
1968 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 5, MAY 2012

Enhanced Detection Using Target Polarization
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Abstract—We consider the problem of through-the-wall radar
imaging (TWRI), in which polarimetric imaging is used for au-
tomatic target detection. Two generalized statistical detectors are
proposed which perform joint detection and fusion of a set of
multipolarization radar images. The first detector is an extension
of a previously proposed iterative target detector for multiview
TWRI. This extension allows the detector to automatically adapt
to statistics that may vary, depending on target locations and
electromagnetic-wave polarizations. The second detector is based
on Bayes’ test and is of interest when target pixel occupancies
are known from, e.g., secondary data. Properties of the proposed
detectors are delineated and demonstrated by real data measure-
ments using wideband sum-and-delay beamforming, acquired in
a semicontrolled lab environment. We examine the performance
of the proposed detectors when imaging both metal objects and
humans.

Index Terms—Detection, polarimetric imaging, radar imaging,
through-the-wall.

I. INTRODUCTION

THROUGH-THE-WALL radar imaging (TWRI) is an

evolving technology [1]–[3] using electromagnetic (EM)-

wave propagation to visualize scenes hidden behind walls or

other visually opaque materials. It has numerous applications,

including firefighter and police missions as well as military

operations. Much of the work in the area of TWRI has con-

sidered analyzing and interpreting 3-D TWRI images [4], [5].

This includes performing automatic target detection [6]–[8] and

classification [9]–[12]. However, these approaches are based on

using single-polarization antenna systems.

There are two main approaches that have been introduced for

detection of targets behind walls and inside enclosed structures.

The first approach is image based and aims at developing a

robust target detection scheme that iteratively adapts to varying

statistics of the target images [6]–[8]. The argument for using

an iterative learning scheme stems from the fact that the target

image statistics clearly depend on the target 3-D orientation and
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position and can also vary with the imaging system specifica-

tions, resolutions, and standoff distance. The main objective

is to devise 2-D and 3-D target detectors for TWRI, which

incorporate distribution of the target intensity in the image

domain, as shown by backprojection imaging algorithms.

The second approach directly works on the data, in lieu of

an image, and aims at designing waveforms for target detection

that exploit a priori information about the properties and char-

acteristics of the targets of interest [13]. For TWRI applications,

it is recognized that, in addition to humans, there are only a

finite number of objects that are of interest inside rooms and

behind walls, for example, guns and rifles of different sizes

and possible shapes. As such, the underlying indoor imaging

application is ideally suited for considering waveform design

based on target signature exploitation. The objective of this

matched illumination approach is to devise optimal signature

exploitation waveforms for through-the-wall target detection,

including humans and weapons, using a multiantenna radar sys-

tem in monostatic, bistatic, and multistatic configurations. Both

deterministic and stochastic extended target models have been

considered for this purpose. This approach faces challenges in

dealing with multiple targets and securing a priori information

about the target positions and orientations.

The purpose of this paper is to expand on the first approach

which has broad applications, with little or no requirements

for advanced knowledge of target characteristics. Our goal is

to improve detection by utilizing polarization diversity and

accounting for changing image intensity distributions as a

function of transmitter–receiver co- and cross-polarizations.

Existing works in polarimetric imaging for TWRI applica-

tions include those in [14]–[16]. In [14], a radar-signature-

based approach for detecting stationary and moving weapons

is proposed. The authors consider polarization information

for the specific case of detecting a rifle in TWRI images. It

was shown that the cross- to copolarization return ratio can

be used to successfully discriminate between a human with

and without a weapon. In [15], a polarization contrast tech-

nique that provides improved TWRI images by adapting the

imaging system to the observations is proposed. The authors

consider polarization difference imaging that shows improved

enhancement in terms of image quality. An adaptive technique

is proposed that finds the optimal combination of polarization

signal channels. The polarization information is used in [16]

to eliminate ghost targets that appear in TWRI images due to

multipath propagation. As such, the image quality is strongly

improved which facilitates target detection. The authors make

use of time-difference radar imaging and frequency weighting

to suppress the wall sidelobes. A multiplicative combination
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technique of co- and cross-polarized time-difference images is

then considered to reduce the effect of ghost targets.

The contribution of this paper is to provide a general image-

domain-based framework for automatic target detection, uti-

lizing multipolarization images for TWRI applications. The

aim is to jointly detect and fuse a set of TWRI polarimetric

images to a single binary representation while maintaining a

preset false-alarm rate. We hereby deal with stationary objects

where Doppler analysis [17] or change detection techniques

are inapplicable. Furthermore, as opposed to [15] and [16], we

consider the statistical target detection problem in TWRI where

postprocessing techniques are applied to obtain a binary image

representation, given a set of polarimetric TWRI images. We

consider two different detection approaches that adapt to image

statistics, which vary with space and polarization. The first

detector is based on an iterative version of the Neyman–Pearson

(NP) test [6], [7] initially proposed for multiviewing TWRI and

is generalized to deal with multipolarization TWRI images. The

second detector is an iterative version of Bayes’ test, allowing

adaptation to unknown and changing image statistics. While

the first detector allows presetting a nominal false-alarm rate,

the second has a direct relation to scene sparsity in TWRI

[18]. In most urban sensing applications, there are typically

a small number of objects in a mostly empty room. Given

a sufficient high resolution, this property renders most image

voxels as background, whereas only a few voxels contain target

reflections. This knowledge can be used by Bayes’ test to set

the probability of target occurrence.

This paper provides detection results using a calibrated ex-

perimental setup. It also considers the setup of a stationary

human behind a wall. Since front walls obscure indoor tar-

gets, rendering target detection very difficult or impossible, we

apply, for both setups, background subtraction, which makes

use of empty or reference scene measurements. This approach

removes, or strongly mitigates, the front wall returns, produc-

ing a high image quality. We also apply frequency weighting

which considerably reduces wall effects by windowing in the

frequency domain. The frequency weighting data processing

can be applied with or without background subtraction. We note

that, in this paper, we deal with postprocessing of radar images

obtained through walls. A detailed description of the wideband

sum-and-delay beamforming algorithms used in this paper can

be found in [5].

This paper is structured as follows. In Section II, the two

adaptive target detectors for TWRI are presented. An experi-

mental setup using calibration objects and the corresponding

detection results are shown in Section III. In Section IV, we

consider the specific problem of detecting a stationary human

behind a wall. Finally, Section V provides conclusions.

II. TARGET DETECTION IN POLARIMETRIC TWRI

Let yr(i, j, h) with i = 0, . . . , Ni − 1, j = 0, . . . , Nj − 1,

h = 0, . . . , Nh − 1, and r = 1, . . . , R denote the set of ac-

quired 3-D TWRI images using different polarizations. Here,

i, j, and h are the coordinates in range, cross-range, and

height, respectively, and Ni, Nj , and Nh are the numbers of

voxels in range, cross-range, and height, respectively. The index

r denotes the rth polarization with R being the number of

polarizations used in the imaging system [19].

Given the set of R TWRI images, the aim of target detection

is to provide a binary image B(i, j, h) with i = 0, . . . , Ni −
1, j = 0, . . . , Nj − 1, and h = 0, . . . , Nh − 1, which indicates

the presence or absence of targets, i.e.,

B(i, j, h) =

{

1, target present at (i, j, h)
0, target absent at (i, j, h).

(1)

In the following, we consider two different detectors based

on the likelihood ratio that can be applied to image-domain-

based target detection in TWRI. The first detector, presented

in Section II-A, is an extension of our previous work [6], [7]

to polarimetric TWRI. We demonstrate, how TWRI images

obtained using multiple polarization can jointly be fused and

detected by an iterative scheme. By using the new proposed

scheme, the individual images are not assumed to be identically

distributed anymore as in [6] and [7]. The second detector in

Section II-B is a new iterative detector for TWRI that is based

on Bayes’ test [20]. We demonstrate how to fuse and binarize

a set of polarimetric TWRI images while adapting to changing

and unknown image statistics. Again, the individual images are

not assumed to be identically distributed anymore. By using

the proposed iterative Bayes’ test, a direct connection to scene

sparsity in TWRI is made.

A. Iterative NP Test

In [6] and [7], an iterative version of the Neyman–Pearon

test was proposed for multiviewing TWRI, where a set of radar

images is obtained using different vantage points. The iterative

detector is applied in the image domain and allows one to adapt

to changing image statistics by iteratively estimating the target

and noise statistics. We propose to use the same framework for

polarimetric TWRI by considering a pixelwise NP test as

R
∏

r=1

pr (yr(i, j, h)|H1)

pr (yr(i, j, h)|H0)

H1

≷
H0

γ (2)

where H0 and H1 denote, respectively, the null (target ab-

sent) and alternative (target present) hypotheses. The functions

pr(·|H0) and pr(·|H1) are the conditional probability density

functions (pdfs) under the respective hypotheses. The parameter

γ is the likelihood ratio threshold, which can be obtained by

fixing a desired probability of false alarm α as

α =

∞
∫

γ

pL(L|H0)dL (3)

where pL(L|H0) denotes the distribution of the likelihood ratio

under the null hypothesis. Note that (2) implicitly assumes the

target and noise realizations to be independent with respect to

polarization r, but not necessarily identically distributed. This

is of high practical importance, as the target statistics in the

image domain generally vary when changing the polarization

[21], [22].

By implementing the adaptive detector from [6] and [7], (2)

is computed iteratively by jointly adjusting the pdf parameters
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Fig. 1. Iterative detection scheme for polarimetric TWRI. The image statistics for HH, VV, and HV polarizations are estimated separately and then jointly fused
by a likelihood ratio test.

to the image statistics at hand and optimizing the target and

noise sets in the image domain using morphological filtering

[23]. For polarimetric data, this scheme has to be generalized

such that it can deal with polarization-dependent statistics. The

generalized scheme is shown in Fig. 1, in which we consider the

polarizations VV, HH, and HV, i.e., R = 3. Let the respective

TWRI images obtained by VV, HH, and HV polarizations be

denoted by y1, y2, and y3, respectively. Furthermore, let θ̂
0

H0

and θ̂
0

H1
denote initial estimates of the parameter vectors θH0

and θH1
describing the pdfs under H0 and H1, respectively.

Then, given a false-alarm rate α, a binary 3-D image B1

NP
can

be obtained by evaluating (2), whereby the superscript 1 rep-

resents the first iteration. This image is generally prone to false

alarms and missed detections. In the subsequent image process-

ing step, an optimal morphological filtering step (see [12] for

details) is employed to obtain the binary image B1

C . This image

can be used to provide the first description of the indoor scene

and preliminary indication of targets and their locations. It can

thus be used as a mask on the original polarimetric images to

obtain target and noise sets T 1
r and N 1

r with r = 1, 2, and 3,

from which the revised parameter estimates θ̂
1

H0
and θ̂

1

H1
can

be estimated. These revised parameter estimates are forwarded

again to the NP test to obtain an improved detection result.

The iteration stops when convergence is achieved, e.g., by

observing a vanishing difference between subsequent parameter

estimation.

The parametric pdfs pr(·|H0) and pr(·|H1) can be chosen

based on an empirical image analysis study. As in [7], we

invoke a Weibull noise and a Gaussian target pdf, which have

been found to be valid models, also in polarimetric TWRI. Thus
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(4)

where κr and λr are the shape and scale parameters of

the Weibull noise distributions and µr and σ2
r are the mean

and variance of the Gaussian target distributions, with r =
1, 2, and 3.

Note that, by considering the parameter setup from (4),

as opposed to [6] and [8], the TWRI images using different

polarizations are assumed to follow the same pdf model but

differ in the respective parameters.

B. Iterative Bayes’ Test

Making the same assumptions as in Section II-A, i.e., in-

dependence over polarization and assuming equal costs for

correct decisions as well as equal costs for incorrect decisions,

Bayes’ test [20] can be written as

R
∏

r=1

pr (yr(i, j, h)|H1)

pr (yr(i, j, h)|H0)

H1

≷
H0

(

PH1

PH0

)R

(5)

where PH1
and PH0

are the probabilities of target and noise

occurrence, respectively. It is noted that, in most radar appli-

cations, the NP test is preferred, as PH1
and PH0

are often

unknown. In TWRI applications, however, one is often faced

with imaging rooms that are mostly empty, and only few pixels

in the corresponding radar image will be occupied by, e.g.,

human or furniture. This is more typical when performing

background subtraction where most objects in the reference

scene get eliminated. In this case, fixing PH1
and PH0

is more

intuitive than fixing a false-alarm rate α, hence the considera-

tion of Bayes’ test.

When using Bayes’ test as per (5), one faces the same prob-

lem as discussed in the previous section, i.e., the polarization-

dependent statistics pr(yr(i, j, h)|H1) and pr(yr(i, j, h)|H0)
are unknown and possibly space and time varying. We thus pro-

pose to iteratively estimate those unknown parameters similarly

to the approach discussed in Section II-A. It is noted that the

iterative framework, as shown in Fig. 1, can be considered by

replacing the likelihood ratio threshold γ by (PH1
/PH0

)3. All
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concepts, including the criteria of optimality and convergence

as discussed in [12], remain unaltered.

III. EXPERIMENTAL RESULTS: CALIBRATION SCENE

In this section, we review two techniques for wall removal

and the corresponding changes for wideband sum-and-delay

beamforming. Furthermore, the experimental setup is intro-

duced, and detection results using a scenario with calibration

metal targets are demonstrated.

A. Wall Removal

The wall does not only complicate the computation of the

propagation delay between transceiver and target but also add

strong distortions to the acquired radar image. Sidelobe ef-

fects from the wall may appear all over the radar image, thus

overshadowing targets. As stated in the introduction, there are

various effective methods for removing the wall clutter. Since

this paper addresses the detection problem and not wall EM

mitigations, we apply the method of background subtraction

prior to detection. Background subtraction assumes empty, or

reference, scene measurements being available, and it is con-

sidered the most effective wall removal technique. The empty

scene signal returns are coherently subtracted from the signal

returns of the populated scene. This practically eliminates pri-

mary wall effects and thus dramatically improves image quality.

Secondary wall effects, e.g., interaction of targets with the

wall, however, are not removed through this method. The use

of background subtraction is ideal for long-term surveillance

applications. In many practical applications, however, empty

scene or reference scene measurements are not available.

A simple, yet effective, signal processing tool which can be

used to improve image quality, with or without background

subtraction, is frequency weighting. It is recognized that the

image quality in TWRI, in the absence of wall subtraction,

is mainly deteriorated due to the wall return sidelobe effects.

The beamforming equation can be reformulated by using the

concept of the system point spread function (PSF) as in [4] and

[12]. The acquired image can then be written as the convolution

of the target reflectivity and the PSF, i.e.,

I(u′, v′) = Γ(u′, v′) ∗ ∗P (u′, v′) (6)

where ∗∗ denotes the 2-D convolution and P (u′, v′) is the

PSF. The wall has a very strong reflectivity, and as such,

the convolution operation performs a smearing in the image

domain. This effect can be reduced by considering a frequency

weighting, i.e.,

IFWr (u′, v′) =

P−1
∑

p=0

L−1
∑

l=0

K−1
∑

k=0

alΓr

(

u′
p, v

′
p

)

× exp
(

−jωl

(

τk(u
′, v′)− τk

(

u′
p, v

′
p

)))

(7)

where Γr(u
′
p, v

′
p) is the complex target reflectivity when il-

luminating the pth target with the rth polarization [19], with

p = 0, . . . , P − 1 and r = 1, . . . , R. Furthermore, τk(u
′, v′) is

the two-way propagation delay when using the kth transceiver,

and al is the lth frequency weight, l = 0, . . . , L− 1, with
∑L−1

l=0
al = 1. Classical frequency windows include Hamming,

Hanning, and Blackman windows [24].

For illustration, Fig. 2 shows typical TWRI B-Scans (2-D

cuts through the scene) of a metal dihedral obtained by wide-

band sum-and-delay beamforming. The images were obtained

in a semicontrolled lab environment that will be detailed in the

remainder of this section.

Fig. 2(a)–(c) shows the acquired images when performing

the imaging without wall removal for VV, HH, and HV po-

larizations. The effect of convolving the target scene with the

PSF is strongly visible and renders target detection practically

impossible. As the wall has a weak cross-polarization signature,

the convolution effect is strongly reduced when considering HV

polarization as in Fig. 2(c). In Fig. 2(d)–(f), the imaging results

based on background subtraction are shown. As can be seen, the

coherent subtraction of empty scene measurements successfully

removes the primary wall effects. The target can now clearly be

seen in the upper left corner at approximately −2 ft cross-range

and 15 ft down-range. It is noted that the dihedral is hardly

visible in HV polarization as it has a weak cross-polarization

signature. Finally, Fig. 2(g)–(i) shows the resulting B-Scans

when using frequency windows as in (7). Here, we used a

Hanning window for simplicity. It can be seen that frequency

windowing sufficiently reduces the wall sidelobes and reveals

the targets. However, as expected, the performance is noticeably

worse compared to background subtraction. It is also noted that

this technique loses its effectiveness for targets close to the wall.

B. Detection Results

In the following, the proposed detection schemes from

Section II are evaluated for use in TWRI. We consider the setup

shown in Fig. 3, which consists of a metal dihedral, trihedral,

and sphere mounted on high foam columns. The targets are

placed at approximately −2 ft cross-range and 14 ft down-

range (dihedral), 0 ft cross-range and 9 ft down-range (sphere),

and 4 ft cross-range and 12 ft down-range (trihedral). The

scene is hidden behind a concrete wall with a thickness of

5.625 in and a dielectric constant of 7.66. A 57 × 57 element

array is synthesized using a dual-polarization horn antenna

with an interelement spacing of 0.875 in that is placed at a

distance of 3 ft behind the wall. The scene is illuminated using

a stepped-frequency signal with 801 frequencies uniformly

spaced between 0.7 and 3.1 GHz. We consider VV, HH, and

HV polarizations. Wideband sum-and-delay beamforming as in

[5] is applied for image formation. We consider background

subtraction as well as frequency weighting for wall removal.

For computational reasons, we consider the pixelwise log-

likelihood ratio test Λ(i, j, h) which, with R = 3, can be

written as

Λ(i, j, h)=

3
∑

r=1

[

ln

(

λr√
2πκrσr

)

−(κr−1) ln

(

yr(i, j, h)

λr

)

+

(

yr(i, j, h)

λr

)

κr

−

(

(yr(i, j, h)−µr)
2

2σ2
r

)]

. (8)
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Fig. 2. Typical B-Scans using different wall removal techniques. (a) No wall removal, VV. (b) No wall removal, HH. (c) No wall removal, HV. (d) Background
subtraction, VV. (e) Background subtraction, HH. (f) Background subtraction, HV. (g) Frequency weighting, VV. (h) Frequency weighting, HH. (i) Frequency
weighting, HV.

Fig. 3. Experimental setup: Calibration objects.

The parameters κr, λr, σr, and µr, where r = 1, 2, and 3, are

estimated iteratively from the data as detailed in Section II using

optimal morphological filtering [7], [8] to separate target and

noise sets.

The detection results when using background subtraction for

the single as well as full polarization are shown in Fig. 4.

Here, the iterative NP test with a false-alarm rate of 5% is

considered. It can be seen that the three targets of interest

are visible in HH and VV polarizations [Fig. 4(a) and (b)]

but are embedded in clutter. When using HV polarization in

Fig. 4(c), the metal sphere (dashed ellipse) can no longer

be detected, and there is increased clutter which complicates

target detection. When performing fusion and detection of all

three polarizations jointly, as per (8), improved detection is

achieved, as evident in Fig. 4(d); clearly, all three targets are

visible.

The detection results when using the iterative Bayes test

introduced in Section II-B are shown in Fig. 5. Here, a ratio

PH1
/PH0

= 0.01 is fixed. This corresponds to a target pixel

occupancy of 1%. The ratio PH1
/PH0

directly relates to the

knowledge of the sparsity of the 3-D scene. A ratio of 0.01

thus implicitly assumes that only 1% of all voxels are occupied

by targets. This holds approximately true for the calibration

scene considered here. The corresponding detection results
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Fig. 4. Detection results of the iterative NP test of (solid) metal dihedral, (dotted) trihedral, and (dashed) sphere using single and full polarizations. Background
subtraction is used for wall removal. (a) 3-D detection HH. (b) 3-D detection VV. (c) 3-D detection HV. (d) 3-D detection full polarization.

Fig. 5. Detection results of the iterative Bayes test of (solid) metal dihedral, (dotted) trihedral, and (dashed) sphere using single and full polarizations. Background
subtraction is used for wall removal. (a) 3-D detection HH. (b) 3-D detection VV. (c) 3-D detection HV. (d) 3-D detection full polarization.
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Fig. 6. Detection results of the iterative Bayes test of assuming target voxel occupancies of 0.1% and 10%. (a) PH1
/PH0

= 0.001. (b) PH1
/PH0

= 0.1.

Fig. 7. Detection results of the iterative NP test of (solid) metal dihedral, (dotted) trihedral, and (dashed) sphere using single and full polarizations. Frequency
weighting is used for wall removal. (a) 3-D detection HH. (b) 3-D detection VV. (c) 3-D detection HV. (d) 3-D detection full polarization.

when setting PH1
/PH0

to 0.001 or 0.1 are shown in Fig. 6. This

corresponds to the implicit assumption of a target voxel occu-

pancy of 0.1% or 10% which does not hold true for the scene

considered. Given the detection result in Fig. 5(d), a similar

result to the iterative NP test can be observed. The single-

polarization images are affected by clutter, whereas the joint

fusion and detection result enables detection of the dihedral and

sphere. However, it is noted that, for this setting, the trihedral is

not detected anymore. The reason for this stems from the fact

that the trihedral has a rather small volumetric representation

as it is “visible” only for few radar B-Scans. Furthermore, the

cross-polarization signature, as shown in Fig. 5(c), is rather

small, and as such, the morphological operations tend to sup-

press this object. By increasing the ratio PH1
/PH0

, the trihedral

can be detected at the cost of an increase in clutter objects as

shown in Fig. 6(b).

The detection results for the iterative NP test using a Hanning

window for frequency weighting are shown in Fig. 7(a)–(c)

for HH, VV, and HV polarizations. As already shown in the

B-Scans in Fig. 2(g)–(i), the detectability of targets is decreased

for the single polarized data. However, performing the proposed

detection scheme, the three polarizations can be combined as



DEBES et al.: ENHANCED DETECTION USING TARGET POLARIZATION SIGNATURES IN TWRI 1975

Fig. 8. Detection results of the iterative Bayes test of (solid) metal dihedral, (dotted) trihedral, and (dashed) sphere using single and full polarizations. Frequency
weighting is used for wall removal. (a) 3-D detection HH. (b) 3-D detection VV. (c) 3-D detection HV. (d) 3-D detection full polarization.

shown in Fig. 7(d). It is clear that the dihedral and sphere are

detected, whereas the trihedral goes unnoticed.

Similar results can be obtained by applying the iterative

Bayes test as shown in Fig. 8. The targets in the single-

polarization images are practically undetectable, whereas joint

fusion and detection as per (5) enables detection of the sphere

and dihedral.

IV. EXPERIMENTAL RESULTS: HUMAN

In addition to imaging of calibration metal targets, we

consider the problem of detecting human behind walls. The

problem of detecting a human behind walls or other visually

opaque materials is of high importance in many TWRI applica-

tions, including hostage crisis, search and rescue missions, and

military operations. When considering a human in motion, tech-

niques such as Doppler analysis [17] and change detection [13],

[25]–[27] can be used. The problem becomes more difficult

when considering detection of stationary humans which may

occur in resting, injury, or destressing situations.

The experimental setup is shown in Fig. 9, where the first

author of this paper, C. Debes, is standing at approximately

12 ft down-range behind a concrete wall of thickness 5.625 in

and dielectric constant 7.66. Imaging using a 2-D array, syn-

thesized by a single antenna in motion as in Section III, is

rather time consuming and requires the person to stand still

for a relatively long time. Therefore, we employed a 1-D array

Fig. 9. Experimental setup: Human.

for this experiment. The array consists of 57 elements placed

approximately 4 ft above the floor. The scene is imaged using

VV, HH, and HV polarizations.

The resulting B-Scans using background subtraction as well

as frequency weighting are shown in Fig. 10. The target reflec-

tion can be seen at approximately −1 ft cross-range and 11.5 ft

down-range. Note that a human has a weak cross-polarization

signature, which can be seen from Fig. 10(c) and (f). A target

shadow can be observed approximately 1.5 ft behind the actual

target position. This shadow stems from multipath propagation
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Fig. 10. Typical B-Scans of a human using different wall removal techniques. (a) Background subtraction, VV. (b) Background subtraction, HH. (c) Background
subtraction, HV. (d) Frequency weighting, VV. (e) Frequency weighting, HH. (f) Frequency weighting, HV.

Fig. 11. Two-dimensional detection results of a human using the iterative NP
test. Background subtraction is used for wall removal. (a) Human detection
VV. (b) Human detection HH. (c) Human detection HV. (d) Human detection
full polarization.

caused by the floor and appears strongly in the radar images

as we only consider a 1-D array for imaging. Using a 2-D

array would reduce this effect as the multipath propagation

then differs with respect to the array height, whereas the target

reflection always appears at the same position.

The 2-D detection results of the single as well as full polar-

ized data can be seen in Figs. 11 and 12 for both detectors, as

Fig. 12. Two-dimensional detection results of a human using the iterative
Bayes test. Background subtraction is used for wall removal. (a) Human
detection VV. (b) Human detection HH. (c) Human detection HV. (d) Human
detection full polarization.

discussed in this paper. Here, background subtraction was used

for wall removal, and a false-alarm rate of 5% was set for the

iterative NP test, whereas a target pixel occupancy of 1% is

fixed for the iterative Bayes test. We note that the target pixel

occupancy, in practice, needs to be based on secondary infor-

mation, i.e., the dimensions of the room, the average number
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Fig. 13. Two-dimensional detection results of a human using the iterative NP
test. Frequency weighting is used for wall removal. (a) Human detection VV.
(b) Human detection HH. (c) Human detection HV. (d) Human detection full
polarization.

of pixels, a human occupying for the specific imaging system,

and the typical amount of targets in a room. This secondary

information is highly application dependent.

It is clear that the individual detection results of VV, HH,

and HV show clutter objects which render detection difficult.

When joining all polarizations by the detectors introduced in

Section II, an enhanced detection result as shown in Figs. 11(d)

and 12(d) can be obtained. Here, clutter is completely removed,

and we can clearly detect the human at approximately −1 ft

cross-range and approximately 11.5 ft down-range. A simi-

lar performance for both introduced detectors is visible. The

shadow target appearing due to multipath shows up approxi-

mately 1.5 ft behind the actual target. It is important to note

that the shadow target is not considered as clutter or unwanted

detection. It is a reflection which indirectly occurs due to the

target presence at a position that can be estimated based on

the target position. It is therefore a valuable information in

performing target detection or follow-on tasks such as target

classification.

The detection results when using the frequency weighting

approach are shown in Figs. 13 and 14. Again, a general dete-

rioration compared to the ideal scenario of using background

subtraction can be observed. However, one can see that the

usage of full polarization with the iterative detectors from

Section II improves detection as shown in Figs. 13(d) and 14(d).

The target and shadow reflections are separated, and few clutter

objects appear due to the usage of a nonideal wall removal

technique. We further observe a different performance for the

iterative Bayes’ test. Joint fusion and detection strongly sup-

presses the clutter but also reduces the probability of detection.

It is noted that the proposed detector has successfully been

applied to a large number of TWRI scenarios with different

objects and varying aspect angles. Due to space limitations,

Fig. 14. Two-dimensional detection results of a human using the iterative
Bayes test. Frequency weighting is used for wall removal. (a) Human detection
VV. (b) Human detection HH. (c) Human detection HV. (d) Human detection
full polarization.

we restrict ourselves to the calibration setup in Fig. 3 and the

human imaging setup in Fig. 9.

V. CONCLUSION

We have considered the problem of automatic target de-

tection for targets behind walls using polarimetric imaging.

A previously developed adaptive detection scheme has been

extended to utilize the data from co- and cross-polarization

arrays. Extensions include the ability to deal with image statis-

tics which could vary with respect to antenna polarizations. In

addition, an iterative version of Bayes’ test is developed which

allows adaptation to unknown and changing image statistics.

When considering Bayes’ test, a detection threshold is set that

directly relates to image sparsity that is often encountered in

TWRI. Given knowledge of the target voxel occupancy to be

expected in a specific scenario, an optimal detector can be

found. Experimental results using a calibration scene setup as

well as of a human behind a wall have been conducted. The

2-D and 3-D detection results demonstrated the usefulness of

the proposed detectors for TWRI applications. In all cases, a

clear improvement in detection can be observed when jointly

fusing the target information that is embedded in the co- and

cross-polarization target returns. The proposed polarimetric de-

tection approach assumes mitigation of wall clutter through the

application of one of the effective techniques introduced in the

literature. It is shown, however, that, in some cases, frequency

weighting can reduce front wall sidelobes, unmasking targets

and thus allowing detection to be performed.
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