
ENHANCED DETECTION OF 3D INDIVIDUAL TREES IN FORESTED AREAS USING 
AIRBORNE FULL-WAVEFORM LIDAR DATA BY COMBINING NORMALIZED CUTS 

WITH SPATIAL DENSITY CLUSTERING 
 
 

W. Yao a, *, P. Krzystek a, M. Heurich b 

aDepartment of Geoinformatics, Munich University of Applied Sciences, 80333 Munich, Germany 
(yao, krzystek)@hm.edu 

bBavarian Forest National Park, 94481 Grafenau, Germany 
marco.heurich@npv-bw.bayern.de 

 
KEY WORDS: Full-waveform LIDAR, single tree detection, forestry, mean shift, understory 
 
ABSTRACT: 
A detailed understanding of the spatial distribution of forest understory is important but difficult. LiDAR remote sensing has been 
developing as a promising additional instrument to the conventional field work towards automated forest inventory. Unfortunately, 
understory (up to 50% of the top-tree height) in mixed and multilayered forests is often ignored due to a difficult observation 
scenario and limitation of the tree detection algorithm. Currently, the full-waveform (FWF) LiDAR with high penetration ability 
against overstory crowns can give us new hope to resolve the forest understory. Former approach based on 3D segmentation 
confirmed that the tree detection rates in both middle and lower forest layers are still low. Therefore, detecting sub-dominant and 
suppressed trees cannot be regarded as fully solved. In this work, we aim to improve the performance of the FWF laser scanner for 
the mapping of forest understory. The paper is to develop an enhanced methodology for detecting 3D individual trees by partitioning 
point clouds of airborne LiDAR. After extracting 3D coordinates of the laser beam echoes, the pulse intensity and width by 
waveform decomposition, the newly developed approach resolves 3D single trees are by an integrated approach, which delineates 
tree crowns by applying normalized cuts segmentation to the graph structure of local dense modes in point clouds constructed by 
mean shift clustering. In the context of our strategy, the mean shift clusters approximate primitives of (sub) single trees in LiDAR 
data and allow to define more significant features to reflect geometric and reflectional characteristics towards the single tree level. 
The developed methodology can be regarded as an object-based point cloud analysis approach for tree detection and is applied to 
datasets captured with the Riegl LMS-Q560 laser scanner at a point density of 25 points/m2 in the Bavarian Forest National Park, 
Germany, respectively under leaf-on and leaf-off conditions. The experiments lead to a detection rate of up to 67% for trees in the 
middle height layer and up to 53% for trees in the lower forest layer. It corresponds to an overall improvement in the detection rate 
of nearly 25% for forest understory compared to that obtained by the former method by extracting individual trees using normalized 
cuts segmentation solely. 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Laser scanning or LiDAR has been widely used in mapping the 
Earth’s surface and especially in forest applications. Techniques 
for tree extraction from LiDAR data have been investigated for 
mapping forests at both plot and tree levels to identify 
important structural and biophysical parameters (Heurich, 2008; 
Korpela et al., 2010; Yao et al., 2012). Recent advances in 
LIDAR technology have generated new full waveform scanners 
that can trigger and record more backscattered pulses within the 
travel path of one laser ray, providing a higher spatial point 
density and additional information about the reflectional 
characteristics and vertical structure of trees (Stilla et al., 2007; 
Reitberger et al., 2008; Yao et al., 2010). 

 
Figure 1 Mixed and multilayered forest 

Tree crowns are typically derived with the watershed algorithm, 
or by a region growing (Solberg et al., 2006) on the crown 

height model (CHM). New methods for single tree detection 
tackle conceptually the segmentation problem with a 3D 
approach instead of using only the CHM. In combination with 
full waveform data Reitberger et al. (2009) successfully 
demonstrated that the detection rate of single trees could be 
significantly improved in overall terms, especially in 
heterogeneous multilayered forest types (Figure 1) where 
groups of trees grow closely to each other. The fusion of 3D 
techniques with full waveform data seems to push the single 
tree approach to a new level of accuracy and completeness. 
Consequently, the estimation of tree shape parameters is 
enhanced using the 3D shape of segmented trees. Moreover, the 
analysis of the internal tree reflectional characteristics gains 
more insight into structure information which are significant for 
instance for tree species classification (Yao et al., 2012). 
 
So far, little success has been achieved to identify individual 
trees in forest understory using LiDAR information. Former 
approach in Reitberger et al. (2009) also confirmed that the tree 
detection rates in both middle and lower forest layers are still 
low, although an improvement of up to 20% in the lower forest 
layers was found. Therefore, detecting sub-dominant and 
suppressed trees cannot be regarded as fully solved. In recent 
years there are certain authors who deal with the similar topics 
as forest understory monitoring by enhancing the tree detection 
method. Morsdorf et al. (2010) used airborne discrete-return 
LiDAR height and intensity information to identify individual 
vegetation strata on 5 m×5 m pixels in various forest conditions 
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and had little success in detecting the presence of the understory 
vegetation strata. Korpela et al. (2012) used airborne LiDAR 
data to study the understory trees by designing a conceptual 
compensation model for the transmission losses of laser pulses 
through overstory canopies. However, it was still an area-based 
detection and assessment method of the understory. Ferraz et al. 
(2012) has applied mean shift clustering to airborne LiDAR 
data of a multi-layered forest to extract single trees, assuming 
the spatial pattern of forest and boundaries of forest stratums is 
known in advance. They achieved a detection rate of 12.8% for 
the suppressed trees.  
 
Full waveform LiDAR systems can overcome drawbacks of 
conventional laser scanners by detecting significantly more 
reflections in the understory forest strata, and providing the 
intensity and width of pulses as reflectional parameters. The 
objective of this paper is (i) to develop an enhanced approach 
that detects single trees for multilayered forests with an 
integrated 3D segmentation, (ii) to enable the new approach to 
utilizes the geometric and reflectional features derived for local 
dense modes object level) of point clouds (iii) to show how the 
detection and location of single trees across datasets of different 
properties are achieved using the developed approach. 
 
The paper is divided into five sections. Section 2 focuses on the 
detection of single trees by combining normalized cuts with 
mean shift clustering. Section 3 shows the results which have 
been obtained from full waveform data acquired in the Bavarian 
Forest National Park. Finally, the results are discussed with 
conclusions in sections 4 and 5. 
 

2. METHODOLOGY 

2.1 Decomposition of full waveform data 

As usual, a single waveform is decomposed by fitting a series 
of Gaussian pulses to the waveform which contains NR 
reflections (Figure 2).  

 
Figure 2 3D points and attributes derived from a waveform 

The vector ( , , , , )T

i i i i i ix y z W IX  is provided for each reflection i 

with ),,( iii zyx  as the 3D coordinates of the reflection. 

Additionally, the points iX  are given the width 2i iW σ   and 

the intensity 2i i iI σ A     of the return pulse with iσ  as the 

standard deviation and Ai as the amplitude of the reflection i 
(Reitberger et al., 2009; Jutzi and Stilla, 2005). Note that 
basically each reflection can be detected by the waveform 
decomposition.  
 
The sensor data are calibrated by referencing Wi and Ii to the 
pulse width eW  and the intensity eI  of the emitted Gaussian 
pulse and correcting the intensity with respect to the travel 
length si of the laser beam and a nominal distance s0.  
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The correction assumes a target size larger or equal to the 
footprint (Wagner et al., 2006). The points from a waveform are 
subdivided into four point classes depending on the order of 
reflections within a waveform. 
 
2.2 Singe tree detection 

2.2.1 Local maximal filtering 

The coarse detection of single trees is achieved by searching 
local maximal in CHM, which is derived by subdividing the 
ROI into a grid having a cell spacing of cp and NC cells. Within 
each grid cell, the highest 3D point is extracted and adapted 
with respect to the ground level. The ground level is estimated 
from a given DTM. In the next step, all the highest 3D points 

),...,1)(,,( C
CHM
jjj

T
j Njzyx X  of all NC cells are robustly 

interpolated in a grid that has NX and NY grid lines and a grid 
width gw. Both steps are carried out simultaneously in a least 
squares adjustment. The result is a smoothed equally spaced 
CHM. The local maximums derived on the CHM act as 
potential positions where single (overstory) trees could be 
located and can be used as prior knowledge in controlling 3D 
segmentation. The results could be improved by an additional 
stem detection method to further detect sub-dominated trees 
which are not represented by local maximums, when sufficient 
stem points are available. 
 
2.2.2 Mean shift clustering 

Mean shift (MS) is a versatile tool for feature-space clustering. 
MS has been successfully applied to image segmentation tasks 
by exploiting the spectral-spatial feature space (Comaniciu and 
Meer, 2002). As the feature-based analysis depends on the 
quality of selected features, the derivation of feature set play a 
fundamental role in design of a segmentation algorithm. Since 
we want to avoid the bias caused by deriving geometric features 
such as height textures, planarity and curvature caused by 
neighborhood selection, the 3D geographic space of forest 

stands spanned by ix ),,( iii zyx coordinates of point clouds is 

chosen to explicitly represent the feature space. ALS point 
clouds convey a multimodal distribution in which each given 
mode defined as a local maximum in density correspond to a 
crown apex or a part of crown (Ferraz et al., 2012). MS vector 
is defined as 
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where x is the center of the kernel (window), and h is a 
bandwidth parameter for the kernel. Given the function 

'( ) ( )g x k x  for profile, the kernel ( )G x is defined as 
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Figure 3 Cylindrical shaped kernel for density estimation with 
horizontal Gaussian profile 
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In this study, we exploit the capability of MS algorithm with a 
cylindrical kernel (Figure 3) to extract the local modes in point 
clouds which enable the global grouping to retrieve individual 
tree objects using normalized cuts. The result of mean shift 
clustering is cleaned by discarding segments with a number of 
points lower than a certain threshold. The MS clustering result 
of one sample plot is visualized in Figure 4 by displaying points 
associated to MS clusters in different colors. 
 

 
Figure 4 Mean shift clusters of an exemplary sample plot 

 
2.2.3 Feature derivation for mean shift clusters 
Deriving significant features describing each tree/sub-tree 
individually is a key step in detecting single trees using graph-
based segmentation. This part is specifically to deal with feature 
derivation for constructing the affinity matrix in normalized 
cuts to measure the similarity function between each connected 
graph node. The mean shift spatial clustering in LiDAR point 
clouds provides for each segmented (sub) tree cluster 
corresponding laser points with associated properties. 
 
The four-group feature set S = {Shp, Svpr, SI, SW} can be defined 
to reflect geometric and reflectional properties. The features 
will be defined as follows, respectively: 
 Shp ={ XS , YS }, which records the horizontal (x,y) position of 

MS clusters, respectively 
 Svp={ ZS }, which records the vertical position of MS clusters 

 SI ={ IS }, the feature ZS is introduced as overall mean pulse 

intensity for the entire MS cluster,  which uses the information 
provided for each point from waveform decomposition. The 
defined feature considered here is not depending on the pulse 
reflection types. 
 SW ={ WS }, where WS is the overall mean pulse width for the 

entire MS cluster. However, the definition of this feature is 
limited to the single und first pulses, which could lead to a 
distinct broadening effect of pulses. 
 
2.2.4 Normalized cuts segmentation 

Within each sample plot the 3D segmentation technique using 
normalized cuts (Shi and Malik, 2000) is used to extract point 
clouds associated to single trees based on a graph structure 
(Figure 5). This makes it possible to detect also smaller trees in 
the understory which cannot be indicated by local maxima in 
the CHM. This segmentation uses the positions (xi, yi, zi) of the 
laser reflections within each MS cluster and optionally the pulse 
width Wi and the intensity Ii from the waveform decomposition. 
Additionally, stem positions or local maximums of CHM can be 
used as prior knowledge. The normalized cut segmentation 
applied to the local dense modes of point clouds is based on a 

graph structure G. The two disjoint segments A and B of the 
graph are found by minimizing the cost function: 
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the segments A and B and 
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weights of all edges ending in the segment A. The weights wij 
specify the similarity between the MS clusters and are a 
function of the spatial distribution and features of MS clusters. 
A minimum solution for Eq.(4) is found by means of a 
corresponding generalized eigenvalue problem. 

 
 

 

 

 

 

 

 

 

 

 

Figure 5 Schematic representation of graph-based segmentation 
using normalized cuts based on MS clusters  

Consequently, the weighting matrix consists of following 
similarity functions between MS cluster i and j which is located 
within a cylinder of radius rXY around the MS cluster i: 

( , ) ( , ) ( , ) ( , )     if ( )
( , )

0                                                    otherwise

P i j Z i j F i j G i j XY
ij xye e e e D r

w i j
        


  (5) 

The components P(i,j) and Z(i,j) weight the quadratic Euclidian 
distances between the MS clusters, where P(i,j) measures the 
horizontal distance Shp and the Z(i,j) is vertical distance Svp. The 
component F(i,j) describes the quadratic Euclidian distance 
between mean LiDAR intensities SI and width SW, while G(i,j) 
records the maximum horizontal distance of two MS clusters to 
the local maximum of CHM. The position and height of a 
segmented tree is defined as the centroid and maximum height 
of the tree segment from the point cloud. The explicit 
definitions of the four functions are same to those in Reitberger 
et al. (2009). 

   
(a)    (b) 

Figure 6 Single tree segmentation: from MS clusters (a) to 3D 
singles trees (b) based on global grouping by normalized cuts.  

MS clusters 

Similarity W 
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Figure 6 shows a sample area containing several coniferous 
trees of different sizes, which are grouped by normalized cuts 
based on the similarity between/ within MS clusters. The tree 
tops derived from the local maximums reasonably correspond 
to the reference trees (black lines), while a small understory tree 
is also correctly separated. Although 3D segmentation approach 
is not dependent on full waveform LiDAR data, the application 
to conventional LiDAR data just providing 3D point 
coordinates could undermine the performance, since the pulse 
intensity and width of MS clusters play an important role in 
constructing the similarity matrix controlling the graph cuts. 
 
2.2.5 Control parameters  

The MS clustering has only one control parameter – kernel 
bandwidth (hv, hh) needed to be set in advance (hh = hv = 2.4m), 
while the normalized cut segmentation is controlled by several 
control parameters whose values can be optimized in 
experiments. Firstly, the most important parameter Ncutthres, 
which controls the subdivision (=cut) of a graph G, was set 
equal to 0.18. Moreover, a graph G is no longer subdivided if 
the number of MS clusters of the graph undershoots the limit of 
2 clusters. Another important factor ADJ_RADIUS that define 
the radius of adjacencies of nodes in the graph structure is set to 
9.7m. Finally, we used the empirical values σf = 0.5, σxy= 
3.15m, σz = 11.0m and σG = 3.5m to control the influence of the  
impact factors F(i,j), P(i,j), Z(i,j) and G(i,j). The value for σz is 
larger than σxy assuming that the tree height is larger than the 
tree crown diameter. 
 

3. EXPERIMENTS 

3.1 Material  

Experiments were conducted in the Bavarian Forest National 
Park which is located in south-eastern Germany along the 
border to the Czech Republic (49o 3’ 19” N, 13o 12’ 9” E). 2 
sample plots with an area size between 1000 m2 and 3600 m2 
were selected in the mixed mountain forests. The plots 
comprise forest in the regeneration phase and the late pole 
phase(Table 1). The test sites have suffered from tree disease 
due to bark beetle attack. Reference data for all trees with stem 
diameter larger than 7 cm have been collected in May 2006 and 
2007 for 93 Norway spruces (Picea abies), 190 European 
beeches (Fagus sylvatica), 50 Fir (Abies), 24 Sycamore maples 
(Acer pseudoplatanus), 9 Norway maple (Acer platanoides) 
and 2 Tilia. Several tree parameters like the DBH, total tree 
height, stem position and tree species were measured and 
determined with the help of GPS, tacheometry and the ’Vertex’ 
III system. A DTM with a grid size of 1 m and an absolute 
accuracy of 25 cm was available (Heurich et al., 2008).  
 

Plot Nr. 21 22 56 91 

Size[ha] 0.2 0.2 0.23 0.36 

Age[a] 160 160 170 110 

Trees/ha 500 540 340 260 

Altitude [m] 860 885 640 764 

N lower layer 37 19 31 31 

N interm. layer 14 60 19 11 

N upper layer 48 29 27 54 

Deciduous [%] 66 79 10 75 

Table 1. Characteristics of sample plots 

Full waveform data have been collected by Milan Flug GmbH 
with the Riegl LMS-Q560 scanner in May 2006 after snowmelt 

but prior to foliation and in May 2007 after foliation with an 
average point density of 25 points/m2(Table 2). The vertical 
sampling distance was 15 cm, the pulse width at half maximum 
reached 4 ns and the laser wavelength was 1550 nm. The flying 
altitude of 400 m resulted in a footprint size of 20 cm.  
 

Time of flight May ‘2006 May ‘2007 
Foliage Leaf-off Leaf-on 
Scanner Riegl LMS-Q560 Riegl LMS-Q560
Pts/m2 25 25 
AGL [m] 400 400 
Footprint [cm] 20 20 

Table 2 Configurations for two airborne LiDAR campaigns 
 
3.2 Calibration 

The calibration of the Riegl full-waveform system was 
performed by special calibration flights over an airfield. Several 
tracks were flown at different flying heights (200 m and 400 m) 
along and across the airfield. The mean intensity Ii, corrected 
with respect to the emitted intensity Ie, and the mean run length 
si were calculated in four homogeneous areas (122 m2–133 m2) 
for each track. 
 

Flight 2006  Flight 2007 

Calibrated parameter k 1.902 1.736 

Table 3 Estimation of calibration parameter k 
 

According to Eq. (2), the best coefficient k was estimated from 
all possible observation equations  
       k k

i i j jI s I s       (6) 

which can be formulated for two tracks i and j flown at different 
heights. Table 3 shows the results obtained for the two flights of 
data sets. 
 
3.3 Results  

The enhanced procedure for 3D single tree detection was 
applied to sample plots in a batch procedure without any 
manual interaction. Tables 4 and 5 summarize the percentage of 
detected trees for the entire sample plots under different foliage 
conditions. The plots are subdivided into 3 forest layers with 
respect to the mean height htop of the 100 highest trees per ha. 
The lower layer contains all trees below 50 % of htop, the 
intermediate layer refers to all trees between 50 % and 80 % of 
htop, and, finally, the upper layer contains the rest of the trees. 
The tree detection results were evaluated by matching with 
single trees in reference data using two criterions: i). the 
distance of detected trees should be smaller than 60% of the 
mean tree spacing of the plot; ii) the height difference between 
detected and reference trees should be smaller than 15% of htop. 
If a reference tree is assigned to more than one tree position, the 
tree position with the minimum distance to the reference is 
selected. Detected trees that are liked to one tree position are 
“detected trees” and detected trees without any link to a 
reference tree position are treated as “false positives”. 

Data 
set 

Correctly detected trees per forest layer [%] False 
pos 
[%] lower intermediate upper total 

2006 30.6 49.3 57.8 47.2 34.4 

2007 27.9 44.7 59 47.4 38.2 

Table 4. 3D Detection of single trees in the sample plots using 
the former approach developed in Reitberger et al. (2009). 
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Data 
set 

Correctly detected trees per forest layer [%] False 
pos [%] 

lower intermediate upper total 

2006 52.7 66.8 67.7 62.5 29.3 

2007 50 65.9 70 63.2 31.8 

Table 5. 3D Detection of single trees in the sample plots using 
the newly developed approach 
 
The overall detection rate of up to ca. 65 % can be achieved for 
the leaf-on case using the newly developed approach, while 
roughly a third of the detections correspond to false alarm, 
which indicates a moderate reliability. It can be seen that most 
of the trees are detected in the upper layer. In comparison, the 
detection rates in the intermediate and lower layer are smaller. 
However, the enhanced tree detection method based on 3D 
segmentation combining mean shift with normalized cuts has 
fully exploited advantages of full waveform data to detect 
supressed trees in the both middle and lower layers. It can be 
seen that the tree detection rate in the both forest layers have 
been improved by 25% compared to that obtained by the former 
method presented in Reitberger et al. (2009). The improvement 
seems to be uncorrelated to the foliage condition, since constant 
improvements between 10% and 25% are observed for all three 
forest layers.  

 
 

 
Figure 7 Distribution of stem diameter vs. tree detection 
improvement, top: leaf-off season bottom: leaf-on season 
 
Additionally, if we compare dataset I (leaf-off) to dataset II 
(leaf-on) it can be addressed that the foliage condition could 
affect the improvement of the detection rate, but not 
significantly. As unexpected, the overall detection rate is worse 
by ca.1% in leaf-off situation, while the false positive has 
increased by 2%. It was caused by the fact that dense tree 
crowns in leaf-on condition and dead woods emerging in the 
meantime could benefit the detection of dominated trees in the 

overstory. Furthermore, we show the distribution of the 
detected trees from two methods over different stem diameters 
in Figure 7. Therefore, the capability of new 3D tree 
segmentation with respect to detecting supressed understory 
trees in a multilayered forest can be highlighted here. 
 

 Mean position error 

 Leaf-off Leaf-on 

Former method 1.53m 1.48m 

New method 1.61m 1.71m 

Table 7. Accuracy of the tree position determination 

Finally, Table 7 shows the absolute positional accuracy of the 
trees detected by two methods. The mean positioning error of 
detected trees using the new method gets worse by ca. 5-10%, 
which corresponds to 10 cm in the leaf-off case. Namely, the 
overall accuracy of tree position determination is still better in 
the case of former tree detection method. 
 

4. DISCUSSION 

According to Rutzinger et al. (2008), the developed 
methodology can be regarded as an object-based point cloud 
analysis approach for tree detection. Conceptually, the 
presented approach to detect individual trees from airborne 
LIDAR data of forest areas goes one step further than 3D tree 
segmentation at the point level. This paper presents an 
enhanced scheme for detecting single trees using high density 
full waveform LiDAR data in a multilayered forest. In this 
study, based on the graph structure of MS clusters derived 
automatically in advance the detection of trees using waveform-
laser measurements is performed in the context of global 
grouping.  The computational costs needed for the bipartition of 
the affinity matrix used in normalized cuts can be essentially 
reduced due to the small number of generated mean shift 
clusters representing the graph nodes. The 3D segmentation for 
single tree detection by combining normalized cuts with mean 
shift could improve the detection rate in the lower forest layer 
by averagely 25% compared to the former 3D segmentation 
presented in Reitberger et al. (2009). Moreover, the leaf-on case 
seems to provide slightly better results for single tree detection 
in our experiment than leaf-off case. It could be caused by 
mixed reasons. Mostly important, under leaf-on condition the 
crown of overstory deciduous trees exhibits a more abundant 
type, which leads to stronger spatial and biophysical evidences 
for differing from coniferous trees making the detection easier.  
 
When viewing at the results of tree detection in forest 
understory we observed an improvement of up to 25% in the 
detection rate for datasets under different foliage conditions. It 
is interesting to see that the improvement is almost independent 
on foliage condition for all the three forest layers, while the 
lower forest layer showed the largest improvement that is 10% 
better than the higher forest layer. It can also be retrieved from 
Figures 7 that low trees (with small stem diameter) in 
multilayered forests have a greater potential to be better 
resolved by full-waveform laser scanners when using a more 
advanced data handling technique. Overstory trees still is a key 
factor in preventing the laser pulse from reaching or 
transmitting through supressed trees in the understory, the tree 
detection rate for the middle and lower forest layers in the leaf-
off case has increased by 5% compared to leaf-on situation, and 
it does not much depend on the tree detection algorithm used.  
 
However, false alarm rate is still not very low, and it should be 
a kind of over segmentation problem. Points of tree crown and 
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branch which actually belong to adjacent trees undermine local 
dense structure and weaken the feature functions used in the 
graph-based segmentation, even leading to error detections. 
Such false points could happen to the tree segments owing to 
incompleteness of reference data acquired by filed work and 
dense forest stands. Tao et al. (2007) showed that the 
integration of mean shift and normalized cuts can help to 
improve the image segmentation results and reduce the over-
segmentation effect as well. For our case, it is stated that the 
combined utilization of two mutually enhanced techniques 
detected more single trees especially in forest understory 
without producing more false positives. It can be attributed to 
the reason that the mean shift clusters approximate primitives of 
(sub) single trees in LiDAR data and allow to define more 
significant features to reflect geometric and reflectional 
characteristics towards single tree level. The similar 
improvement caused by synergic effect could also be witnessed 
in the application of urban object detection using LiDAR data 
(Yao et al., 2009). 
 

5. CONCLUSIONS 

The study presents an enhanced scheme for detecting single 
trees in mixed and multi-layered forest from full-waveform 
LiDAR data based on an integrated 3D segmentation method. 
The developed methodology can be regarded as an object-based 
point cloud analysis approach for tree detection and an 
extension to the former work based on normalized cuts solely. 
The results attained in a heterogeneous forest of different 
foliage conditions show that the overall detection rate of single 
trees could be improved by 15%, being less dependent on 
foliage condition, while the detection rate of depressed trees in 
the forest understory has increased by ca. 25%. Future research 
could be focussed on assessing the influence of tree species on 
the detection results, since the mean pulse intensity and tree 
canopy geometry are clearly different for coniferous and 
deciduous trees according to previous study. Furthermore, 
extended features of MS clusters need to be examined, whether 
providing direct clues to reduce the false alarm rate.  
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