
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Enhanced Differential Crossover and
Quantum Particle Swarm Optimization
for IoT Applications

Sheetal N. Ghorpade1, Marco Zennaro2, Sr. Member, IEEE, Bharat S. Chaudhari3, Sr. Member, IEEE,
Rashid A. Saeed4, Sr. Member, Hesham Alhumyani4, and S. Abdel-Khaled4

1RMD Sinhgad School of Engineering, Savitribai Phule Pune University, Pune 411058, India
2Science, Technology and Innovation Unit, Abdus Salam International Centre for Theoretical Physics 34151 Trieste, Italy
3School of Electronics and Communication Engineering, MIT World Peace University, Pune 411037, India
4Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif, 21944, Saudi Arabia

Corresponding author: Sheetal N. Ghorpade (e-mail: sn_ghorpade@yahoo.com).

This research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/216), Taif University, Taif, Saudi Arabia

ABSTRACT An optimized design with real-time and multiple realistic constraints in complex engineering

systems is a crucial challenge for designers. In the non-uniform Internet of Things (IoT) node deployments,

the approximation accuracy is directly affected by the parameters like node density and coverage. We propose

a novel enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear

numerical problems. The algorithm is based on hybrid optimization using quantum PSO. Differential

evolution operator is used to circumvent group moves in small ranges and falling into the local optima and

improves global searchability. The cross operator is employed to promote information interchange among

individuals in a group, and exceptional genes can be continued moderately, accompanying the evolutionary

process's continuance and adding proactive and reactive features. The proposed algorithm's performance is

verified as well as compared with the other algorithms through 30 classic benchmark functions in IEEE

CEC2017, with a basic PSO algorithm and improved versions. The results show the smaller values of fitness

function and computational efficiency for the benchmark functions of IEEE CEC2019. The proposed

algorithm outperforms the existing optimization algorithms and different PSO versions, and has a high

precision and faster convergence speed. The average location error is substantially reduced for the smart

parking IoT application.

INDEX TERMS Convergence, crossover operator, differential evolution operation, Internet of Things, optimization, particle

swarm optimization, quantum computing.

I. INTRODUCTION
Optimization problem frequently occurs in real-time scenarios

and one need to have efficient technique to attain the optimal

solution with high convergence while dealing with a specific

problem. The traditional gradient-based optimization method

has limitations, and it fails to address complex optimization

problems [1]. Metaheuristic algorithms are extensively

utilized in solving the real life optimization problems. They

are iterative and based on social behaviors or natural

phenomena [2-3]. The fundamental idea behind natural

evolutionary and swarm intelligence algorithms is to use

mathematical models for simulating biological and physical

structures in nature. The metaheuristic algorithms are

comparatively efficient than the gradient based on the

optimization [4 - 8]. The capability of parallel execution and

disseminated features of swarm intelligence algorithms

facilitates the probability of solving complex non-linear

problems with innovative abilities such as flexibility,

robustness, and searching capacity. However, the

metaheuristic algorithm still needs to be upgraded because the

convergence rate towards an optimum solution is

comparatively slower. Hence, there is a need to alter and

enhance exploration and exploitation abilities of the

algorithms. [9 - 14]. Classical particle swarm optimization

(PSO) [15], ant colony optimization (ACO) [16], grey wolf

optimization (GWO) [17], Dragonfly Algorithm (DA) [18],

Improved Whale Optimization (IWO) [19], Bat optimization

algorithm (BOA) [20], Grass Hoffer Optimization Algorithm

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

(GHO) [21], An enhanced bacterial foraging optimization

(EBFO) [22], Gray Wolf Optimization (GWO) hybridized

with Grasshopper Optimization Algorithm (GOA) and

developed GWO-GOA optimization algorithm [23], and

others are the few examples of swarm intelligence algorithm.

These algorithms determine the optimal solution with heuristic

information and can be applied to dynamic, multiobjective,

and NP-hard problems.

With exponential growth in the deployment of the Internet

of Things (IoT) and the advancements in supporting

technologies such as cloud computing, mobile applications,

and interfaces, swarm intelligence-based optimization exhibits

considerable importance in dealing with the challenges faced

for performance optimization by these networks. Generally,

IoT deployment comprises large number of low cost and low

power sensor nodes connected to the cloud servers and

applications through the access points or gateways devices

[24]. The important characteristics and requirements for IoT

are traffic patterns and data rates, capacity and densification,

coverage, energy efficient operations, localization, lower

hardware complexity and cost effectiveness, and others. The

IoT has a several applications such as smart cities, smart

environment, utility metering, smart grid and energy, security

and emergencies, retail, automotive and logistics, industrial

automation and manufacturing, agriculture and farming, smart

home/buildings, and real estate, health, life sciences, and

wearables. Connectivity of a large number of devices in

heterogeneous networks, energy consumption, node

localization, routing of data packets, and security are the

crucial challenges in IoT.

The IoT systems are modelled as a set of simple devices,

and swarm intelligence algorithms can be used to optimize the

performance. A huge amount of data is collected from IoT

nodes. The analysis of such data is performed using different

mechanisms employing edge computing, fog computing, and

cloud computing, where swarm intelligence can be applied as

a multiobjective optimization problem. This approach greatly

helps in improving the performance of the networks and

reducing the complexity and cost. A variety of algorithms

based on swarm intelligence has been developed for wireless

sensor network (WSN) routing protocols. A global positioning

system (GPS) is commonly used for node localization

problems. However, it is not economical and feasible due to

high energy consumption. IoT node localization can be

resolved as an error optimization problem using a swarm

intelligence algorithm. Likewise, swarm-based optimization

can be used in various ways to improve the performance of

IoT networks. One of the such challenges is non-uniform

deployment of IoT nodes due to mobility and because of

application requirements. The mobile IoT nodes significantly

improve data sensing capabilities with enhanced coverage and

lower energy consumption. However, such scenarios and

topologies pose the additional challenge of maintaining the

node density and coverage to satisfy the application

requirements. The node density and coverage directly affect

the approximation accuracy. Many of the existing IoT node

localization approaches are designed on a basic disk coverage

model, which is unrealistic for implementing in actual

application environments. In these approaches, spatial

relationships of the supervised physical characteristics, sensor

node association, and network fault tolerance are ignored, and

hence it fails to attain the global optimization requirements.

Furthermore, these approaches did not discuss and address the

optimal solutions for node density and coverage in the IoT

networks. To tackle the challenges of optimizing the node

density and coverage, we propose a novel enhanced

differential crossover quantum particle swarm optimization

(EDCQPSO) algorithm. We have used hybrid optimization

using quantum PSO, differential evolution operator, and

crossover operator to have proactive and reactive operations.

The developed algorithms have smaller fitness values and

faster convergence, and it can be used for optimization in a

wide variety of IoT applications. To demonstrate the usability

of algorithm in IoT, we considered car parking IoT

application. Our algorithm gives lower localization error and

improved precision for the higher node densities as compare

to the other existing algorithms. The paper's remaining

structure is organized as: Section II presents the literature

study about PSO enhancements. Section III describes a

quantum particle swarm optimization (QPSO). Section IV

presents the development of enhanced differential crossover

quantum particle swarm optimization (EDCQPSO) algorithm.

Section V discusses results and performance evaluation.

Section VI presents the study on EDCQPSO for IoT

application, and the paper is concluded in Section VII.

II. RELATED WORK

In the recent past, several swarm intelligence approaches,

and modifications have been proposed. The relevant

approaches to the research undertaken are discussed here.

Tam et al. [25] proposed a hybrid approach using fuzzy

clustering and PSO to reduce network interruption. This

hybrid approach is executed repetitively until the construction

of optimal sensor topology. Energy consumption is reduced by

this method and improves connectivity from cluster head to

base station and other nodes to cluster head. Optimized

minimal spanning tree topology control using PSO is proposed

in [26] to overcome low coverage drawbacks in traditional

approaches. It converges to the condensed topology uniformly

with lesser energy consumption. Swarm-based modified bat

optimization algorithm [27] is utilized for calculating the

precision of node localization problems. It improves

localization and attains fast convergence. Discrete PSO and

minimal spanning tree-based topology scheme with

multiobjective constraints [28] consider the distance among

the nodes, coverage of each edge, and their residual energies.

Ghorpade et al. [29] developed a binary grey wolf

optimization topology control technique which works on

active-inactive schedules of sensor nodes and presents a

fitness function to minimize number of active nodes for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

achieving extended lifetime. This algorithm achieves

maximum coverage and connectivity. Ant colony

optimization (ACO) is combined with local search for node

deployment in WSN by considering cost reliability as a

constraint [30]. Simulations results have proven that the

proposed approach generates improved quality than the

greedy algorithm.

Although the PSO-based node localization approach [31] is

computationally effective, there is not much improvement in

the localization error. Bat algorithm-based localization [32]

replicates bats' behavior using echolocation for the prey

hunting during the darkness. In this approach, bat calculations

are concurred along with a growing of chemotactic bacterial

sponging control for improving the constraint accuracy in the

lesser time. A multiobjective GWO technique for accurate

localization of IoT nodes [33] is developed for achieving the

higher efficiency with smaller number of the anchors. The

objective functions have included the distance and topological

constraints. Kumar et al. [34] have proposed a combined

hybrid particle swarm optimization (HPSO) technique with

the biogeography based optimization (BBO), which is also a

two-step location estimation for minimizing location errors.

RSSI is used as an input parameter, and the output weight is

used for weighted centroid localization. These methods are

inclined towards lower accuracy in case of unevenness

between the identified nodes. A novel multiobjective

optimization agent using particle swarm GWO and inverse

fuzzy ranking is proposed in [35]. The developed enhanced

PSGWO model is utilized for population and multi criteria

based soft computing algorithms. This bio-inspired

optimization technique is used to calculate low energy

optimum path for IoT networks.

An IoT-based range-based localization for smart city

applications is proposed for accurate and low-cost localization

[36]. The extreme learning machine (ELM), fuzzy system, and

modified swarm intelligence is used to develop hybrid

optimized fuzzy threshold ELM (HOFTELM) algorithm for

the localization of elderly persons in smart cities. The

algorithm outperforms existing techniques with average

location error ratio (ALER) and computationally efficient.

Although Van [37] has demonstrated that PSO is not an

algorithm for global optimization; however, for the

improvement in the performance of PSO, Sun et al. [38] have

proposed quantum PSO (QPSO) by combining quantum

theory with PSO. QPSO algorithm guarantees the global

optimal solution for the infinite number of search iterations.

However, it is impractical since any algorithm permits only

finite for the best solution in real-time applications. Moreover,

QPSO falls into the local optima resulting the slower

convergence. Various approaches have been proposed for the

improvement in the convergence speed and global optima.

Liang et al. [39] has developed comprehensive learning

quantum PSO using the learning approach. The information

from other particles is utilized for updating particle velocity.

This approach allows the swarm's diversity to be well-

maintained for discouraging convergence occurring at an early

stage. Parallel diversity-controlled quantum particle swarm

optimization (PDQPSO) [40] is proposed to enhance

efficiency and get rid of early convergence. This approach

aims to use the parallel technique to increase the population's

diversity and reduce the algorithm run time. It achieves

promising performance and reduced computational time for

most of the test functions. LDS Coelho [41] incorporated a

chaotic mutation operator with Quantum PSO. Simulations are

carried out for solving optimization problems and it

demonstrates improved performance. Shanshan Tu et al. [42]

proposed updating of crossover parameter to improve the

quantum PSO performance and global search abilities. An

approach proposed in [43] combines QPSO with Cauchy

mutation operator (QPSO-CD) which adds extended

capabilities for global hunt.

Quantum based PSO with opposition based learning and

generalized opposition based learning (CSQPSO) [44]

improves the exploitation and also supports exploration.

However, parallel improvement in global exploration ability

and convergence speed is a challenging task. While avoiding

local optima, the convergence speed of an algorithm may get

reduced.

Accordingly, the QPSO algorithm is requires precise design

for the real-world optimization problem. For the swarm

intelligence algorithms, balancing the global and local search

capabilities is a crucial problem. In PSO, when we think of

exploration, the fast convergence features lead to early

convergence. If the focus is on gain, then the single

exploration approach of particle swarm has unsatisfactory

convergence accuracy. For multiobjective PSO, the regular

updates in global solutions also increase exploration and

progress.

For improving QPSO, sufficient data about each particle its

own and optimal global position should be utilized by

choosing an appropriate technique. Our research has

incorporated a differential evolution into QPSO for improving

the population diversity and avoid local optima. It uses

competition and cooperation among individuals to solve

optimization problems. Additionally, we have introduced a

crossover operator with QPSO. The cross operations will

promote the information interchange among individuals in a

group, and those exceptional genes can be continued

moderately, accompanying the continuance of the

evolutionary process. The value of crossover probability plays

a vital role in an algorithm's searchability and convergence

speed. Ultimately groups can progress in the desired route.

Enhanced differential crossover QPSO algorithm aims to

improve control of exploring and exploiting hunts by

considering adjacent relationships between the particles by a

linear increase in the connectivity of the swarm's topology and

carrying out regulating mechanisms.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

III. QUANTUM PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) [15], is based on the

concept of swarm's social behavior that results in a group of
nodes spread in a search space. It starts with initial

population of swarm, called as nodes which explores the

arbitrary position 𝑝𝑙𝑚 and velocity 𝑣𝑙𝑚 in m – dimensional

hyperspace for node l. Every node is determined by using an

objective function 𝑓(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚) where 𝑓: 𝑅𝑚 → 𝑅,

represents the number of sensors. The PSO tries for wide

coverage for a given connectivity value. Then, PSO guides

each node for the position updates in the search space by

considering the obtained global solution and best fitness

values. The position update process is continued until the
desirable globally best solution is attained or performed the

given target of iterations.

To determine the next position of a node in each iteration,

velocity is updated by using (1), and position is updated by

using (2)

 𝑉𝑙𝑚𝑡+1 = 𝑉𝑙𝑚𝑡 + 𝑎1𝑏1(𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 − 𝑃𝑙𝑚𝑡)+ 𝑎2𝑏2(𝑃𝑔𝑏𝑒𝑠𝑡𝑙𝑚𝑡 − 𝑃𝑙𝑚𝑡) (1) 𝑃𝑙𝑚𝑡+1 = 𝑃𝑙𝑚𝑡 + 𝑉𝑙𝑚𝑡+1 (2)

 𝑙. 𝑚 = 1, 2, 3, … , 𝑀 + 𝑁. 𝑙. 𝑚 represents index of the sensor 𝑃𝑙𝑚𝑡 and 𝑉𝑙𝑚𝑡 are the mth position component and velocity of

lth sensor in tth iteration. 𝑏1 and 𝑏2 are the random numbers

such that 0 ≤ 𝑏1, 𝑏2 ≤ 1. 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 and 𝑃𝑔𝑏𝑒𝑠𝑡𝑙𝑚𝑡 are the best

and global best positions of lth sensor and the swarm. 𝑎1and 𝑎2 are confidence nodes as in perception and community

behavior. In the process of estimation, the sensor will take
the weighted average position, which is determined using

 𝑊𝑙𝑚𝑡 = 𝑎1(𝑏1)𝑙𝑚𝑡 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 + 𝑎2(𝑏2)𝑙𝑚𝑡 𝑃𝑔𝑏𝑒𝑠𝑡𝑙𝑚𝑡𝑎1(𝑏1)𝑙𝑚𝑡 + 𝑎2(𝑏2)𝑙𝑚𝑡 ,
1 ≤ 𝑚 ≤ 𝑀 (3)

PSO inclines to get stuck into local optima while tackling

the composite problems. For improvement of PSO Sun et al.

[38] have proposed quantum PSO (QPSO). The quantum

particle swarm optimization algorithm assumes that the node

swarm system satisfies quantum mechanics' elementary

proposition. Node 𝑙 moves in the 𝛿 probable well centered at

the point ‘W’ in mth dimension with basic quantum actions

characteristic and its state can be described by

 𝜓(𝑃𝑙𝑚𝑡+1) = 1√𝐶𝑙𝑚𝑡 ∗ 𝑒𝑥𝑝 (−|𝑃𝑙𝑚𝑡+1 − 𝑊𝑙𝑚𝑡 |𝐶𝑙𝑚𝑡) (4)

where C is the characteristic length of probable well 𝛿 and is

associated with speed of the convergence and searchability.

The probability density function of node l is as given in

 𝑄(𝑃𝑙𝑚𝑡+1) = 1√𝐶𝑙𝑚𝑡 ∗ 𝑒𝑥𝑝 (−2|𝑃𝑙𝑚𝑡+1 − 𝑊𝑙𝑚𝑡 |𝐶𝑙𝑚𝑡) (5)

To obtain the node's position, it is collapsed into a classical

state from the quantum state. The position of the node is

determined by using

 𝑃𝑙𝑚𝑡+1 = 𝑊𝑙𝑚𝑡 ± 𝐶𝑙𝑚𝑡2 𝑙𝑛 1𝑟𝑙𝑚𝑡 (6)

where W is the node motion center and is called the attractor

of the node. r is lies between 0 to 1 with a uniform

distribution function. Parameter C is determined by using

 𝐶𝑙𝑚𝑡 = 2𝛾‖𝐿𝑚𝑡 − 𝑃𝑙𝑚𝑡 ‖ (7)

 𝐿𝑚𝑡 = ∑ 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡𝑁𝑙=1 𝑁 (8)

 𝛾 is the contraction and expansion factor, which has to be

decreased while running the algorithm. 𝐿𝑡 ={𝐿1𝑡 , 𝐿2𝑡 , … . . , 𝐿𝑚𝑡 } is mean optimal position, representing

mean optimal position of all nodes.

IV. ENHANCED DIFFERENTIAL CROSSOVER QUANTUM
PARTICLE SWARM OPTIMIZATION

In QPSO, every node holds the weighted mean position

obtained by considering earlier individual and group optimal

positions as a desirability point. Such a method has the

advantage of simple calculations, but this holding weighted

mean position has two drawbacks; in addition to own

learning experience, the position of every node is subject to

the group's historical optimal position. In addition to this, the

possible dispersal space of each node's attraction point
progressively declines during an algorithm's development

process. It leads to a swift decay of diversity reducing

capability while handling the multiobjective and composite

optimization problems. It ultimately reduces ability to jump

out of local optimization in the later stage.

Since the algorithm gets in to local optima in finishing

stage, indicating that individual and global positions of the

particles are almost adjacent to each other or maybe

coincident. Hence, for improving the QPSO algorithm's

performance, adequate information about the nodes'

individual and global optimal positions can be used by

choosing a suitable technique. To overcome this drawback, a

differential evolution operator can be incorporated into QPSO.

A differential evolutionary algorithm [45] is proposed on the

population differences. It is based on the use of competition

and cooperation among individuals for solving optimization

problems. The differential evolution operator improves the

population diversity as well as jumping out of local optima.

Position update in QPSO is performed by using

 𝑈𝑙𝑚𝑡 = 𝜒𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 + (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚𝑡 (9)

𝐴𝑉𝑏𝑒𝑠𝑡𝑚 = 1𝑁 ∑ 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 (10)𝑁
𝑙=1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

𝑃𝑙𝑚𝑡+1 = 𝑊𝑙𝑚𝑡 ± 𝛾|𝐴𝑣𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚𝑡 | 𝑙𝑛 (1𝑟𝑙𝑚𝑡) (11)

𝜒 is lies in between 0 and 1. 𝑊𝑙𝑚𝑡 is arbitrary position amid 𝑃𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. By combining (3) and (5), the position

evolution equation changes to (12) as given below,

 𝑃𝑙𝑚𝑡+1 = 𝜒(𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑚𝑡) + 𝑔𝑏𝑒𝑠𝑡𝑚𝑡± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚𝑡 | 𝑙𝑛 (1𝑟𝑙𝑚𝑡) (12)

Let 𝑎 and 𝑏 be the nodes in the existing swarm distinct from 𝑙 then the position difference between them is,

 ∅ = 𝑃𝑏 − 𝑃𝑎 (13)

Substitute ∅ to replace the difference 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑚𝑡

of (12) and randomness can be increased by adding a random

number (1 − 𝜒) to the second term 𝑔𝑏𝑒𝑠𝑡𝑚𝑡 of (12). The new

evolution equation is

 𝑃𝑙𝑚𝑡+1 = 𝜒𝜙𝑚 + (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚𝑡± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚𝑡 | 𝑙𝑛 (1𝑟𝑙𝑚𝑡) (14)

Differential evolution operator introduced in (14) helps

avoid group moves in small range, hence falls in to the local

optima, as favorable for enhancing the global searchability.

In the next phase, we have introduced a crossover operator

with QPSO. These cross operations will promote the

information interchange among individuals in a group, and

those exceptional genes can be continued moderately,

accompanying the continuance of the evolutionary process.

Ultimately groups can progress in the desired route. The

position estimate 𝑃𝑙𝑡+1 of node 𝑙 is generated by using (3), (7),

(8), and (14). Later, the estimated position 𝑃𝑙𝑡+1 and individual

optimal position 𝑃𝑏𝑒𝑠𝑡𝑙𝑡 are separated for the generation of the

test position 𝑌𝑙𝑚 = {𝑦𝑙1𝑡 , 𝑦𝑙2𝑡 , … , 𝑦𝑙𝑚𝑡 } the cross equation is,
 𝑌𝑙𝑚𝑡+1 = {𝑃𝑙𝑚𝑡+1, (𝑟𝑎𝑛𝑑)𝑚 < 𝑐, 𝑚 = 𝑚𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (15)

where (𝑟𝑎𝑛𝑑)𝑚 is random number with uniform distribution

such that (𝑟𝑎𝑛𝑑)𝑚 ∈ [0,1] and 𝑐 is the crossover probability.

Whereas 𝑚𝑟𝑎𝑛𝑑 is randomly and uniformly generated integer

on [1, 𝑀].
Lastly, updated optimal position is given by

 𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡+1 = {𝑌𝑙𝑚𝑡+1, 𝑓(𝑌𝑙𝑚𝑡+1) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡)𝑃𝑏𝑒𝑠𝑡𝑙𝑚𝑡 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (16)
𝑓(∗) is a compatible cost function. The value of the

crossover probability plays a vital role in an algorithm's

searchability and convergence speed. Smaller values of

probability enable individuals to hold further information

and preserve higher diversity of the group, helps during the

global exploration. On the contrary, the larger value of the

probability impulses individuals to acquire additional

experimental information in the group, consequently
accelerating an algorithm's convergence speed.

By considering the crucial role of crossover probability 𝑐, it

is directly encoded into each node for achieving adaptive

control. Node 𝑙 in given population is defined in

 𝑃𝑙𝑡 = {𝑝𝑙1𝑡 , 𝑝𝑙2𝑡 , … , 𝑝𝑙𝑚𝑡 , 𝑐𝑙𝑡 } (17)

Crossover probability for every node in the population is

updated by using

 𝑐𝑙𝑡+1 = {𝑟𝑎𝑛𝑑𝑚(0, 1), 𝑟𝑎𝑛𝑑𝑚(0, 1) < ∝ 𝑐𝑙𝑡 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (18)

 𝛼 is the updated probability of parameter 𝑐. For ease of

operations, we have introduced an additional binary vector 𝐵𝑙𝑡+1for every node 𝑙.

 𝐵𝑙𝑡+1 = {𝑏𝑙1𝑡+1, 𝑏𝑙2𝑡+1, … , 𝑏𝑙𝑚𝑡+1} (19)

 𝑏𝑙𝑚𝑡+1 = {1, 𝑟𝑎𝑛𝑑𝑚(0, 1) < 𝑐𝑙𝑡+1, 𝑚 = 𝑚𝑟𝑎𝑛𝑑0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20)

𝑍𝑙𝑡+1 = 1𝑀 ∑ 𝑏𝑙𝑚𝑡+1 (21)𝑀
𝑙=1

By ignoring the influence of 𝑚𝑟𝑎𝑛𝑑 , 𝑍𝑙𝑡+1 follows binomial

distribution with 𝑀 parameters and probability 𝑐𝑙𝑡+1. The

probability 𝑐𝑙𝑡+1 is calculated by using

𝑐𝑙𝑡+1 = {𝐵𝑙𝑡𝑍𝑙𝑡+1 + (1 − 𝐵𝑙𝑡)𝑐𝑙𝑡 , 𝑓(𝑍𝑙𝑡+1) < 𝑓(𝑐𝑙𝑡)𝑐𝑙𝑡 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (22)

Random number 𝐵𝑙𝑡 lies between 0.9 ≤ 𝐵𝑙𝑡 ≤ 1.

Additionally, extension coefficient 𝜆 is designed so that with

the increase in the number of iterations, it decreases linearly.

𝜆 = 𝜆𝑚𝑎𝑥 − 𝑡𝑇 ∗ (𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛) (23)

where 𝑇 represents the maximum iterations to be attained.

Enhanced DCQPSO algorithms process flow is shown in the

Fig. 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

FIGURE 1. Process flow of EDCQPSO algorithm

The steps of the algorithm are as given below:

1. Set 𝑡 = 0, initialize current position 𝑃𝑙0 of every node

in the swarm, and assemble 𝑐𝑙0 = 𝑃𝑙0. Also, set other
relevant parameters.

2. Determine the mean optimal position of the node swarm

by using (10).

3. For every node 𝑙, (1 ≤ 𝑙 ≤ 𝑁) in the group, perform

Step 4 to Step 7.

4. Use (4) to introduce differential evolution operator for

updating node position.

5. Establish the crossover operator and estimate the

position by considering an updated position in the

previous step and initiate the test position by using (15).

6. At the test position, determine the adaptive value of
every node's dimension and use (22) to update the

crossover probability.

7. Update the individual optimal position of the nodes by

using (16)

V. EXPERIMENTAL SETUP AND PERFORMANCE
ANALYSIS

We initially present the comparison of proposed algorithm,

EDCQPSO, with others through 30 classic benchmark

functions in IEEE CEC2017 [46], as shown in Table 1. The

performance of our algorithm on benchmark functions was

verified. EDCQPSO is also compared with different PSO

versions using ten benchmark functions in IEEE CEC2019,

as shown in Table 2. We used the Friedman test [47] and

Wilcoxon symbolic rank test [48] for optimal results on the

benchmarks and statistical analysis. To analyze the proposed
algorithm's performance, we have used classic benchmark

functions from IEEE CEC2017 [49] and IEEE CEC2019

[50]. IEEE CEC2017 is composed of three unimodal (C01-

C03), seven multimodal (C04-C10), ten hybrid (C11-C20),

and ten composite (C21-C30) functions. IEEE CEC2019 is

composed of 10 functions (C31-C40). The benchmark

functions of IEEE CEC2017 is as given in Table 1 and used

for comparing our algorithm with other swarm intelligence

algorithms.

Simulations are carried out in MATLAB with identical

parameter settings for comparison of the results. For

performance analysis, the Friedman test [47] is used to

thoroughly evaluate all algorithms' optimal results on the

benchmark functions. To classify the chosen algorithms' mean

performance, the average sort value (ASV) is attained through

statistical comparisons.

Additionally, we have implemented the paired Wilcoxon

symbolic rank test [48] for statistical assessment to identify

variance among two samples with 5% level of significance.

The statistical results are shown in Table 5 and Table 8. In

these tables, symbol ‘+’ specifies that with 95% inevitability
the null hypothesis is rejected (Avg. value < 0.05), the symbol

‘-’ indicates that the null hypothesis is rejected (Avg. value < 0.05) and symbol ‘=’ represents that there is no statistical

variance among the pairwise algorithms (Avg. value ≥ 0.05).

A. Comparisons of the EDCQPSO with Other Swarm
Algorithms

We have compared the performance of EDCQPSO with six

recently developed swarm intelligence algorithms. These

algorithms are; GWO [17], DA [18], IWO [19], GHO [21],

EBFO [22], and GWO-GOA [23]. All the algorithms are

simulated in the same environment on the benchmark

functions of CEC2017 by setting parameters required

parameters for each algorithm. Details of parameters chosen

for every algorithm are presented in Table 3. Max. number of

iterations to be attained are 2000 with population's size of 40

for each algorithm.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

TABLE 1: CEC2017 TEST FUNCTIONS [46]

Function Function name Optimum

CEC2017 unimodal functions (UF)

CE01
Shifted and rotated bent cigar

function
100

CEE02
Shifted and rotated sum of

different power function
200

C03
Shifted and rotated Zakharov

function
300

CEC2017 multimodal functions (MF)

CE04
Shifted and rotated Rosenbrock’s
function

400

CE05
Shifted and rotated Rastrigin’s

function
500

CE06
Shifted and rotated expanded

Scaffer’s F6 function
600

CE07
Shifted and rotated Lunacek bi-

Rastrigin function
700

CE08
Shifted and rotated noncontinuous

Rastrigin’s function
800

CE09 Shifted and rotated Levy function 900

CE10
Shifted and rotated Schwefel’s
function

1000

CEC2017 hybrid functions (HF)

CE11 Hybrid Function1 (N = 3) 1100

CE12 Hybrid Function2 (N = 3) 1200

CE13 Hybrid Function3 (N = 3) 1300

CE14 Hybrid Function4 (N = 4) 1400

CE15 Hybrid Function5 (N =4) 1500

CE16 Hybrid Function6 (N = 4) 1600

CE17 Hybrid Function6 (N = 5) 1700

CE18 Hybrid Function6 (N = 5) 1800

CE19 Hybrid Function6 (N = 5) 1900

CE20 Hybrid Function16 (N = 6) 2000

CEC2017 composition functions (COMPOSITE FUNCTION)

CE21 Composite Function 1 (N = 3) 2100

CE22 Composite Function 2 (N = 3) 2200

CE23 Composite Function 3 (N = 4) 2300

CE24 Composite Function 4 (N = 4) 2400

CE25 Composite Function 5 (N = 5) 2500

CE26 Composite Function 6 (N = 5) 2600

CE27 Composite Function 7 (N = 6) 2700

CE28 Composite Function 8 (N = 6) 2800

CE29 Composite Function 9 (N = 3) 2900

CE30 Composite Function 10 (N = 3) 3000

TABLE 3: SIMULATION PARAMETERS (1)

Algorithm Other Parameters

EDCQPSO 𝐵𝑙𝑡 ∈ [0, 1]. 𝜒 ∈ (0, 1),
DA [18]

w ∈ [0.9 0.2], s = 0.1, a = 0.1, c = 0.7, f = 1, e = 1

GWO [17] 𝑎 ∈ [2,0]
IWO [19] 𝑎1 ∈ [2, 0], 𝑎2 ∈ [−2, −1], 𝑏 = 1

GHO [21] 𝑙 = 1.5, 𝑓 = 0.5, 𝑐𝑚𝑎𝑥 = 1; 𝑐𝑚𝑖𝑛 = 0.00004
EBFO [22] ∆∈ [−1, 1]
GWO-GOA [23] N = 30, 𝐶𝑓= 2500, 𝐿𝑓= 0.94

 The comparison of mean values and standard deviation

after thirty iterations on thirty benchmark functions are listed.

Table 4 shows that EDCQPSO ranks first, followed

sequentially by GWO-GOA, GHO, GWO, IWO, EBFO, and

DA, based on overall rank for CE01-CE30 functions of

CEC2017 [46]. On three unimodal test functions (CE01-

CE03), EDCQPSO performs better than other algorithms. The

multimodal test functions (CE04–CE10) EDCQPSO are

highly comparable for CE04, CE06, and CE09. However,

GWO-GOA outperforms all the other algorithms on CE10.

It can also be observed that results obtained by GWO-GOA

are competing closely to multimodal EDCQPSO, but the trend

changes for hybrid and composite functions. On the ten hybrid

test functions (CE11–CE20), excluding CE14, EDCQPSO

attains the optimal results. For the hybrid functions CE11,

CE12, CE13, CE15, CE17, and CE19, EDCQPSO performs

outstandingly compared to other algorithms. Lastly, for the ten

composition functions (CE21–CE30), EDCQPSO

outperforms the remaining algorithms. except for CE24. It

gives the best optimal value for CE30. The performance

improvement is due to the proposed differential evolution

operator which escapes group changes in smaller range and

falling in to local optima, promoting global searchability.

Proposed algorithm shows an average improvement of

87.65%, 81.29%, 76.98%, 70.79%, 69.68% and 66.38% in

comparison with DA, EBFO, IWO, GWO, GHO and GWO-

GOA respectively. The convergence progression of all the

above comparative algorithms for sample functions from

CEC2017 is shown in Fig.2. The logarithmic scale of optimal

objective function value on standard test functions is evaluated

by considering a population size of 40 with 2000 iterations.

The proposed algorithm shows appropriate behavior until

maximum iterations on most tested functions throughout the

evolution process, whereas others methods get stuck into local

minima.

TABLE 2: CEC2019 TEST FUNCTIONS [46]

Function Function name
𝐹𝑖∗= 𝐹𝑖 (𝑦∗)

D Search Range

CE31
Storns Chebyshev polynomial

fitting problem
1 9 [−8192, 8192]

CE32
Inverse Hilbert matrix

problem
1 16

[−16834,
16834]

CE33
Lennard-Jones minimum

energy cluster
1 18 [−4, 4]

CE34 Rastrigin’s function 1 10 [−100, 100]
CE35 Griewank’s function 1 10 [−100, 100]
CE36 Weierstrass function 1 10 [−100, 100]
CE37 Modified Schwefel’s function 1 10 [−100, 100]

CE38
Expanded Schaffer’s F6

function
1 10 [−100, 100]

CE39 Happy Cat function 1 10 [−100, 100]
CE40 Ackley function 1 10 [−100, 100]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

 TABLE 4: MEAN AND STANDARD DEVIATION OF DIFFERENT ALGORITHMS FOR IEEE CEC2017

 EDCQPSO DA GWO IWO GWO-GOA GHO EBFO

CE01
Average 4.97 E03 2.52 E09 2.63 E09 1.18 E06 1.69 E05 1.25 E06 9.34 E09

Std.Dev. 4.01 E03 2.06 E09 2.02 E09 3.26 E05 5.63 E05 1.61 E06 7.94 E09

CE02
Average 2.98 E17 5.96 E37 1.26 E31 4.63 E18 6.41 E25 1.22 E27 1.84 E43

Std.Dev. 1.01 E18 1.97 E38 3.23 E31 1.45 E18 1.81 E26 6.70 E27 1.01 E44

CE03
Average 5.71 E03 1.04 E05 4.46 E04 1.87 E04 6.83 E03 6.88 E03 1.25 E05

Std.Dev. 2.97 E03 2.52 E04 9.63 E03 1.38 E04 1.66 E03 3.38 E03 5.44 E04

CE04
Average 1.21 E02 1.22 E03 6.15 E02 5.07 E02 3.76 E02 5.13 E02 1.20 E03

Std.Dev. 0.97 E01 6.47 E02 9.11 E01 2.54 E01 2.13 E01 2.36 E01 8.37 E02

CE05
Average 6.07 E02 8.74 E02 6.09 E02 7.72 E02 6.34 E02 6.45 E02 7.04 E02

Std.Dev. 2.36 E01 8.02 E01 2.42 E01 6.30 E01 2.85 E01 3.27 E01 4.60 E01

CE06
Average 5.92 E02 6.76 E02 6.10 E02 6.63 E02 6.04 E02 6.46 E02 6.40 E02

Std.Dev. 1.01 E00 1.24 E01 4.94 E00 1.25 E01 1.76 E01 1.89 E01 1.05 E01

CE07
Average 7.61 E02 1.07 E03 8.75 E02 1.12 E03 8.14 E02 8.83 E02 1.14 E03

Std.Dev. 3.31 E01 7.23 E01 3.69 E01 7.80 E01 3.60 E01 5.38 E01 2.33 E02

CE08
Average 7.98 E02 1.10 E03 8.92 E02 9.93 E02 8.69 E02 9.38 E02 1.01 E03

Std.Dev. 2.07 E01 5.14 E01 2.28 E01 3.54 E01 2.64 E01 3.76 E01 3.90 E01

CE09
Average 1.41 E03 1.32 E04 2.00 E03 7.95 E03 2.90 E03 5.53 E03 7.53 E03

Std.Dev. 5.16 E02 4.72 E03 6.29 E02 3.01 E03 8.88 E02 4.24 E03 2.63 E03

CE10
Average 5.04 E03 7.09 E03 4.19 E03 5.70 E03 4.45 E03 5.26 E03 5.54 E03

Std.Dev. 3.97 E02 7.87 E02 6.35 E02 7.76 E02 2.78 E02 8.68 E02 6.87 E02

CE11
Average 1.02 E03 2.73 E03 2.25 E03 1.28 E03 1.46 E03 1.39 E03 5.06 E03

Std.Dev. 4.31 E01 9.50 E02 1.09 E03 6.76 E01 8.52 E01 9.03 E01 4.25 E03

CE12
Average 5.71 E05 5.70 E08 6.01 E07 6.08 E06 1.94 E06 1.99 E07 5.43 E08

Std.Dev. 2.14 E05 5.21 E08 7.49 E07 3.76 E06 5.10 E06 2.25 E07 9.58 E08

CE13
Average 2.18 E04 7.80 E07 2.20 E07 1.88 E05 4.45 E04 1.65 E05 1.29 E07

Std.Dev. 1.32 E04 1.97 E08 8.58 E07 1.12 E05 4.30 E04 1.35 E05 2.68 E07

CE14
Average 6.93 E03 1.15 E06 4.15 E05 3.83 E04 3.59 E03 3.31 E03 4.87 E05

Std.Dev. 2.79 E03 2.03 E06 4.51 E05 3.15 E04 3.47 E03 3.19 E03 1.34 E06

CE15
Average 5.94 E03 2.27 E05 2.07 E06 7.44 E04 1.31 E04 7.36 E04 6.07 E04

Std.Dev. 5.19 E03 3.24 E05 7.77 E06 3.98 E04 1.81 E04 4.72 E04 4.87 E04

CE16
Average 2.11 E03 4.00 E03 2.56 E03 3.13 E03 2.65 E03 2.88 E03 3.05 E03

Std.Dev. 2.01 E02 6.16 E02 2.95 E02 3.45 E02 2.05 E02 3.64 E02 4.39 E02

CE17
Average 1.71 E03 2.89 E03 1.99 E03 2.45 E03 2.11 E03 2.25 E03 2.50 E03

Std.Dev. 7.51 E01 3.52 E02 1.44 E02 2.86 E02 8.43 E01 2.01 E02 2.56 E02

CE18
Average 1.85 E05 6.98 E06 1.10 E06 7.07 E05 6.26 E05 7.01 E05 2.11 E06

Std.Dev. 1.37 E05 8.23 E06 1.25 E06 5.97 E05 1.27 E05 1.05 E06 3.06 E06

CE19
Average 4.17 E03 4.87 E07 9.45 E05 4.31 E05 7.96 E04 3.65 E06 1.59 E07

Std.Dev. 2.24 E03 6.38 E07 1.26 E06 2.90 E05 7.00 E04 3.12 E06 3.80 E07

CE20
Average 2.16 E03 2.83 E03 2.43 E03 2.78 E03 2.37 E03 2.60 E03 2.72 E03

Std.Dev. 1.01 E02 1.90 E02 1.37 E02 2.29 E02 1.54 E02 1.77 E02 2.24 E02

CE21
Average 2.34 E03 2.66 E03 2.39 E03 2.56 E03 2.45 E03 2.43 E03 2.50 E03

Std.Dev. 4.14 E01 7.42 E01 2.34 E01 7.41 E01 3.17 E01 3.20 E01 5.32 E01

CE22
Average 2.21 E03 7.65 E03 4.94 E03 6.16 E03 3.84 E03 5.75 E03 6.86 E03

Std.Dev. 1.11 E00 2.10 E03 1.80 E03 1.64 E03 1.88 E02 1.86 E03 8.83 E02

CE23
Average 2.41 E03 3.28 E03 2.76 E03 3.00 E03 2.65 E03 2.80 E03 2.84 E03

Std.Dev. 3.11 E01 1.75 E02 3.61 E01 7.99 E01 3.53 E01 3.99 E01 4.03 E01

CE24
Average 2.41 E03 3.45 E03 2.94 E03 3.20 E03 2.92 E03 2.16 E03 2.99 E03

Std.Dev. 3.01 E01 1.62 E02 5.35 E01 1.17 E02 3.19 E01 2.98 E01 3.20 E01

CE25
Average 2.62 E03 3.17 E03 2.98 E03 2.91 E03 2.82 E03 2.93 E03 3.31 E03

Std.Dev. 7.68 E00 1.82 E02 3.83 E01 2.02 E01 1.08 E01 2.87 E01 5.67 E02

CE26
Average 3.97 E03 8.66 E03 4.84 E03 6.62 E03 4.71 E03 5.29 E03 5.81 E03

Std.Dev. 3.19 E02 1.60 E03 3.82 E02 1.41 E03 6.61 E02 9.69 E02 4.31 E02

CE27
Average 3.11 E03 3.56 E03 3.26 E03 3.28 E03 3.14 E03 3.24 E03 3.26 E03

Std.Dev. 1.94 E-04 1.72 E02 2.09 E01 4.33 E01 9.38 E00 1.99 E01 3.22 E01

CE28
Average 3.13 E03 3.80 E03 3.42 E03 3.23 E03 3.26 E03 3.27 E03 4.20 E03

Std.Dev. 4.97 E01 2.01 E02 7.98 E01 2.62 E01 2.68 E01 2.84 E01 9.42 E02

CE29
Average 3.51 E03 5.45 E03 3.75 E03 4.33 E03 3.88 E03 4.14 E03 4.19 E03

Std.Dev. 1.08 E02 6.82 E02 1.49 E02 3.27 E02 1.31 E02 1.90 E02 3.11 E02

CE30
Average 1.14 E04 3.89 E07 7.73 E06 1.46 E06 8.61 E05 7.67 E06 1.17 E06

Std.Dev. 2.99 E03 2.96 E07 7.45 E06 8.15 E05 5.60 E05 5.76 E06 2.04 E06

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

information interchange among individuals in a group. Those

exceptional genes get continued moderately, accompanying

the continuance of the evolutionary process. The convergence

rate of GWO-GOA for unimodal is also comparable.

However, in the case of hybrid and composite function, it

converges fast for initial iterations, and for higher iterations, it

moves around local optima.

On an average for unimodal, multimodal, hybrid and

composite function EDCQPSO performs 34.94%, 34.39%,

31.01%, 23.18%, 19.37% and 16.27% faster than DA, EBFO,

IWO, GWO, GHO and GWO-GOA respectively.

Approximately after 600 iterations, EDCQPSO converges

rapidly towards the global optimum because the cross

operations used in the proposed algorithm encourage

The results shows that EDCQPSO performs better as

compared to other five algorithms for most CEC2017 test

functions.

CE01

FIGURE 2 (a). Convergence Progression for unimodal, multimodal, hybrid, and composite function for CEC2017

TABLE 5: STATISTICAL ANALYSIS OF DIFFERENT ALGORITHMS

FOR IEEE CEC2017

Algorithm
Rank of

Algorithm
ASV + : = : -

EDCQPSO 1 1.375556 26: 4: 0

DA 7 11.14333 27: 0: 3

GWO 4 4.71 28: 1: 1

IWO 5 5.976667 30: 0: 0

GWO-GOA 2 4.092317 29: 1: 0

GHO 3 4.537778 24: 3: 3

EBFO 6 7.354444 30: 0: 0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

 FIGURE 2(b). CE09

 FIGURE 2(c). CE12

 FIGURE 2(d). CE26

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

B. COMPARISONS OF THE EDCQPSO WITH OTHER
VERSIONS OF PSO

We have also compared performance of EDCQPSO with PSO

and its versions. These algorithms are; PSO [15], PDQPSO

[40], QPSO – CD [42], CLQPSO [43], and CSQPSO [44]. All

these algorithms are simulated in the same environment on the

IEEE CEC2019 benchmark functions by setting parameters

the same as that of the original paper. Details of parameters
chosen for every algorithm are presented in Table 6.

TABLE 6: SIMULATION PARAMETERS (2)

Algorithm Other Parameters

PSO [15] w = 1, 𝑐1 = 2, 𝑐2 = 2.
CLQPSO [42] 𝑤 ∈ [0.9, 0.2], 𝑚 = 5, 𝑐 = 1.496

PDQPSO [40] 𝑤 ∈ [0.9, 0.4], 𝑐1 ∈ [2.5, 0.5], 𝑐1 ∈ [0.5, 2.5]
QPSO-CD [43] α ∈ [1.0, 0.5], 𝑆 = 2, 𝑐1 = 𝑐2 = 2.
CSQPSO [44] ∆∈ [−1, 1], 𝑐1 = 1.2, 𝑐2 = 0.5.
EDCQPSO 𝐵𝑙𝑡 ∈ [0, 1]. 𝜒 ∈ (0, 1)

The maximum number of iterations to be attained are 2000

for population size of 40 for each algorithm. For all the PSO

algorithm variants, convergence rate, as shown in Fig. 3, is

analyzed in a logarithmic scale of best objective function value

on test functions. EDCQPSO reaches the optimal solution

with high precision and faster convergence speed.

All the results and statistical analysis shows that the

proposed algorithm improves the solution quality and

convergence behaviour. On an average for the test functions

in IEEE CEC 2019 EDCQPSO performs 65.05%, 53.77%,

53.72%, 48.19%, and 26.58% faster than PSO, PDQPSO,

CLQPSO, QPSO-CD and CSQPSO, respectively. The mean,

standard deviation, and rank of the algorithm after ten

iterations on ten benchmark functions of IEEE CEC2019 are

compared and are shown in Table 7.

CE31

FIGURE. 3(a). Convergence Progression for unimodal, multimodal, hybrid, and composite function for CEC2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

33
 FFIGURE 3(b). CE33

 IFIGURE 3(c). CE35

 FFIGURE 3(d). CE38

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

TABLE 7: MEAN AND STANDARD DEVIATION AND RANK OF DIFFERENT ALGORITHMS FOR IEEE CEC2019

 PSO QPSO-CD CLQPSO PDQPSO CSQPSO EDCQPSO

CE31
Average 8896219

3.61E + 07

2.52E + 08

1.49E + 08 459.1043 342.0721

Std.Dev. 9085310

1.41E + 07 1.38E + 08 1.09E + 08 1037.417 9719.327

CE32
Average 3418.755

21312.991 25725.15 9846.839 359.3299 321.2178

Std.Dev. 1247.997

5618.317 6418.767 3100.053 482.5013 459.5207

CE33
Average 9.810943 5.181039 6.687039 8.342442 3.694955 2.814955

Std.Dev. 1.817491 1.571842 1.664284 1.53575 2.341597 1.982033

CE34
Average 57.29179

39.39786 46.66576 25.81332 14.61567 10.11620

Std.Dev. 22.17147

8.832141 9.121141 8.125042 7.36528 4.360001

CE35
Average 9.03234

1.410394 1.570454 1.661167 1.806667 1.200007

Std.Dev. 8.57788

0.196681 0.213347 0.116622 0.069533 0.039211

CE36
Average 9.817933

6.231456 8.175133 3.799174 3.533781 2.421985

Std.Dev. 1.126773 1.253678 1.284578 1.236747 1.823304 1.910023

CE37
Average 1396.01

10969.84 11159.353 681.257 680.2251 667.2373

Std.Dev. 235.5401

327.8141 387.7451 243.6093 261.1453 252.1712

CE38
Average 4.967392

4.31508 4.512828 4.107098 3.926769 3.124242

Std.Dev. 0.395858

0.243752 0.282175 0.436445 0.499053 0.421053

CE39
Average 1.621969

1.314002 1.528999 1.264191 1.184663 1.114663

Std.Dev. 0.401281 0.232501 0.240001 0.102787 0.103211 0.086121

CE40
Average 21.92294

21.41423 21.47964 21.14255 23.34871 20.30004

Std.Dev. 0.097032 0.086102 0.087129 0.084619 0.092195 0.078175

TABLE 8: STATISTICAL ANALYSIS OF DIFFERENT

ALGORITHMS FOR IEEE CEC2019

Algorithm
Rank of

Algorithm
ASV + : = : -

EDCQPSO 1 1.5 6: 4: 0

PSO 6 6.3887 4: 0: 6

QPSO - CD 3 2.8791 8: 1: 1

CLQPSO 4 3.3125 9: 0: 1

PDQPSO 5 4.3333 10: 0: 0

CSQPSO 2 2.6667 9: 1: 0

The outcomes of Table 8 prove that based on overall rank on

the CE31-CE40 functions of CEC2019, EDCQPSO ranks first

and then followed sequentially by CSQPSO, QPSO-CD,

CLQPSO, PDQPSO, and PSO. Proposed algorithm shows an

average improvement of 76.52%, 65.38%, 54.72%, 47.90%,

and 43.75% in comparison with PSO, PDQPSO, CLQPSO,

QPSO-CD and CSQPSO respectively.

The proposed approach has enhanced its global searching

capability compared to the other optimal methods on all the

test functions.

VI. EDCQPSO FOR IOT APPLICATIONS

IoT has large number of applications in different areas such as

localization, target tracking, automation, environmental

monitoring, utility meters, agriculture, health and many more.

These applications in wide area are feasible because of large

numbers of sensor nodes are deployed and periodically
sensing of given parameters. Accurate localization of sensor

nodes is one of the most crucial requirements for many

applications. Localization is the process of estimating current

locations of sensor nodes without the knowledge of their initial

locations. Localization algorithm should have a capability to

accurately locate the sensor node quickly with minimal energy

consumption. To achieve the performance improvement,

recently, swarm intelligence based algorithms are being

developed for localizing the sensor nodes. Such challenge can

be treated as optimization problem in a multi-dimensional

space.

Here, using the EDCQPSO algorithm, we aim to localize
the deployed IoT nodes and reduce the computational

complexity, enhancing these resource-constrained node’s
lifetimes. To demonstrate localization, we consider IoT based

smart car/vehicle parking application. We consider M

number of anchor nodes and N number of normal sensor

nodes (M < N) deployment in a two dimensional space. The

model has an objective function 𝑓(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚) which

defines coordinates of sensor nodes based on the information

about anchor nodes location, using (16) and (22).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

FIGURE 4: Average Location Error

The constraints make the evaluated coordinates closer to real

positions and helps in generating an accurate topology. In this

case, objective function follows two steps. In first step, the

normal sensor node will determine its own position based on

the received signal strength indicator (RSSI) and time of

arrival (ToA) of incoming signal from the anchor node. In the

second step, it computes the location of the normal sensor

node. For performance analysis, the results of EDCQPSO are

compared with PDQPSO [40], CLQPSO [42], QPSO-CD [43]

and CSQPSO [44]. With random deployment of sensor nodes

in localization area, average localization error (ALE) is

calculated as a standard statistical metric and given by

𝐴𝐿𝐸 = ∑ √(𝑢𝑖_𝑝𝑟𝑒𝑑−𝑢𝑖_𝑎𝑐𝑡𝑢𝑎𝑙)2+(𝑣𝑖_𝑝𝑟𝑒𝑑−𝑣𝑖_𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁𝑖=1 𝑁 (24)

where (𝑢𝑖_𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑣𝑖_𝑎𝑐𝑡𝑢𝑎𝑙) is the real-time position of the

node, and (𝑢𝑖_𝑝𝑟𝑒𝑑 , 𝑣𝑖_𝑝𝑟𝑒𝑑) is the node's estimated position.

The simulations were carried out for 200 m x 200 m with

200 nodes with random distribution so that M anchor nodes

can be found. By assuming the Gaussian distributed RSSI

ranging error and node transmission range of 10m to 40m and

anchor nodes changing from 20 to 60. Other parameters are

same as given in Table 5. The results of anchor node versus

ALE for all four algorithms is as shown in Fig. 4. The

proposed approach reduces the ALE by a minimum of 47.5%,

31.5%, 26.37% and 25%, compared to CLQPSO, PDQPSO,

QPSO-CD and CSQPSO, respectively. It is also observed that

the position approximation precision for all the approaches is

high for the higher node densities.

VII. CONCLUSION

A novel hybrid enhanced differential crossover quantum PSO

algorithm is proposed for IoT applications where real-time

processing is required in the presence of multiple realistic

constraints. Our algorithm uses quantum PSO, differential

evolution operator, and crossover operator. Performance and

the proposed algorithm results are validated with thirty

benchmark functions of IEEE CEC2017 and on ten test

functions of IEEE CEC2019. The algorithm performance is

also compared with other existing optimization algorithms and
the PSO variants. Results of the proposed algorithm have

smaller fitness values, high precision, and faster convergence.

The algorithm is used to localize the IoT nodes in smart

parking application, and the average location error is reduced

up to 25% compared to the existing algorithms.

REFERENCES

[1] X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor

recovery with rectification and alignment,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

[2] L. Shen, H. Chen, and Z. Yu, “Evolving support vector machines
using fruit fly optimization for medical data classification,”
Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.

[3] A. G. Hussien, M. Amin, M. Wang, G. Liang, A. Alsanad, A.

Gumaei, and H. Chen, “Crow Search Algorithm: Theory, Recent
Advances, and Applications,” IEEE Access, vol. 8, pp. 173 548–173

565, 2020.

[4] M. Wang, H. Chen, and B. Yang, “Toward an optimal kernel

extreme learning machine using a chaotic moth-flame optimization

strategy with applications in medical diagnoses,” Neurocomputing,
vol. 267, pp. 69–84, 2017.

[5] H. Zhang, Z. Cai, and X. Ye, “A multi-strategy enhanced salp swarm

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

algorithm for global optimization,” Engineering with Computers,
2020.

[6] X. Liang, Z. Cai, M. Wang, X. Zhao, H. Chen, and C. Li, “Chaotic
op- positional sine-cosine method for solving global optimization

problems,” Engineering with Computers, 2020.

[7] A. F. Ba, H. Huang, and M. Wang, “Levy-based antlion inspired

optimizers with orthogonal learning scheme,” Engineering with

Computers, 2020.

[8] Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary
Harris hawks optimizer and feature selection,” Engineering with
Computers, 2020.

[9] X. S. Yang, “Firefly algorithm, stochastic test functions and design
optimisation,” International Journal of Bio-Inspired Computation,

vol. 2, no. 2, p. 78, 2010, doi: 10.1504/IJBIC.2010.032124.

[10] X. Xu and H. Chen, “Adaptive computational chemotaxis based on
field in bacterial foraging optimization,” Soft Computing, vol. 18,
no. 4, pp. 797–807, 2014.

[11] Z. Cai, J. Gu, and J. Luo, “Evolving an optimal kernel extreme
learning machine by using an enhanced grey wolf optimization

strategy,” Expert Systems with Applications, vol. 138, 2019.

[12] A. A. Heidari, R. A. Abbaspour, and H. Chen, “Efficient boosted

grey wolf optimizers for global search and kernel extreme learning

machine training,” Applied Soft Computing, vol. 81, pp. 105 521–

105 521, 2019.

[13] X. Zhao, X. Zhang, and Z. Cai, “Chaos enhanced grey wolf
optimization wrapped ELM for diagnosis of paraquat-poisoned

patients,” Computational Biology and Chemistry, vol. 78, pp. 481–
490, 2019.

[14] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime
mould algorithm: A new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323, 2020.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE
International Conference on Neural Networks - Conference

Proceedings, 1995.

[16] Z. Zhang, N. Zhang, and Z. Feng, “Multi-satellite control resource

scheduling based on ant colony optimization,” Expert Systems with
Applications, vol. 41, no. 6, pp. 2816–2823, 2014.

[17] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[18] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic

optimization technique for solving single-objective, discrete, and

multi-objective problems,” Neural Comput & Applic, vol. 27, no. 4,

pp. 1053–1073, May 2016, doi: 10.1007/s00521-015-1920-1.

[19] M. Tubishat, M. A. M. Abushariah, N. Idris, and I. Aljarah,

“Improved whale optimization algorithm for feature selection in
Arabic sentiment analysis,” Applied Intelligence, vol. 49, no. 5, pp.
1688– 1707, 2019.

[20] X. S. Yang, “A new metaheuristic bat-inspired algorithm,” Stud.
Comput. Intell, pp. 65–74, 2010.

[21] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation
Algorithm: Theory and application,” Advances in Engineering
Software, vol. 105, pp. 30–47, 2017.

[22] H. Chen, Q. Zhang, J. Luo, Y. Xu, and X. Zhang, “An enhanced
bacterial foraging optimization and its application for training kernel

extreme learning machine,” Applied Soft Computing, vol. 86, 2019.
[23] Purushothaman, R.; Rajagopalan, S.; Dhandapani, G., “Hybridizing

Gray Wolf Optimization (GWO) with Grasshopper Optimization

Algorithm (GOA) for text feature selection and clustering,” Appl.
Soft Comput. 2020, 96, 106651.

[24] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future

directions,” Future Generation Computer Systems, vol. 29, no. 7,
pp. 1645– 1660, 2013.

[25] N. T. Tam, D. T. Hai, and Son Vinh, “Improving lifetime and
network connections of 3D wireless sensor networks based on fuzzy

clustering and particle swarm optimization,” Wirel. Netw, vol. 24,
pp. 1477–1490, 2018.

[26] W. Guo, B. Zhang, G. Chen, X. Wang, and N. Xiong, “A PSO-

Optimized Minimum Spanning Tree-Based Topology Control

Scheme for Wireless Sensor Networks,” International Journal of

Distributed Sensor Networks, vol. 9, no. 4, pp. 985 410–985 410,

2013.

[27] S. Goyal and M. S. Patterh, “Modified Bat Algorithm for
Localization of Wireless Sensor Network,” Wireless Personal
Communications, vol. 86, no. 2, pp. 657–670, 2016.

[28] Y. Bingyu, G. Chen, and W. Guo, “Topology control in wireless
sensor networks based on discrete particle swarm optimization,”
Proc. of the IEEE International Conference on Intelligent

Computing and Intelligent Systems, pp. 269–273, 2019.

[29] S. N. Ghorpade, M. Zennaro, and B. S. Chaudhari, “Binary Grey
Wolf Optimization based Topology Control for Wireless Sensor

networks,” IET Journal of Wireless Sensor Systems, vol. 9, no. 6,
pp. 333–339, 2019.

[30] D. S. Deif and Y. Gadallah, “An Ant Colony Optimization Approach
for the Deployment of Reliable Wireless Sensor Networks,” IEEE
Access, vol. 5, pp. 10 744–10 756, 2017.

[31] Maria Zemzami, Norelislam, El Hami, Mhamed Itmi, Nabil Hmina

A comparative study of three new parallel models based on the PSO

algorithm Int. J. Simul. Multidisci. Des. Optim. 11, 5, 2020.

[32] P. S. Mann and S. Singh, “Energy-Efficient Hierarchical Routing

for Wireless Sensor Networks: A Swarm Intelligence Approach,”
Wireless Personal Communications, vol. 92, no. 2, pp. 785–805,

2017.

[33] S. N. Ghorpade, M. Zennaro, and B. S. Chaudhari, “GWO Model
for Optimal Localization of IoT-Enabled Sensor Nodes in Smart

Parking Systems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 2, pp. 1217–1224, 2021.

[34] V. Kumar, A. Kumar, and S. Soni, “A combined Mamdani-Sugeno

fuzzy approach for localization in wireless sensor networks,”
Proceedings of the International Conference & Workshop on

Emerging Trends in Technology, pp. 798–803, 2011.

[35] S. N. Ghorpade, M. Zennaro, and B. S. Chaudhari, “Towards Green

Computing: Intelligent Bio-Inspired Agent for IoT-enabled

Wireless Sensor Networks,” Inderscience Int. J. Sensor Networks,
vol. 35, no. 2, pp. 121– 131, 2021.

[36] S. Phoemphon, C. So-In, and D. (Tao) Niyato, “A hybrid model
using fuzzy logic and an extreme learning machine with vector

particle swarm optimization for wireless sensor network

localization,” Applied Soft Computing, vol. 65, pp. 101–120, Apr.

2018, doi: 10.1016/j.asoc.2018.01.004.

[37] F. Van den Bergh, An Analysis of Particle Swarm Optimizers [Ph.D.

thesis], University of Pretoria, November 2001.

[38] J. Sun, C. H. Lai, W. B. Xu, Y. Ding, and Z. Chai, “A modified
quantum- behaved particle swarm optimization,” in Proceedings of
the 7th International Conference on Computational Science (ICCS

’07), 2007, pp. 294– 301.

[39] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,

“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[40] H. Long, S. Wu, and H. Fu, “Parallel diversity-controlled quantum-

behaved particle swarm optimization algorithm,” in Proceedings of
the 2014 Tenth International Conference on Computational

Intelligence and Security (CIS), 2014, pp. 74–79.

[41] L. D. S. Coelho, “A quantum particle swarm optimizer with chaotic

mutation operator chaos,” Solitons Fractals, vol. 37, no. 5, pp. 1409–
1418, 2008.

[42] S. Tu, O. U. Rehman, S. Rehman, S. U. Khan, M. Waqas, and R.

Zhu, “A novel quantum particle swarm optimization algorithm for
electromagnetic application,” IEEE Access, vol. 8, no. 1, pp. 21
909–21 916, 2020.

[43] Bhatia, A.S., Saggi, M.K. & Zheng, S. QPSO-CD: quantum-

behaved particle swarm optimization algorithm with Cauchy

distribution. Quantum Inf Process 19, 345 (2020).

[44] Y. Zhang and Z. Jin, “Quantum-behaved particle swarm

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093113, IEEE Access

VOLUME XX, 2017 9

optimization with generalized space transformation search,” Soft
Comput, vol. 24, pp. 14 981–14 997, 2020.

[45] R. Storn and K. Price, “Differential evolution-a simple and efficient

heuristic for global optimization over continuous spaces,” J. Glob.
Optim, vol. 11, pp. 341–359, 1997.

[46] C. Chen, X. Wang, H. Yu, N. Zhao, M. Wang, and H. Chen, “An
Enhanced Comprehensive Learning Particle Swarm Optimizer with

the Elite-Based Dominance Scheme,” Complexity, vol. 2020, pp. 1–
24, Oct. 2020, doi: 10.1155/2020/4968063.

[47] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms,” Swarm
and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[48] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera. S. Garcia, A.

Fernandez, J. Luengo, and F. Herrera, “Advanced nonparametric
tests for multiple comparisons in the design of experiments in

computational intelligence and data mining: experimental analysis

of power,” Information Sciences, vol. 180, no. 10, pp.2044 – 2064,

2010.

[49] A. Latorre and J. M. Pena, “A comparison of three large-scale global

optimizers on the CEC 2017 single objective real parameter

numerical optimization benchmark,” IEEE Congress on
Evolutionary Computation, 2017.

[50] A. Epstein, M. Ergezer, I. Marshall, and W. Shue, “Gade with
fitness-based opposition and tidal mutation for solving IEEE

CEC2019 100-digit challenge,” in Proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC), 2019, pp. 395–402.

SHEETAL N. GHORPADE received her M.Sc.

degree in Mathematics from University of Pune,

Pune, India, and Ph.D. degree in Mathematics

from Gyanvihar University, Jaipur, India. With

more than 20 years of teaching experience, she is

currently an Associate Professor in Applied

Mathematics with RMD Sinhgad School of

Engineering, Pune, India. Her research interests

are graph theory, optimization techniques, wireless

sensor networks and Internet of Things. She has

undertaken research visits at the International

Centre for Theoretical Physics (ICTP), Italy as Simon's Visitor in 2018 and

2019.

MARCO ZENNARO received his M.Sc. degree in

electronic engineering from the University of

Trieste, Italy and Ph.D. from the KTH-Royal

Institute of Technology, Stockholm, Sweden. He is

a research scientist at the Abdus Salam International

Centre for Theoretical Physics in Trieste, Italy,

where he is unit coordinator of Science, Technology

and Innovation department. He is a visiting

professor at the KIC-Kobe Institute of Computing,

Japan. His research interest is in ICT4D, the use of

ICT for development, and in particular he investigates the use of IoT in

developing countries. He has given lectures on wireless technologies in more

than 30 countries.

BHARAT S. CHAUDHARI received his ME in

Telecom Engineering and Ph.D. from Jadavpur

University, Kolkata, India in 1993 and 2000,

respectively. After being a full professor in electronics

and telecommunication engineering with the Pune

Institute of Computer Technology and Dean at the

International Institute of Information Technology Pune,

Dr. Chaudhari joined MIT World Peace University,

(then MIT Pune) Pune, India as a Professor in 2014. Dr.

Chaudhari has authored more than 70 research papers in the field of wireless,

telecom, and optical networks. His research interests include wireless sensors

networks, low power wide area networks, Internet of Things, and optical

networks. He is a Simon's Associate of the International Centre for Theoretical

Physics (ICTP), Italy since 2015. He received a young scientist research grant

from Department of Science and Technology, Government of India. He is

founder chair of IEEE Pune Section and a senior member of IEEE, a fellow of

IETE and IE (I).

RASHID A. SAEED received his PhD in

Communications and Network Engineering,

Universiti Putra Malaysia (UPM). Currently he is a

professor in Computer Engineering Department, Taif

University. He is also working in Electronics

Department, Sudan University of Science and

Technology (SUST). He was senior researcher in

Telekom Malaysia™ Research and Development
(TMRND) and MIMOS. Rashid published more than

150 research papers, books and book chapters on

wireless communications and networking in peer-reviewed academic journals

and conferences. His areas of research interest include computer network,

cognitive computing, computer engineering, wireless broadband, WiMAX

Femtocell. He is successfully awarded 3 US patents in these areas. He

supervised more 50 MSc/PhD students. Rashid is a Senior member IEEE,

Member in IEM (I.E.M), SigmaXi, and SEC.

HESHAM ALHUMYANI is working in

Department of Computer Engineering in College of

Computers and Information Technology, Taif

University at Taif Saudi Arabia. He has appointed as

a faculty Dean in 2019. He has obtained his Ph.D.

Degree from University of Connecticut Storrs, USA.

His research interests are Wireless Sensor Networks,

Underwater Sensing, IoT (Internet of Things), and

Cloud Computing. Dr. Hesham Alhumyani has

published many research papers in distinctive journals and conferences.

S. ABDEL-KHALEK received PhD degree in

Computer Science in 2016 from Azhar University.

His research interests include different directions in

quantum information and computer sciences. He is

the author of several articles published in different

international scientific journals and is a member of

different working groups. He is a Full Professor, of

Applied Mathematics, Mathematics Department,

Faculty of Science, Sohag University, Egypt. Also,

he is an Associate Professor, of Applied Mathematics, Mathematics

Department, Faculty of Science, Taif University, Taif, Saudi Arabia.

