 if and only if vmj is mapped onto pmi, yi = 1 if 

pmi is used to host virtual machine.   The objective function is to minimize 1

m

ii
y

= while finding all 

values of xij. 

 

There are few constraints. For each type of resources (CPU, memory and bandwidth), the quantity 

of resource requests of VMs placed in the same physical machine must be less or equal to 

ability/capacity of the PMs hosting them. The total numbers of PMs that allocate VMs are not more 

than a specified limit [6]. The CS algorithm with Lévy flight locates the best solutions from the 
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current solutions in the entire list of PMs by searching locally and globally at the same time for the 

optimal solution [7]. It thus makes sure that the system will not trap in a local optimum. It is found 

that numbers of parameters to be tuned is less than those of Genetic Algorithm and Particle Swarm 

Optimization (PSO) and adapts to a wider class of optimization issues. The CS has the ability to 

solve non-convex, nonlinear, non-differentiable, and multimodal problems [33].  

 

For example, let us say a cuckoo 'i' produce a new solution xi
(t + 1) to a given problem from a known 

solution xt at time t. Then a Lévy flight (Lévy (λ)) is performed (equation 1) 

 

xi
(t + 1)  = xi

(t) + α  Lévy (s,λ)  …  (1) 

 

Where,  >0 is a step size scaling factor, which should be related to the scales of the problem of 

interest, and s is the step size. The product  means entry-wise multiplication. The global random 

walk carried out by using Le'vy flights has an infinite variance with an infinite mean (equation 2) 

 

Lévy (s,λ)~ s-λ, (1< λ≤3)  …  (2) 

 

The metrics and model are as follows: 

 

(i) CPU utilization 

Let F be the clock frequency to model the capacity of a single core CPU. The CPU utilization 

of a VM, ui is relative to the VM’s CPU frequency fi which is a fraction of the host CPU 

utilization U.  Then the host CPU utilization can be taken as summed up over the N VMs 

allocated to the host (as given in equation 3). For a multi-core CPU with n cores, F will be 

replaced by nf. 

 
N

i

U F fiui=  …  (3) 

(ii) The Cost of VM Migration 

During migrations, the VMs allows transferring a VM between physical nodes without 

suspension. The study of Voorsluys et al [47] estimated the amount of performance 

degradation is approximately 10% of the CPU utilization. It may cause an SLA violation. The 

duration of a live migration depends on the total amount of memory used by the VM and 

available network bandwidth. The performance degradation and migration time experienced 

by a VMj are estimated as given in equation (4) and (5) respectively 
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j
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j

M
T

B
=      …  (5) 

Here t0 is the start time of migration, Tmj the time taken to complete the migration, uj (t) the 

CPU utilization of VMj, mj is the memory used, and Bj is available bandwidth. 

 

(iii) SLA violation metrics 

The SLA violation can be defined by two metrics [6] as follows: 1) SLA violation time per 

active PM that rises with overload time period of the PM as given in equation 6. Let's call this 

as SLA with overtime (SLAOT). 2) Performance degradation due to migrations (PDM) as 

given by equation 7.  
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N T=

=   …  (6) 
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=   …  (7) 

where N and M are the numbers of host and VMs respectively; 
isT is total time during which 

physical machine i has experience maximum CPU utilization; 
iaT  is total time during which 

physical machine i is serving VMs;  
jdD is an estimation of the performance degradation of 

the VMj caused by migration;
jr

D  is total CPU capacity requested by VMj during its lifetime.  

A metric for describing SLA violation can be defined by equation 8: 
 

SLAV= SLAOT × PDM ... (8)  

 

(iv) Overall energy consumption 

The estimated combined metric is that captures both energy consumption (E) and the level of 

SLA violations. Let's call this term as Energy with SLA (ESLA) as given in equation 9. 

 

ESLA = E × SLAV  …  (9) 

 

 

B.  Use of Status Index (SI) for CPU utilization prior to VM selection is done as per the following 

rules 

 

The study of Fan et al. [3] found a strong relationship between the CPU utilization and power 

consumption. The status index (SI) periodically updates the status of VMs based on their CPU 

utilization pattern as follows: (1) Underutilized VMs (2) Nearly overloaded VM (3) Normal load. A 

sample system is shown in figure 1. The index is updated on every new assignment, VM migration 

and completion of a task, etc. The status of VMs of each PM is maintained by a local manager and 

the global manager maintains the status of all PMs. 

 

Sample generic rules are as follows: 

1. Assigned status Index (SI) value of VM to 1, if the CPU utilization of those VM is less than 

30%  

2. Assigned status Index (SI) value of VM to 2, if the CPU utilization of those VM is more 

than 60%  

3. Assigned status Index (SI) value of VM to 3, if the CPU utilization of those VM is between 

31 to 59%  

4. Sort the values of the VMs in ascending order (less utilized VMs will be on top of the index. 

 

On arrival of a new VM instance, it tries to map to the most appropriate (or underutilized) VM 

avoiding a random search. The SI values help to handle the different loads dynamically. Thus SI 

helps to minimize the migration time of VMs by avoiding migrations to a great extent.  

 

IV. Proposed Methodology 

In the recent years, the advancement of nature-inspired metaheuristic instigated researchers to 

implement metaheuristic for resolving various combinatorial problems. For VM placement issues in 

cloud data centres, the conspicuous growth in the size of the solution search space inspired the 

researchers to apply nature-inspired metaheuristic to handle the VM allocation problems. In this 

section, we introduce our proposed Enhanced Cuckoo Search algorithm. 
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A. The concept of the Cuckoo Searches in VM Placement Problem 

 

In refitting the CS concept to VM placement problem, the proper translation of terminology used in 

the CS must be done efficiently and is the crucial factor in a combinatorial space from a regular 

one. VM placement is one of the combinatorial optimization problems and as such the key concepts 

related to CS must be described in accordance with VM placement problem before solving this 

problem. The basic CS algorithm assumes that in one nest only one cuckoo can lay one egg at a 

time. By modifying the concept, let us assume that in one nest at least two eggs can be laid by one 

or more cuckoos. This assumption is made due to the fact that the PMs are dual cores, and one core 

can be assigned to one VM. Therefore, at most two VMs can coexist in a PM at a time.  To 

familiarize CS to VM placement, the five crucial elements need to be discussed, namely, egg, nest, 

objective function, search space and Lévy flights. Considering cuckoos to be single agents for 

mapping VMs into PMs, the following assumptions are made: 

 

1) Egg: 

Consider that a cuckoo can lay two eggs in one nest. An egg in a nest is a solution depicted by 

one VM from the entire list of VMs. An egg can either be an existing VM or a new candidate 

VM requested by a new user or old users. Thus eggs in CS are equivalent to VMs in VM 

placement problem. 

2) Nest: 

The number of nests is fixed in CS, which is the total population size. In the case of VM 

placement problem, a nest can be projected as a PM with its available resources. It is also 

assumed that a nest can hold only two eggs at a time since the PMs are considered to have dual-

core processors. Obviously, a nest can have more than two eggs in future discussions. However, 

in this case only two eggs are considered to be placed in a single nest. 

3) Objective Function: 

An objective numeric value is related with each of the solutions in the search space. Hence this 

objective function’s value is directly proportional to the quality of the solution. In CS, an egg of 
better quality will be a part of new generations which indicates that the probability of having a 

new cuckoo from an egg is directly associated with the quality of the cuckoo’s egg. In the case 
of VM placement problem, the quality of a solution is related to the optimal VM placement, that 

is, to allocate the VMs into PMs in an effective and efficient manner.   

4) Search Space: 

In the case of CS, the search space represents the positions of promising nests and in order to 

change the positions of these nests the actual values of the coordinates need to be optimized. It 

is observed that in most of the continuous optimization problems the moving nests or locations 

of the nests have got no real constraints, which is particularly true for techniques where a 

solution is moved from one neighbourhood to another. In VM placement problem, the search 

space corresponds to the list of PMs. The number of PMs is fixed and considered according to 

their resource availability to serve the VM requests. 

5) Lévy flights: 

Lévy flights have a typical feature of an exhaustive search for a solution, followed by sporadic 

large steps in the long run. As reported by Yang and Deb [33], in some optimization problems 

the Lévy flights proved to be most effective in the search for a new best solution. To enhance 

the quality of search, the step length will be connected to the value given by Lévy flights as 

stated in the basic CS. The search space (solution space) must have an idea/knowledge of steps, 

and precise and constant as considered in [46]. 
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B. Proposed Enhanced Cuckoo Search  (ECS) algorithm 

 

In Cuckoo Search algorithm, cuckoos are assumed to be simple agents that travel and communicate 

around the search space and record the best solutions that they discover during their search process. 

Therefore, CS can be used to generate solutions for placement of VMs so that the VM 

placement/allocation process is implemented efficiently, and the mapping of VMs into available 

PMs is performed in this way that it reduces energy consumption while not violating SLAs. The 

important steps of CS algorithm are locating the best solutions from the current solutions with the 

CS exploration process using Lévy flights by a random step from the current solution (that is the 

current PM) and to attempt to locate the best solution (most suitable PM) in the entire list of PMs by 

searching locally. The last step is evaluating the fitness function and generating the new list of 

placements for VMs. The most critical issue in generating a successful solution is the proper 

depiction of the optimization methods. Such algorithm can perform efficiently even in a large scale, 

dynamic cloud setting because of its capability to utilize Lévy flights to produce new solutions 

(eggs) as discussed in the equation 1 and 2 [54]. In the proposed enhanced CS algorithm, each 

cuckoo is considered as a vector of natural numbers where the elements represent the PMs to which 

the VMs are to be mapped. The new enhanced CS algorithm is given below: 

 

Algorithm: Enhanced Cuckoo Search for VM placement 

 

The PM is the physical machine; VM is the virtual machine; resources are the processing element 

and are given by the combination of three different types of resources like the number processors in 

each PM, the speed or efficiency (million instructions per second) of all processors in each PM and 

the bandwidth or communication ability of each PM. 
 

Input: pmList, vmList     

Output: allocation of VMs   

1:  Objective function f (x), x = (x1, . . . , xd )T, where the objective function f(x) gives set of physical machines which 

are available for VM placement  

2:  Generate initial population of n host nests xi (i = 1. . . n) which represents the initial list of physical machines  

3:  Generate the values of the Status Index (utilization % of nests) 

4:   While all the VM requests are allocated/ served, or no PM is available do 

5:  Start searching with the type of resource requests for VMs of smart cuckoos/users  

6:  Get a cuckoo randomly by Lévy flights 

7: Choose a nest among n (say, j) based on minimum utilization of Status Index 

8: If overload detected, use an effective nests election policy 

9: Evaluate its quality/fitness Fi; i.e. the amount/ type of resources requested by the VM and whether such requests 

can be served or not. 

10: Choose a nest among n, say j. 

11:    if (Fi > Fj), i.e. if the resource requirements by VMi is more than the available resources provided 

  by the PMs of the jth VM), then 

12:     replace j with the new solution; 

13:    end if 

14:   A portion of worse nests (pa) is replaced by new nest  

15:   Calculate the quality of nests and keep the nests 

16:   Rank the solutions and find the current best 

17: End while 

18: Post-processing of results 
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C. Some advantages of Cuckoo search algorithm    

 

The proposed Enhanced Cuckoo Search (ECS) algorithm was compared with other existing bio-

inspired algorithms along with the newly proposed Firefly algorithm. From the results of the 

comparison, the following advantages of Cuckoo search algorithm have been found. 

 

The cuckoo search satisfied and guaranteed the global convergence requirements. The ECS is used 

for resource management during VM placement in all the cloud settings irrespective of their nature 

(private, public or hybrid). The cuckoo search has two search capabilities: local search and global 

search, controlled by a discovery probability. The local search is very intensive with about 1/4 of the 

search time while a global search takes about 3/4 of the total search time. It allows the search space 

be explored more efficiently on the global scale, with higher probability.  The cuckoo's global search 

uses Lévy process instead of standard random walks. Due to the Lévy process, ECS can explore the 

search space more efficiently. This advantage combined with both local and search capabilities and 

guaranteed global convergence makes the cuckoo search very efficient. The nature-inspired 

metaheuristic algorithms perform powerfully and effectively in solving the diverse optimization 

problems with the combinatorial optimization problems.  

 

In CS algorithm, cuckoos are assumed to be agents that travel around the search space and record the 

best solutions. The proposed algorithm generates solutions for placement of VMs efficiently. It maps 

VMs into available PMs optimizing the energy uses without compromising the SLAs. After this for 

possible replacement of a solution, all of the nests are ranked by fitness and the worst fraction of the 

nests is replaced with random solutions. It also locates the best solutions from the current solutions 

using Lévy flight in the entire list of PMs by searching locally. Then it evaluates the fitness function 

and generating the new list of placements for VMs. In the proposed enhanced CS algorithm, each 

cuckoo is considered as a vector of natural numbers where the elements represent the PMs to which 

the VMs are to be mapped. This combination of mechanisms allows the solutions to search locally 

and globally at the same time for the optimal solution. 

 

The deterministic search approaches have the drawbacks of being trapped into local minima 

unavoidably. The metaheuristic methods can deliver satisfactory solutions in a reasonable time. The 

CS does not use gradient information during the search so that it can solve non-convex, nonlinear, 

non-differentiable, and multimodal problems.  

 

V. Implementation and Experimental Result 

 

The proposed ECS algorithm for VM placement puts as many VMs as can be accommodated in a 

single PM after considering the required resources. This study focuses on energy consumption issue. 

We have used the PlanetLab Workload traces which are available with the CloudSim toolkit [31] 

package to perform our simulation which is run for 24 hours with proposed VM placement algorithm 

along with the other existing overload detection and VM selection algorithms [6]. The power 

consumption data is collected from real data on power consumption provided by the results of the 

SPEC power benchmark [32]. The proposed Cuckoo search algorithm for VM placement have been 

implemented with four different VM selection policies like Maximum Correlation (MC), Minimum 

Migration Time (MMT), Minimum Utilization (MU), Random Selection (RS) and five host overload 

detection algorithms like Static Threshold (THR), Median Absolute Deviation (MAD), Inter Quartile 

Range (IQR), Local Regression (LR) and Robust Local Regression (LRR) [6].  

 

We have simulated a data centre that comprises of 800 heterogeneous physical nodes, half of which 

are HP ProLiant ML110 G4 servers, and the other half consists of HP ProLiant ML110 G5 servers.  

Each server has 1 GB/s network bandwidth. The characteristics of the VM types correspond to 
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Amazon EC2 instance types. The details of the key parameter values and system model are 

motivated from an earlier study [6].  

 

The characteristics of three different workloads are presented in Table 1, and the experimental 

result is shown in Table 2. The result of the comparison between workload 1, workload 2, and 

workload 3 is illustrated as in following figures. As observed the cuckoo search algorithm performs 

better with fewer VMs. If we keep on increasing the number of VMs as in workload 2 and 3, then 

the consumption of energy increases. It can be seen that the minimum energy consumed was in 

workload 1 and then in workload 3, and highest was in workload 2.  

 

Table 1. Characteristics of some random workload Data 

Data Number of VMs Mean St. dev Quartile 1 Median Quartile 3 

Workload 1 1052 12.31% 17.09% 2% 6% 15% 

Workload 2 1516 9.26% 12.78% 2% 5% 12% 

Workload3 1078 10.56% 14.14% 2% 6% 14% 

 

 
Table 2: Energy consumption for different workloads by ECS algorithm, policies: overload detection and VM selection 

ECS Algorithm using   Energy Consumption (kWh)  

Overload detection &VM Selection 

algorithms Workload 1 Workload 2 Workload 3 

IQR-MC 

Inter Quartile Range (IQR) 

Maximum Correlation (MC) 

44.30 46.71 45.17 

IQR-MMT 

Minimum Migration Time (MMT), 
38.56 46.52 39.21 

IQR-MU 

Minimum Utilization (MU) 
34.32 41.31 33.30 

IQR-RS 

Random Selection (RS) 
37.29 43.29 33.91 

LR-MC 

Local Regression (LR) 
38.88 42.02 26.17 

LR-MMT 32.08 33.99 35.09 

LR-MU 22.50 34.50 33.05 

LR-RS 34.75 36.75 32.79 

LRR-MC 

Local Robust Regression (LRR) 
39.54 40.52 33.66 

LRR-MMT 32.14 35.17 28.16 

LRR-MU 38.09 43.47 40.01 

LRR-RS 36.62 39.71 33.32 

MAD-MC 

Median Absolute Deviation (MAD) 
33.28 37.27 32.73 

MAD-MMT 32.54 38.84 32.91 

MAD-MU 35.01 40.05 37.50 

MAD-RS 41.22 46.84 43.98 

THR-MC 

Static Threshold (THR) 
33.09 38.88 36.76 

THR-MMT 36.34 39.76 37.66 

THR-MU 30.89 36.55 32.25 

THR-RS 37.87 40.91 39.76 
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Figure 2, 3 and 4 shows the result of energy consumption of ECS algorithm with workload 1, 2, 3 

respectively. It is shown that better results (less energy) are generated by LR-MU, LR-MMT, LR-

MC etc for different loads (1,2,3). These are some potential policies that generate a better result.  

 

 

Figure 2.  Energy Consumption of ECS algorithm with workload 1 

 

Figure 3.  Energy Consumption of ECS algorithm with workload 2 

 

Figure 4.  Energy Consumption of ECS algorithm with workload 3 
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Figure 5 gives the comparisons of energy consumption under different workloads by ECS algorithm. 

The average amount of energy consumed under different workloads by ECS algorithm is compared. 

On the average, VM selection policies like Minimum Migration Time (MMT) and Minimum 

Utilization (MU) gives better energy performance.   

 

Figure 5. Comparisons of Energy Consumption of different workloads with ECS algorithm

 

We also explore more on contributing policies such as overload detection, VM selection and impact 

of the Status index (for CPU utilization) with other algorithms. The detailed comparison of results 

of algorithms like Enhanced Cuckoo Search (ECS), the Genetic algorithm (GA), Optimal firefly 

search (OFS) and Ant colony (AC) are provided in table 3. From the values given in table 3 for the 

metrics, namely: energy consumption, SLA and number of VM migrations it is very clear that the 

energy consumption is significantly reduced in ECS algorithm as compared to the other three 

algorithms. The value of energy metric came down to 22.50 kWh from 44.30 kWh for ECS with 

LR-MU. Also, the lowest values for all three metrics among all the algorithms is shown by ECS 

which are 22.50 kWh energy consumption, 0.00007% of SLA violation and the total number of VM 

migrated dropped to 822. Although, there is no substantial improvement in SLA violation and VM 

migration metrics but the proposed ECS algorithm performs efficiently in reducing metrics the total 

energy consumed. The reason for not having better results in SLA and VM migration is due to the 

fact that the total number of VM migrations are more while turning off the under-loaded PMs in 

order to reduce the overall energy consumed by the data centre and as a result of which the SLA 

violation might also increase. However, as compared to GA, OFS and AC, the results of ECS seem 

to be promising.  

Table 3:  A Comparison of algorithms:  Enhanced cuckoo search (ECS), Genetic algorithm (GA), Optimal firefly search 

(OFS), Ant colony (AC) as per the chosen policies of Overload detection and VM selection 

 
Overload 

detection & VM 

Selection 

 

ENERGY 

 

SLA 

 

VM Migration 

VM Placement  ECS GA OFS AC ECS GA EFS AC ECS GA OFS AC 

IQR-MC 44.30 41.05 32.17 32.88 0.00009 0.00009 0.00008 0.00009 876 820 869 844 

IQR-MMT 38.56 32.00 32.21 31.80 0.00011 0.00010 0.00007 0.00008 854 810 880 809 

IQR-MU 34.32 34.30 32.35 31.33 0.00010 0.00008 0.00009 0.00008 887 875 919 889 

IQR-RS 37.29 34.23 32.91 30.63 0.00012 0.00008 0.00008 0.00007 882 810 867 877 

LR-MC 38.88 35.45 31.81 32.32 0.00007 0.00009 0.00008 0.00006 886 890 907 878 
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LR-MMT 32.08 32.05 32.09 36.11 0.00008 0.00008 0.00007 0.00008 850 870 874 809 

LR-MU 22.50 30.11 32.5 34.33 0.00008 0.00007 0.00008 0.00007 863 870 908 887 

LR-RS 34.75 32.54 31.79 30.98 0.00010 0.00009 0.00007 0.00008 830 841 833 867 

LRR-MC 39.54 40.08 31.66 33.92 0.00011 0.00009 0.00009 0.00011 876 878 923 829 

LRR-MMT 32.14 33.60 30.87 35.86 0.00010 0.00008 0.00009 0.00008 863 867 971 912 

LRR-MU 38.09 32.22 32.06 37.44 0.00011 0.00008 0.00008 0.00007 911 900 860 880 

LRR-RS 36.62 35.50 32.32 34.58 0.00010 0.00008 0.00009 0.00008 822 830 871 899 

MAD-MC 33.28 34.90 31.73 38.34 0.00010 0.00010 0.00008 0.00009 888 878 855 801 

MAD-MMT 32.54 32.60 32.91 34.43 0.00011 0.00008 0.00007 0.00008 852 863 824 865 

MAD-MU 35.01 34.50 32.00 36.02 0.00008 0.00008 0.00009 0.00008 880 841 900 788 

MAD-RS 41.22 36.00 31.79 33.86 0.00010 0.00008 0.00008 0.00007 886 880 908 890 

THR-MC 33.09 33.80 33.99 34.67 0.00011 0.00010 0.00007 0.00008 896 899 881 854 

THR-MMT 36.34 35.76 31.96 38.77 0.00011 0.00008 0.00009 0.00008 894 885 853 867 

THR-MU 30.89 31.53 32.41 36.43 0.00009 0.00010 0.00008 0.00009 884 870 891 867 

THR-RS 37.87 35.00 30.82 38.65 0.00008 0.00008 0.00009 0.00009 850 854 917 932 

 

This study focuses on energy consumption even though discussions are provided for SLA violations 

and VM migrations. The table 3 and figure 6 (a), (b) and (c) shows that relatively the ECS algorithm 

shows less energy consumption for MU and MMT. With MC and RS, the performances are more or 

less comparable. Here the overload of the system is detected using the effective overload detection 

algorithm. Once the overload is detected, the VM selection is performed using the effective VM 

selection policies. The VM placement is performed with Lévy flight option. The study uses the 

values of Status Index (SI) which contains the CPU utilization prior to a VM selection. These 

strategies will help to produce a better result. In a similar way, there could be more exploration of 

these contributing policies. Figure 6 (a). Shows the comparison of Energy consumption among ECS, 

GA, OFS and AC for VM selection policy namely Minimum Utilization (MU)). It gives better result 

than other algorithms. The lowest energy consumption for ECS is provided by VM selection policies 

LR-MU 

 

Figure 6 (a). Comparison of Energy consumption by ECS, GA, OFS and AC (for VM selection policy Minimum 

Utilization (MU)) 



Accepted Manuscript 

Figure 6 (b) shows another the comparison of Energy consumption among ECS, GA, OFS and AC 

under another different promising VM selection policies namely Minimum Migration Time (MMT) 

and Minimum Utilization (MU). Here too, the proposed ECS give even better result than other 

algorithms. The lowest energy consumption for ECS is provided by VM selection policies LR-MU. 

 

Figure 6 (b). Comparison of Energy consumption by ECS, GA, OFS and AC (for VM selection policies Minimum 

Migration Time (MMT) and Minimum Utilization (MU) 

 

The figure 6(c) is drawn with a logarithmic trend line to show a closer difference in the 

performances. The proposed algorithm is significantly better than others under VM selection policies 

IQR-MU, LR-MU and LRR-MU. 

 

Figure 6 (c).  A closed comparison of Energy consumption by ECS, GA, OFS and AC (for VM selection policy 

Minimum Utilization (MU)) 
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Figure 7 shows a comparison of SLA violation by ECS, GA, OFS and AC. Here the contributing 

parameters or policies are LR-MMT (AC algorithm), LRR-RS (ECS) etc. Only some few values are 

plotted as to fit the figures properly. 

 

Figure 7. Comparison of SLA Violation by ECS, GA, OFS and AC 

 

Figure 8 shows the numbers of migrations that took place during execution of the different chosen 

algorithms. 

 

Figure 8. Comparison of VM Migration of ECS, GA, OFS and AC 

 

Some of the contributing parameter or policies used are LR-RS (ECS) and MAD-MU (AC). As 

shown in the figures and tables, the ECS algorithm with the merits of (1) VM placement with Lévy 

flight, (2) algorithms for overload detections, (3) policies of VM selection, (4) use of Status Index 

(SI) for CPU utilization prior to a VM selection, gives better result with energy consumption on 

VM selection policies like Minimum Migration Time (MMT) and Minimum Utilization (MU). For 
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SLA and VM migration the ECS gave a steady performance graph which is neither too low nor too 

high.  
 

VI. Conclusion 
 

The VM placement has become an important research problem due to the broadening predominance 

of big cloud computing data centres and also to maximize the return on investment (ROI) of cloud 

providers by reducing the overall energy consumption. To competently and efficiently place VMs in 

the free computing resources, we proposed a new VM placement algorithm called ECS which is 

inspired by the cuckoo search method. The aim of our proposed work is to reduce the total energy 

consumption and resource wastage in cloud data centre. The efficiency of the proposed ECS 

algorithm is evaluated through extensive simulations in CloudSim3.0.3 using workload traces from 

PlanetLab. ECS gave a better result with various combinations of VM selection and overload 

detection policies. This work showed better energy metric for evaluating the performance of the 

proposed ECS algorithm with VM selection policies like Minimum Migration Time (MMT) and 

Minimum Utilization (MU), along with steady performance for SLA and VM migration. The results 

of the comparison confirmed that ECS performs generally well when the numbers of VMs are less 

(i.e. with less workload). Such algorithm can perform efficiently even on a large scale, dynamic 

cloud setting because of its capability to utilize Levy flights scheme. This work can be further 

improved by implementing it in a real heterogeneous environment and also by taking into account 

some more performance evaluation metrics. 
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