
Enhanced dissipation and inviscid damping in the inviscid limit of

the Navier-Stokes equations near the 2D Couette flow

Jacob Bedrossian∗ and Nader Masmoudi† and Vlad Vicol‡

March 2, 2022

Abstract

In this work we study the long time, inviscid limit of the 2D Navier-Stokes equations near the
periodic Couette flow, and in particular, we confirm at the nonlinear level the qualitative behavior
predicted by Kelvin’s 1887 linear analysis. At high Reynolds number Re, we prove that the so-
lution behaves qualitatively like 2D Euler for times t . Re1/3, and in particular exhibits inviscid
damping (e.g. the vorticity weakly approaches a shear flow). For times t & Re1/3, which is sooner
than the natural dissipative time scale O(Re), the viscosity becomes dominant and the streamwise
dependence of the vorticity is rapidly eliminated by an enhanced dissipation effect. Afterward, the
remaining shear flow decays on very long time scales t & Re back to the Couette flow. When
properly defined, the dissipative length-scale in this setting is `D ∼ Re−1/3, larger than the scale
`D ∼ Re−1/2 predicted in classical Batchelor-Kraichnan 2D turbulence theory. The class of initial
data we study is the sum of a sufficiently smooth function and a small (with respect to Re−1) L2

function.
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1 Introduction

Consider the 2D incompressible Navier-Stokes equations in the vicinity of the Couette flow:
ωt + y∂xω + U · ∇ω = ν∆ω,
U = ∇⊥∆−1ω,
ω(t = 0) = ωin.

(1.1)

Here, t ∈ R+, (x, y) ∈ T × R, ∇⊥ = (−∂y, ∂x), U = (Ux, Uy) is the velocity, and ω is the vorticity
of the perturbation to the Couette flow. The physical velocity is (y, 0) + U and the total vorticity
of the flow is −1 + ω. We denote the streamfunction of the perturbation by ψ = ∆−1ω. We have
already non-dimensionalized (1.1) by normalizing the Couette flow to (y, 0) and the side-length of
the torus to 2π, which together with the kinematic viscosity of the fluid, sets the Reynolds number
Re. We use the notation ν = Re−1. If ν = 0, equivalently Re =∞, the fluid is called inviscid and
(1.1) corresponds to the incompressible 2D Euler equations. The velocity satisfies the momentum
equation: {

Ut + y∂xU + (Uy, 0) + U · ∇U = −∇P + ν∆U,
∇ · U = 0,

(1.2)

where P denotes the pressure. As we are interested in the behavior of solutions to (1.1) for high
Reynolds number, without loss of generality we assume throughout the paper that ν ∈ (0, 1].

The study of (1.1) for small perturbations is an old problem in hydrodynamic stability, consid-
ered by both Rayleigh [47] and Kelvin [35], as well as by many modern authors with new perspectives
(see e.g. the classical texts [24, 55] and the references therein). Rayleigh and Kelvin both studied
the linearization of (1.1), which is simply

∂tω + y∂xω = ν∆ω,
∆ψ = ω,
ω(0) = ωin.

(1.3)

Rayleigh first proved spectral stability (the absence of unstable eigenmodes) and Kelvin went further
to explicitly solve (1.3). Indeed, if we denote by ω̂(t, k, η) the Fourier transform of ω(t, x, y) (note
k ∈ Z, η ∈ R), then it is straightforward to verify Kelvin’s solution

ω̂(t, k, η) = ω̂in(k, η + kt) exp

[
−ν
∫ t

0
|k|2 + |η − kτ + kt|2 dτ

]
, (1.4a)

ψ̂(t, k, η) = − ω̂in(k, η + kt)

k2 + η2
exp

[
−ν
∫ t

0
|k|2 + |η − kτ + kt|2 dτ

]
. (1.4b)

From (1.4) we see directly that if k 6= 0 (that is, the mode depends on x), the mode is strongly
damped by the viscosity by the time t & ν−1/3, whereas for k = 0 the evolution is that of the
1D heat equation with a slower t & ν−1 dissipative time-scale; hence the k 6= 0 modes experience
enhanced dissipation. For shorter times, the behavior of (1.4) essentially matches that of the inviscid
problem, studied in detail by Orr in [46]. One of Orr’s key observations was the inviscid damping
predicted by (1.4b), that is, even for ν = 0, (1.4b) shows that if the vorticity is sufficiently regular,
then the velocity field U = ∇⊥ψ will return to a shear flow at an algebraic rate. Both inviscid
damping and enhanced dissipation are manifestations of the same vorticity mixing induced by the
background shear flow, which gives rise to a linear-in-time (for each k 6= 0) transfer of enstrophy to
high frequencies (as seen in (1.4)). Together, the effects can be summarized by the following.

2



Proposition 1.1 (Linearized behavior (Kelvin [35] and Orr [46]) ). Let ω(t) be a solution to (1.3)
with initial data ωin ∈ Hσ for any σ ≥ 3 such that

∫
ωindxdy = 0 and

∫
|yωin| dydx < ∞. Then

from (1.4) we have for some c > 0 (writing also (Ux, Uy) = ∇⊥ψ)

‖P 6=0ω(t, x+ ty, y)‖Hσ . ‖ωin‖Hσ e
−cνt3 (1.5a)

‖P0ω(t, x, y)‖Hσ .
‖ωin‖Hσ + ‖ωin‖1

〈νt〉1/4
(1.5b)

‖P 6=0U
x(t)‖2 + 〈t〉 ‖Uy(t)‖2 .

‖ωin‖Hσ e−cνt
3

〈t〉
. (1.5c)

where all implicit constants are independent of ν and t and we are defining the orthogonal projections
to x-independent modes P0g = 1

2π

∫
g(x, y)dx and x-dependent modes P 6=0g = g − 1

2π

∫
g(x, y)dx.

There are several details of Proposition 1.1 that warrant attention. First, is the requirement of
three derivatives, which is necessary to deduce (1.5c). Indeed, in order to get the inviscid algebraic
decay from (1.4b), one requires localization of the Fourier transform of the initial data. Physically,
this is to control the amount of information which is being un-mixed by the Couette flow (see below
and [9] for further discussion). Secondly, notice that the regularity estimates in (1.5a) are only after
pulling back by the Couette flow characteristics, another evidence of the mixing and a common
theme in [45, 9, 10]. Note further that this implies that in general, if one does not pull back by the
shear flow we have ‖ω(t)‖Hσ ≈ 〈t〉σ for νt3 � 1. Thirdly, notice that the x-dependent contribution
to the vorticity decays rapidly in (1.5a) after νt3 � 1 whereas the x-independent contribution takes
much longer to decay. Finally, the reason that c < 1/3 in the above theorem is due to the fact that
the enhanced dissipation is anisotropic in time and frequency, as can be seen in the degeneracy of
the exponentials in (1.4). Like the loss of regularity, this is also due to a transient un-mixing effect.

In our work we study the long time, inviscid limit of ‘small’ solutions to (1.1) and seek to find
the appropriate nonlinear analogue of Proposition 1.1. The primary motivation of our work is to
study the enhanced dissipation by mixing exhibited in (1.4). A second, deeply related, motivation
for our work is to affirm the physical relevance of the inviscid (ν = 0) work completed by two of the
authors in [9], where inviscid damping is exhibited in the Euler equations.

The enhanced dissipation effect is sometimes referred to by modern authors as the ‘shear-
diffusion mechanism’ and has been explicitly or implicitly pointed out by numerous authors studying
shear flows [48, 40, 20, 8], vortex axisymmetrization [12, 28, 29, 2] and 3D strained vortex filaments
[43]. The work of [21] considers in a more general framework the connection between the spectral
properties of the background flow and the enhanced dissipation effect in the context of passive trac-
ers using the RAGE theorem (see also [11] for the elliptic case). It is pointed out in [8] that the effect
can be linked to a form of ‘hypocoercivity’ [54]. Moreover, it is related to Taylor dispersion [51],
as discussed in e.g. [48], which is not present in our work due to the periodic boundary conditions.
Certain aspects of anomalous diffusions due to underlying drift have been studied in the context of
SDEs; see for example [34, 56, 31, 19].

At high Reynolds number, the linear solution (1.4) exhibits a constant flux of enstrophy to high
frequencies, independent of the Reynolds number, for times t . Re1/3. In [9] it is shown that this
enstrophy flux persists in the Euler equations. Here, we show that this enstrophy flux is stable in the
inviscid limit, and moreover gives rise to the enhanced dissipation. It is suggested in [43, 28, 29, 6],
that the inviscid limit of this enhanced dissipation effect is important for understanding the fine scale
features of turbulent flows predicted in Kolmogorov [36] and Batchelor/Kraichnan [7, 37] theories.
However, notice that the constant enstrophy flux in (1.4) is more efficient than a generic turbulent
flow at moving enstrophy to small scales (where it is annihilated by the diffusion). Indeed, one
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can see this by considering the associated dissipative length scale `D. Since the enstrophy transfer
is linear in time, we see that in fact `D ∼ Re−1/3 which is a much larger scale than the Re−1/2

predicted by the Kraichnan statistical theory. Partly, this is due to the fact that the enstrophy
transfer considered here is highly anisotropic, and so should not necessarily be in the same scaling
regime as homogeneous, isotropic turbulence.

It is well known that studying the inviscid limit ν → 0 and setting ν = 0 in (1.1) is not the same
problem. Theorem 1 below (and [9]) implies that the 2D Euler equations qualitatively predict the
correct behavior of (1.1) for times t . Re1/3, at which point they cease to do so. This time interval
is much longer than what follows from brute force energy estimates, but still much shorter than
for completely ‘laminar’ flows, which would behave qualitatively like 2D Euler until t ∼ Re. We
emphasize that, in general, results which hold for the Euler evolution need not necessarily hold for
the Navier-Stokes equations at high Reynolds number. For instance, in the presence of boundaries
it was shown in [30] that a linearly spectrally stable Euler flow becomes unstable upon the addition
of dissipation at large Reynolds number (see also [24]). Also, the recent constructions of non-unique
energy dissipative solutions of the 3D Euler equations [22, 23, 33, 17] are not known to have an
analogue in the presence of dissipation [5], with or without boundaries.

One of the consequences of our work is that (1.1) will exhibit inviscid damping for t . Re1/3.
See [9] and the references therein for an in-depth discussion of the phenomenon. The term ‘inviscid
damping’ appeared after it was noticed to be the hydrodynamic analogue of Landau damping [39, 49,
18, 32, 45, 10] in the kinetic description of plasmas which are sufficiently collisionless (the analogue
of inviscid) to be well-described by the Vlasov equations. See e.g. [14, 50, 16, 3, 45, 4, 9] and the
references therein for some discussion about the connections between inviscid damping and Landau
damping and the more general concept of phase mixing.

Orr himself pointed out the main subtlety inherent with inviscid damping and Landau damping:
in (1.4), vorticity can just as easily unmix to large scales and create growth in the velocity field as it
can mix to small scales and create decay; together the two effects are known as the Orr mechanism.
Indeed, if one takes initial data concentrated near frequencies η, k > 0 with η large relative to k,
one can observe from (1.4) that the stream-function reaches a maximum amplitude near the critical
time t ∼ η/k. Even on the linear level, this implies that one needs to pay regularity to deduce decay
of the velocity, in order to control the amount of information that is being unmixed. See [15, 42, 9]
for more discussion of the Orr mechanism. For similar reasons, the enhanced dissipation slows down
near the critical times as the enstrophy passes through the O(1) length scales. Hence, it is a serious
over-simplification to imagine the enhanced dissipation to be equivalent to replacing the ν in front
of the ∂xx on the RHS of (1.1) with ν1/3; it is acting differently for each frequency at each time.
Our methods will deal with this effect by designing a semi-norm to measure the solution which
respects the frequency-by-frequency anisotropy and allows to gradually pay regularity for enhanced
dissipation of the vorticity; see §2.

The Orr mechanism is known to interact poorly with the nonlinear term, creating a weakly
nonlinear effect referred to as an echo. In nearly collisionless plasmas, echoes were captured ex-
perimentally in [44] and in 2D Euler much later in [57, 58] (see also [53, 52]). The echoes can
potentially chain into a cascade and greatly amplify the regularity loss already present in the linear
theory (see e.g. [45, 9]), which is the reason that the nonlinear results in [18, 32, 45, 9, 10] all require
at least Gevrey class regularity [27] (the work of [25] is the exception, as the model studied therein
does not support infinite echo cascades). For (1.1), we will not need the data to be Gevrey class
in a qualitative sense (which would be somewhat non-physical for a model involving a dissipative
effect), however, the high regularity requirement will come as a quantitative requirement that the
data be L2 close to Gevrey class (see Theorem 1 below). Specifically, Gevrey-1s with s ∈ (1/2, 1)
data with a distance in L2 that diminishes as a function of Reynolds number, eventually collapsing
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to a neighborhood in Gevrey-1s in the inviscid limit (consistent with [9]). In view of the regularity
requirement needed to obtain inviscid damping in 2D Euler, the type of initial data we consider
is natural as the L2 piece must be small enough to have negligible influence above the dissipative
length scale (although it is not clear whether or not the diameter of the L2 neighborhood in (1.6)
is optimal). The Gevrey-1s norm is given by

‖f‖2Gλ;s =
∑
k

∫ ∣∣∣f̂k(η)
∣∣∣2 e2λ|k,η|sdη

where f̂k(η) is the Fourier transform of f at frequency (k, η).

1.1 Statement of Theorem

We first state the main result, and then follow the statement by remarks, a discussion and a brief
summary of the proof.

Theorem 1. For all s ∈ (1/2, 1), λ > λ′ > 0, δ > 0 and all integers α ≥ 1 there exists ε0 =
ε0(α, s, λ, λ

′, δ) and K0 = K0(s, λ, λ
′, δ) such that if ωνin is mean-zero and satisfies ωνin = ωνS,in+ωνR,in

with

∥∥|∇|−1ωνin∥∥2 +
∥∥ωνS,in∥∥Gλ;s + eK0ν

− 3(1+δ)s
2(1−s) ∥∥ωνR,in∥∥2 = ε ≤ ε0, (1.6)

then for all ν sufficiently small (independent of ε and ε0) the solution ων(t) with initial data ωνin
satisfies the following properties (with all implicit constants independent of ν, t and ε),

(i) the uniform (in t and ν) estimate

‖ων(t, x+ ty + Φ(t, y), y)‖Gλ′;s . ε (1.7)

where Φ(t, y) is given explicitly by

Φ(t, y) =

∫ t

0
eν(t−τ)∂yy

(
1

2π

∫
T
Ux(τ, x, y)dx

)
dτ ; (1.8)

(ii) inviscid damping on inviscid time-scales: for t . ν−1/3,∥∥∥∥ ddt [ων(t, x+ ty + Φ(t, y), y)]

∥∥∥∥
Gλ′;s

.
ε2

〈t〉2
+ εν 〈t〉2 , (1.9a)

‖P 6=0U
x(t)‖2 + 〈t〉 ‖Uy(t)‖2 .

ε

〈t〉
, (1.9b)∥∥∥∥ ddtP0U

x(t)

∥∥∥∥
Gλ′;s

.
ε2

〈t〉3
+ εν; (1.9c)

(iii) enhanced dissipation for x-dependent modes on the fast viscous time-scale: for t & ν−1/3,

‖P 6=0ω
ν(t, x+ ty + Φ(t, y), y)‖Gλ′;s .

ε

〈νt3〉α
, (1.10a)

‖P 6=0U
x(t)‖2 + 〈t〉 ‖Uy(t)‖2 .

ε

〈t〉 〈νt3〉α
; . (1.10b)
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(iv) and standard viscous decay for x-independent modes on the slow viscous time-scale: for t &
ν−1,

‖P0ω
ν(t)‖2 .

ε

〈νt〉1/4
. (1.11)

Remark 1. It is useful to compare Theorem 1 with the linear behavior in Proposition 1.1. The
qualitative behavior predicted by the nonlinear theorem is essentially the same except for two details:
the algebraic rate of the enhanced dissipation and the correction to the shear flow characteristics
Φ(t, y). The correction Φ is to account for the fact that the perturbation induces a small shear,
< Ux(t) >, which varies in time and decays at a non-integrable rate on the very long O(Re) time
scale (in particular, in the ν = 0 case the flow never returns to Couette flow). Therefore, gradients
would grow without bound in (1.7) if we did not account for this. The algebraic rate of decay
arises since, due to un-mixing, we pay regularity in return for enhanced dissipation. The current
proof pays 3α derivatives; with some additional technical effort it seems we could trade Gevrey-2
regularity (or Gevrey- 1β for any β < s) and likely get a decay like exp

[
−(νt3)1/6

]
. However, getting

the decay seen on the linear level seems very difficult with the current method (we are unsure about
whether or not we can expect the same linear decay rate from the nonlinear solution).

Remark 2. Inequality (1.11) is also true with the L2 norm replaced by Gλ′;s with a very similar
proof.

Remark 3. For νt3 � 1, statement (ii) essentially reduces to the main results of [9].

Remark 4. We note that if ωνR,in were in Hσ with σ > 5/2, instead of merely L2, then one could
take δ = 0 in the hypothesis (1.6), which is consistent with the instant regularization available from
the heat equation.

Schematics of the qualitative behavior predicted by Theorem 1 are given in Figures 1 and 2. As
Theorem 1 predicts essentially the same behavior as the main Theorem in [9] before the enhanced
dissipation is activated, it is natural that the proof of Theorem 1 also contains the entire proof
of the main theorem in [9]. To avoid being redundant, we simply quote without proof estimates
that are proved in [9] and concentrate only on the steps that are specific to Navier-Stokes. The
proof of Theorem 1 is outlined in §2, however let us quickly highlight the main ideas and the main
challenges.

• The coordinate system used in [9] needs to be adapted to account for the viscous dissipation
in the background shear flow (see (2.36) below). In the Lagrangian view, we are accounting
for the stochastic wandering of particle trajectories in the y variable. In the Eulerian view, we
are accounting for the momentum transport induced by viscosity. Note that this is physically
relevant even for short times, as the viscous dissipation always dominates for high enough
frequencies. Like the choice of coordinates in [9], the choice used here is determined essentially
uniquely by the analytic properties we require.

• As can be seen from (1.4), the enhanced dissipation effect is highly anisotropic in time and
frequency: it is only active for x-dependent frequencies and slows down near the critical time
t ∼ η/k. To correctly capture the enhanced dissipation we use a special semi-norm that is
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t� 1

t ≈ Re1/3

t� Re

Couette

t� Re1/3

Shearflows

Figure 1: This is a schematic of the qualitative behavior of ων(t) in a strong topology (e.g. Hσ

for σ > 0) as time evolves. The solution rapidly regularizes due to the viscosity, together with the
assumption (1.6), and near time zero lies in a neighborhood of the Couette flow. For t � Re1/3,
inviscid dynamics dominate and there is a transient growth of strong norms as the vorticity mixes
(e.g. the Hσ norm will generally grow as 〈t〉σ). By times t� Re1/3, the dissipation dominates and
the solution rapidly converges to a shear flow (but not necessarily the Couette flow). Finally, for
times t� Re, the remaining shear flow relaxes to the Couette flow.

t� 1

t� Re

Couette

t� 1

Shearflows

Figure 2: This is a schematic of the qualitative behavior of ων(t) in the weak topology as time
evolves. The solution begins in a neighborhood of the Couette flow and rapidly approaches a shear
flow in the weak topology via inviscid damping on time scales independent of Re. There is relatively
little change until times t� Re when finally viscous dissipation relaxes the shear flow back to the
Couette flow.
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well adapted to the anisotropy (defined in (2.55b) and analyzed in §3.2). The anisotropy
also creates a huge imbalance between x-dependent modes and x-independent modes, and
an important part of the analysis in §6 is to prove that very little enstrophy from the x-
independent modes can be converted to x-dependent enstrophy at long times.

• The evolving background shear flow determines the rate at which dissipation occurs locally
in y, a fully nonlinear effect as the shear flow is determined by the solution. Controlling this
effect will be the main challenge to proving Theorem 1 and requires a careful analysis of the
interplay between the regularity and decay of the background shear flow with the regularity
and decay of the x-dependent modes (indeed, the structure of the proof is essentially dictated
by this balance; see §2).

1.2 Notation and conventions

See §A.1 for the Fourier analysis conventions we are taking. A convention we generally use is to
denote the discrete x (or z) frequencies as subscripts. By convention we always use Greek letters
such as η and ξ to denote frequencies in the y or v direction and lowercase Latin characters commonly
used as indices such as k and l to denote frequencies in the x or z direction (which are discrete).
Another convention we use is to denote dyadic integers by M,N ∈ D or 2Z where

2Z =

{
..., 2−j , ...,

1

4
,
1

2
, 1, 2, ..., 2j , ...

}
,

D =

{
1

2
, 1, 2, ..., 2j , ...

}
= 2D ∪ 1

2
.

This will be useful when defining Littlewood-Paley projections and paraproduct decompositions,
see §A.1. Given a function m ∈ L∞, we define the Fourier multiplier m(∇)f by

(m̂(∇)f)k(η) = m((ik, iη))f̂k(η).

We use the notation f . g when there exists a constant C > 0 independent of the parameters
of interest such that f ≤ Cg (we analogously define f & g). Similarly, we use the notation f ≈ g
when there exists C > 0 such that C−1g ≤ f ≤ Cg. We sometimes use the notation f .α g if we
want to emphasize that the implicit constant depends on some parameter α. We will denote the l1

vector norm |k, η| = |k|+ |η|, which by convention is the norm taken in our work. Similarly, given
a scalar or vector in Rn we denote

〈v〉 =
(

1 + |v|2
)1/2

.

We use a similar notation to denote the x (or z) average of a function: < f >= 1
2π

∫
f(x, y)dx = f0.

We also frequently use the notation P 6=0f = f − f0. We denote the standard Lp norms by ‖f‖p.
We make common use of the Gevrey-1s norm with Sobolev correction defined by

‖f‖2Gλ,σ;s =
∑
k

∫ ∣∣∣f̂k(η)
∣∣∣2 e2λ|k,η|s 〈k, η〉2σ dη.

Since most of the paper we are taking s as a fixed constant, it is normally omitted. Also, if σ = 0, it
is omitted. We refer to this norm as the Gλ,σ;s norm and occasionally refer to the space of functions

Gλ,σ;s =
{
f ∈ L2 : ‖f‖Gλ,σ;s <∞

}
.
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See §A.2 for a discussion of the basic properties of this norm and some related useful inequalities.
For η ≥ 0, we define E(η) ∈ Z to be the integer part. We define for η ∈ R and 1 ≤ |k| ≤ E(

√
|η|)

with ηk ≥ 0, tk,η =
∣∣η
k

∣∣− |η|
2|k|(|k|+1) = |η|

|k|+1 + |η|
2|k|(|k|+1) and t0,η = 2 |η| and the critical intervals

Ik,η =

{
[t|k|,η, t|k|−1,η] if ηk ≥ 0 and 1 ≤ |k| ≤ E(

√
|η|),

∅ otherwise.

For minor technical reasons, we define a slightly restricted subset as the resonant intervals

Ik,η =

{
Ik,η 2

√
|η| ≤ tk,η,

∅ otherwise.

Note this is the same as putting a slightly more stringent requirement on k: k ≤ 1
2

√
|η|.

2 Proof of Theorem 1

2.1 Instant regularization and O(1) times

A physical aspect of our work is to verify that the instant regularization due to the viscosity replaces
the qualitative regularity requirements in [9] with the more physically natural quantitative regularity
requirement (1.6). Indeed, we have the following result:

Proposition 2.1 (Instant regularization). For all ε > 0, λ > λ′ > 0, δ > 0, and s ∈ (1/2, 1),
there exists an ε′ = ε′(s, λ, λ′, δ), a K0 = K0(s, λ, λ

′, δ), and a ν0 = ν0(s, λ, λ
′, δ) such that if ωνin is

mean-zero and can be written as the sum of a smooth part and a rough part ωνin = ωνS,in+ωνR,in with

∥∥|∇|−1ωνin∥∥2 +
∥∥ωνS,in∥∥Gλ;s + eK0ν

− (3+δ)s
2(1−s) ∥∥ωνR,in∥∥2 ≤ ε′, (2.1)

then for all ν ≤ ν0 the solution ων to 2D NSE near Couette flow (1.1), with initial datum ωνin
satisfies ∥∥uν(Tλ,λ′)

∥∥
2

+
∥∥ων(Tλ,λ′)

∥∥
G

3λ
4 +λ

′
4 ;s
≤ ε (2.2)

where

Tλ,λ′ = min

{
λ− λ′

C0
, 1

}
, (2.3)

for some sufficiently large universal constant C0 > 0.

Proof. The proof consists in fours steps:

(a) We propagate the low-frequency control of the solution, which is encoded in the L2 energy
estimate on uν .

(b) We solve the Navier-Stokes equations perturbed about the Couette flow (1.1) with initial

datum ωνS,in and establish that the solution ωνS(t) lies in G
4λ+λ′

5
;s∩G

√
νt;1 for all t ≤ T2 . ν1+δ,

with a norm less than 2ε′.

(c) We solve the perturbation of (1.1) around the solution ωνS , with initial datum ωνR,in and show

that the corresponding solution lies in G
√
νt;1 for all t ≤ T2, with a suitable control on the

norm. In view of the smallness of the initial datum ωνR,in in L2 it follows that the G
4λ+λ′

5
;s

norm of ωνR is also less than 2ε′.
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(d) We propagate the Gevrey-class regularity of the solution to (1.1) with initial datum ωνS(T2) +

ωνR(T2) ∈ G
4λ+λ′

5
;s of size ≤ 4ε′ and show that the corresponding solution ων at time Tλ,λ′

obeys the bound (2.2).

For the remainder of the proof, for ease of notation we drop the ν upper index for ω and u.
Without loss of generality we may assume the “rough” part of the initial datum ωR,in is supported
on frequencies away from the set {k = 0, |η| ≤ 1}. Further, we define uS(t) = ∇⊥∆−1ωS(t) and
uR(t) = ∇⊥∆−1ωR(t), the velocities associated with the smooth and rough solutions (both in L2

initially due to the assumptions on the initial data and the frequency support of ωR,in).

Proof of (a). The standard L2 energy estimate for uS obtained from (1.2) yields

1

2

d

dt
‖uS‖22 + ν ‖ωS‖22 ≤

∣∣∣∣∫ uxSu
y
S

∣∣∣∣ ≤ ‖P 6=0uS‖22

and therefore

‖uS(t)‖2 ≤ 3 ‖uS,in‖2 ≤ 3(
∥∥|∇|−1ωin∥∥2 + ‖ωS,in‖2) ≤ 6ε′ (2.4)

for all t ≤ 1. Note that the same bound for the full solution u holds on [0, 1].

Proof of (b). Consider the analytic Fourier multiplier

MA(t, k, η) = 〈k, η〉σ e
√
ν t |k,η| (2.5)

for some σ > 5/2. As in [26], the solution ωS of (1.1) with initial datum ωS,in obeys the a priori
estimate

1

2

d

dt
‖MAωS‖22 + ν ‖|∇|MAωS‖22

=
√
ν
∥∥∥|∇|1/2MAωS

∥∥∥2
2

+
∑
k

∫
η
MA(k, η)2∂ηω̂S(k, η) k ω̂S(k, η)dη

+
∑
k,l

∫
η

∫
ξ
MA(k, η)ω̂S(k, η)MA(l, ξ)ω̂S(l, ξ)MA(k − l, η − ξ)ω̂S(k − l, η − ξ)

× (l, ξ)⊥ · (k, η)

|l, ξ|2
MA(k, η)

MA(l, ξ)MA(k − l, η − ξ)
dξdη

=
√
ν
∥∥∥|∇|1/2MAωS

∥∥∥2
2

+ TA +NA (2.6)

where TA is the shear transport term and NA is the nonlinear term. Upon integrating by parts in
η and bounding |∂ηMA(k, η)| we immediately obtain

|TA| .
√
ν t
∥∥∥|∇|1/2MAω

ν
S

∥∥∥2
2
. (2.7)

In order to bound the nonlinear term NA we use the triangle inequality

|MA(k, η)| ≤ |MA(l, ξ)||MA(k − l, η − ξ)|,
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followed by (A.5), which implies

|NA| ≤
∑
k,l

∫
η

∫
ξ
|k, η|MA(k, η)|ω̂S(k, η)|MA(k − l, η − ξ)|ω̂S(k − l, η − ξ)|

× |l, ξ|
δ

(2+δ) MA(l, ξ)|ω̂S(l, ξ)|
1|(l,ξ)|≥1

|l, ξ|1+
δ

(2+δ)

dξdη

+

∣∣∣∣∣∑
k

∫
η

∫
ξ
kMA(k, η)ω̂S(k, η)MA(k, η − ξ)ω̂S(k, η − ξ)MA(0, ξ)ûS(0, ξ)1|ξ|≤1dξdη

∣∣∣∣∣
.δ ‖|∇|MAωS‖2 ‖MAωS‖2

∥∥∥|∇| δ2+δMAωS

∥∥∥
2

+ ‖|∇|MAω
ν
S‖2 ‖MAω

ν
S‖2

∥∥ûS(0, ξ)1l=0,|ξ|≤1
∥∥
2

. ‖|∇|MAωS‖
2+2δ
2+δ

2 ‖MAωS‖
4+δ
2+δ

2 + ‖|∇|MAωS‖2 ‖MAωS‖2 ‖uS‖2 , (2.8)

for any δ > 0. In the last inequality we have used the Gagliardo-Nirenberg interpolation for the
first term. In view of the bound (2.4), estimate (2.8) yields

|NA| ≤
C

ν
‖MAωS‖22

(
1

νδ
‖MAωS‖2+δ2 + ‖uS‖22

)
+
ν

2
‖|∇|MAωS‖22

≤ C

ν1+δ
‖MAωS‖22 (1 + ‖MAωS‖2)

2+δ +
ν

2
‖|∇|MAωS‖22 (2.9)

for some positive constant C ≥ 1, that is independent of ν, ε′ ≤ 1, but depends on the choice of
δ > 0. Combining (2.6), (2.7), and (2.9) we arrive at

d

dt
‖MAωS‖22 + ν ‖|∇|MAωS‖22 ≤ 2

√
ν(1 + t)

∥∥∥|∇|1/2MAωS

∥∥∥2
2

+
C

ν1+δ
‖MAωS‖22 (1 + ‖MAωS‖2)

2+δ

≤ 2
√
ν(1 + t) ‖|∇|MAωS‖2 ‖MAωS‖2 +

C

ν1+δ
‖MAωS‖22 (1 + ‖MAωS‖2)

2+δ

≤ ν

2
‖|∇|MAωS‖22 + 4(1 + t)2 ‖MAωS‖22 +

C

ν1+δ
‖MAωS‖22 (1 + ‖MAωS‖2)

2+δ,

for any δ > 0 and some constant C ≥ 1. Therefore, for t ≤ 1

d

dt
‖MAωS‖22 ≤

C1

ν1+δ
‖MAωS‖22 (1 + ‖MAωS‖22)

1+δ/2 (2.10)

for some constant C1 ≥ 1. Letting

T1 = min

{
ν1+δ

2C1
, Tλ,λ′

}
=
ν1+δ

2C1
(without loss of generality, as ν ≤ ν0), (2.11)

we obtain from (2.10) and the assumption (2.1) on the Hσ norm of ωS,in that for ε′ ≤ 1

‖MA(t)ωS(t)‖2 ≤ 2ε′ for all t ≤ T1. (2.12)

The Gevrey class estimates differ slightly from the real analytic bounds as we need to employ
an additional commutator estimate. Consider the Gevrey-1s Fourier-multiplier

MG(t, k, η) = 〈k, η〉σ eλ(t)|k,η|s (2.13)
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where the decreasing function λ(t) shall be chosen precisely later, and σ > 5/2 is a fixed Sobolev
correction. Similarly to (2.6) we have

1

2

d

dt
‖MGωS‖22 + ν ‖|∇|MGωS‖22 = λ̇(t)

∥∥∥|∇|s/2MGωS

∥∥∥2
2

+ TG +NG (2.14)

where TG and NG are defined precisely as TA and NA upon replacing all MA’s by MG’s. It is not
hard to see that

|TG| . ‖MGωS‖22 + λ(t)
∥∥∥|∇|s/2MGωS

∥∥∥2
2
. (2.15)

Bounding the nonlinear term NG requires a commutator estimate which arises since uS is divergence
free, in the spirit of [41, 38]. More precisely, we have,

NG =
∑
k,l

∫
η

∫
ξ
MG(k, η)ω̂S(k, η)ω̂S(l, ξ)ω̂S(k − l, η − ξ)

× (l, ξ)⊥ · (k, η)

|l, ξ|2
(MG(k, η)−MG(k − l, η − ξ)) dξdη.

By the mean-value theorem applied to MG, we obtain that

|NG| ≤ λ(t)
∑
k,l

∫
η

∫
ξ
MG(k, η) |ω̂S(k, η)|MG(k − l, η − ξ) |ω̂S(k − l, η − ξ)| |ω̂S(l, ξ)|

×
∣∣∣∣(l, ξ)⊥ · (k, η)

|l, ξ|2

∣∣∣∣ |l, ξ| eλ(t)|l,ξ|s

|k, η|1−s + |k − l, η − ξ|1−s
dξdη

+
∑
k,l

∫
η

∫
ξ
MG(k, η) |ω̂S(k, η)|MG(k − l, η − ξ) |ω̂S(k − l, η − ξ)|MG(l, ξ) |ω̂S(l, ξ)|

×
∣∣∣∣(l, ξ)⊥ · (k − l, η − ξ)|l, ξ|2

∣∣∣∣ (〈k − l, η − ξ〉σ−1 + 〈k, η〉σ−1
) Cσ|l, ξ|
〈k − l, η − ξ〉σ 〈l, ξ〉σ

dξdη

≤ λ(t)
∑
k,l

∫
η

∫
ξ
MG(k, η) |ω̂S(k, η)|MG(k − l, η − ξ) |ω̂S(k − l, η − ξ)|MG(l, ξ) |ω̂S(l, ξ)|

× |k, η|
s/2|k − l, η − ξ|s/2

〈l, ξ〉σ
dξdη

+ C
∑
k,l

∫
η

∫
ξ
MG(k, η) |ω̂S(k, η)|MG(k − l, η − ξ) |ω̂S(k − l, η − ξ)|MG(l, ξ) |ω̂S(l, ξ)|

×
(

1

〈l, ξ〉σ
+

1

〈l, ξ〉 〈k − l, η − ξ〉σ−1

)
dξdη

≤ Cλ(t) ‖MGωS‖2
∥∥∥|∇|s/2MGωS

∥∥∥2
2

+ C ‖MGωS‖32 (2.16)

for some constant C ≥ 1 that may depend only on σ. Combining (2.14)–(2.16) we arrive at

1

2

d

dt
‖MGωS‖22 ≤

(
λ̇(t) + C2λ(t)(1 + ‖MGωS‖2)

)∥∥∥|∇|s/2MGωS

∥∥∥2
2

+ C2 ‖MGωS‖22 (1 + ‖MGωS‖2)
(2.17)

for some constant C2 ≥ 1. The initial datum by the assumption (2.1) obeys

‖MG(0)ωS,in‖2 ≤ ε
′

12



whenever λ(0) ≤ λ. Letting

λ(t) =
9λ+ λ′

10
e−3C2t

we obtain that (recall T1 is defined in (2.11)), for ε′ sufficiently small, depending on σ, λ, λ′, for all

t ≤ T2 = min

{
T1,

1

3C2

(
1 + log

9λ+ λ′

8λ+ 2λ′

)}
=
ν1+δ

2C1
(without loss of generality, as ν ≤ ν0),

(2.18)

the following holds:

‖MG(t)ωS(t)‖2 ≤ 2ε′ and λ(t) ≥ 4λ+ λ′

5
. (2.19)

We have now completed the proof of step (b), and shown that ωS(t) ∈ G
√
νt;1 ∩G

4λ+λ′
5

;s, with norm
less than 2ε′, but only for times t ≤ T2 . ν1+δ.

Proof of (c). We now wish to show that the “rough” perturbation ωR = ω − ωS , which in view of
(1.1), obeys 

∂tωR + y∂xωR + uR · ∇ωR + uS · ∇ωR + uR · ∇ωS = ν∆ωR,
uS = ∇⊥(∆)−1ωS , uR = ∇⊥(∆)−1ωR
ωR(0) = ωR,in,

(2.20)

is sufficiently small in G
√
νt;1 at time t = T2. The proof is very much similar to the first part of

step (b), and we thus omit the redundant details. Before estimating the analytic norm of ωR we
estimate the L2 norm of uR, which solves (1.2) perturbed about uS . From the energy estimate we
have

1

2

d

dt
‖uR‖22 + ν ‖ωR‖22 = −

∫
uyRu

x
R −

∫
uR · ∇uSuR

≤ ‖uR‖22 (1 + ‖∇uS‖L∞) ≤ 3 ‖uR‖22 (2.21)

for all t ≤ T2, by the Sobolev embedding, which holds because σ > 5/2, and we have used the bound
(2.19). In particular, in view of the assumption (2.1) on the initial datum uR,in which is supported
away from frequencies less than 1, we obtain that

‖uR(t)‖2 ≤ 21 ‖uR,in‖2 ≤ 21 ‖ωR,in‖2 ≤ 21e−K0ν
− (3+2δ)s

2(1−s)
ε′, (2.22)

for all t ≤ T2.
Since ωR,in ∈ L2, and not necessarily inHσ, we need to consider a new analytic Fourier-multiplier

MR(t, k, η) = e
√
ν t |k,η|. (2.23)
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Then the solution ωR of (2.20) obeys the a priori estimate

1

2

d

dt
‖MRωR‖22 + ν ‖|∇|MRωR‖22

=
√
ν
∥∥∥|∇|1/2MRωR

∥∥∥2
2

+
∑
k

∫
η
MR(k, η)2 k ω̂R(k, η)∂ηω̂R(k, η)dη

+
∑
k,l

∫
η

∫
ξ
MR(k, η)ω̂R(k, η)MR(l, ξ)ω̂R(l, ξ)MR(k − l, η − ξ)ω̂R(k − l, η − ξ)

× (l, ξ)⊥ · (k, η)

|l, ξ|2
MR(k, η)

MR(l, ξ)MR(k − l, η − ξ)
dηdξ

+
∑
k,l

∫
η

∫
ξ
MR(k, η)ω̂R(k, η)MR(l, ξ)ω̂S(l, ξ)MR(k − l, η − ξ)ω̂R(k − l, η − ξ)

× (l, ξ)⊥ · (k, η)

|l, ξ|2
MR(k, η)

MR(l, ξ)MR(k − l, η − ξ)
dξdη

+
∑
k,l

∫
η

∫
ξ
MR(k, η)ω̂R(k, η)MR(l, ξ)ω̂R(l, ξ)MR(k − l, η − ξ)ω̂S(k − l, η − ξ)

× (l, ξ)⊥ · (k, η)

|l, ξ|2
MR(k, η)

MR(l, ξ)MR(k − l, η − ξ)
dξdη

=
√
ν
∥∥∥|∇|1/2MRωS

∥∥∥2
2

+ TR +NR + LS,R + LR,S . (2.24)

As before, similarly to (2.7) we have

|TR| .
√
ν t
∥∥∥|∇|1/2MRωS

∥∥∥2
2

(2.25)

and similarly to (2.9) we have

|NR| ≤
C

ν1+δ
‖MRωR‖22 (1 + ‖MRωR‖2)

2+δ +
ν

2
‖|∇|MRωR‖22 (2.26)

for some constant C ≥ 1 which depends on δ > 0. Bounding the first linear term LS,R is done
exactly as in (2.9) by splitting according to the relative size of |(l, ξ)| and 1, and using the already
established bound (2.12). We obtain

|LS,R| . ‖|∇|MRωS‖2 ‖MRωR‖2 ‖|∇|MRωR‖2 + ‖uS‖2 ‖MRωR‖2 ‖|∇|MRωR‖2

≤ C(ε′)2

ν
‖MRωR‖22 +

ν

4
‖|∇|MRωR‖22 (2.27)

for all t ≤ T2. For the second linear term LR,S we recall that for the analytic norm of ωS we have a
Sobolev Hσ correction which allows us to deal with the derivative loss in uR · ∇ωS , and in addition
we have a good control on the low frequencies in view of (2.22). We then obtain

|LR,S | . ‖|∇|MRωR‖2 ‖MRωR‖2 ‖|∇|MRωS‖2 + ‖uR‖2 ‖MRωR‖2 ‖|∇|MRωS‖2

≤ C(ε′)2

ν
‖MRωR‖22 +

ν

4
‖|∇|MRωR‖22 , (2.28)
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for some constant C ≥ 1. Combining (2.22)–(2.28), and assuming without loss of generality that ε′

is sufficiently small (in terms of C1, C2), we arrive at

d

dt
‖MRωR‖22 ≤

3C1

2ν1+δ
‖MRωR‖22 (1 + ‖MRωR‖22)

1+δ/2 + C1ε
′ ‖ωR,in‖22 (2.29)

for all t ≤ T2, and ν ≤ 1, where C1 is the same constant as in (2.10). Since by definition (cf. (2.11))
we have T2 ≤ T1 ≤ ν1+δ/(2C1), and MR(0) = 1, we obtain from (2.29) that

‖MR(t)ωR(t)‖22 ≤ 9 ‖ωR,in‖22 .

for all t ∈ [0, T2]. It thus follows from the assumption (2.1) that

‖MR(T2)ωR(T2)‖2 ≤ 3ε′e−K0ν
− (3+2δ)s

2(1−s)
. (2.30)

We need the above estimate as it yields a Gevrey-1s bound on ωνR at time T2. Indeed, by (A.14)
and (A.13),

〈k, ξ〉σ e
4λ+λ′

5
|k,ξ|s ≤ 〈k, ξ〉σ e(

4λ+λ′
5

)
1

1−s (2
√
νT2)

− s
1−s

e
√
ν
2
T2|k,ξ|

= 〈k, ξ〉σ e−
ν
3+2δ

2
4C1

|k,ξ|
e(

4λ+λ′
5

)
1

1−s (4C1)
s

1−s ν
− (3+2δ)s

2(1−s)
e
√
νT2|k,ξ|

≤ eK0ν
− (3+2δ)s

2(1−s)
MR(T2) (2.31)

by letting K0 be sufficiently large, independently of ν ≤ 1. Here we have recalled the definition of
T2 in (2.18). Combining (2.30)–(2.31), we thus have shown that for ε′ sufficiently small, depending
only on s, σ, λ, λ′, and a sufficiently large K0, depending on the same parameters, that

‖MG(T2)ωR(T2)‖2 ≤ 3ε′, and λ(T2) =
4λ+ λ′

5
(2.32)

which concludes the proof of step (c).

Proof of (d). To conclude the proof of the proposition, we now mutatis-mutandi run the Gevrey-
class regularity propagation on the time interval [T2, Tλ,λ′ ], on the equation (1.1), with initial datum
ωS(T2) + ωR(T2). The estimate (2.17) holds on this interval, and thus, if we let

λ(t) =
4λ+ λ′

5
e−3C2(t−T2) (2.33)

we see that

‖MG(t)ω(t)‖2 ≤ ε (2.34)

for all t ≤ Tλ,λ′ . Moreover, by letting the constant C0 in the definition of Tλ,λ′ be sufficiently large,
we can ensure that

λ(t) ≥ λ(Tλ,λ′) ≥
3λ+ λ′

4
(2.35)

as claimed in (2.2). To conclude the proof of Proposition 2.1, we note that the bound
∥∥u(Tλ,λ′)

∥∥
2
≤ ε

follows from a bound similar to (2.4), which holds for an O(1) time interval.
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2.2 Coordinate transform

One of the main insights in [9] was the use of a very specific change of coordinates that allows
to simultaneously ‘mod out’ by the evolution of the time-dependent background shear flow and
treat the mixing of this background shear as a perturbation of the Couette flow (in particular, to
understand the nonlinear effect of the Orr mechanism). In this work we will adjust the change of
coordinates used in [9] to account for the viscous dissipation in the following manner:

z(t, x, y) = x− tv(t, y), (2.36a)

d

dt
(t(v(t, y)− y)) = Ux0 (t, y) + νt∂yyv(t, y), (2.36b)

supplemented with the initial condition

lim
t→0

t (v(t, y)− y) = 0.

Note that when ν = 0, (2.36) reduces to the change of coordinates used in [9] for 2D Euler. As
briefly discussed in §1.1, the coordinate transform is adapting to the momentum transport due to
the viscosity in the background shear flow. It is important to note that the shear flow driving the
mixing, and hence the enhanced dissipation, is the unknown, evolving flow (y + Ux0 (t, y), 0).

Define the following quantities

C(t, v(t, y)) = v(t, y)− y, (2.37a)

v′(t, v(t, y)) = (∂yv)(t, y), (2.37b)

v′′(t, v(t, y)) = (∂yyv)(t, y), (2.37c)

[∂tv](t, v(t, y)) = (∂tv)(t, y), (2.37d)

f(t, z(t, x, y), v(t, y)) = ω(t, x, y), (2.37e)

φ(t, z(t, x, y), v(t, y)) = ψ(t, x, y), (2.37f)

ũ(t, z(t, x, y), v(t, y)) = Ux(t, x, y). (2.37g)

Denoting ∆t as the Laplacian in the coordinates (2.36), we derive the new Biot-Savart law:

∆tφ = ∂zzφ+ (v′)2 (∂v − t∂z)2 φ+ v′′ (∂v − t∂z)φ = f. (2.38)

For future notational convenience denote the ‘linear’ Laplacian ∆L (the Laplacian associated with
the pure Couette flow that arises in the coordinates z = x− tv, v = y):

∆Lφ = ∂zzφ+ (∂v − t∂z)2 φ. (2.39)

The vorticity equation (1.1) in the new variables becomes

∂tf + [∂tv]∂vf − νv′′t∂zf + v′∇⊥z,vP 6=0φ · ∇z,vf = ν∆tf. (2.40)

Note the derivatives are with respect to z and v; we will henceforth drop the subscripts and always
assume this is the case unless otherwise indicated. Taking the x average of the first equation in
(1.2) and transforming to the coordinates defined by (2.36) (using the notations (2.37)) gives

∂tũ0 + [∂tv]∂vũ0+ < v′∇⊥P6=0φ · ∇ũ >= ν∆tũ0. (2.41)
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Next, we derive expressions for the coordinate system that are amenable to energy estimates
and derive a useful cancellation in (2.40) and (2.41). The parabolic aspect to the coordinate system
in (2.36b) is crucial for both of these. Define the auxiliary function

g(t, v) =
1

t
(ũ0(t, v)− C(t, v)) , (2.42)

which roughly measures how the background shear flow is converging in time. In 2D Euler [9], this
quantity is exactly [∂tv], however due to the presence of the dissipation in (2.36b) here we instead
have the relation

[∂tv] = g + νv′′. (2.43)

We also derive from the chain rule:

v′∂vC(t, v) = v′(t, v)− 1, (2.44a)

∂tC + [∂tv]∂vC = [∂tv], (2.44b)

v′∂vv
′ = v′′, (2.44c)

v′′ = ∆tC. (2.44d)

Computing the time derivative of g from (2.42) using (2.44b), (2.43), (2.41) and (2.44d), yields

∂tg = −g
t

+
1

t

(
−[∂tv]∂vũ0 − v′ < ∇⊥P 6=0φ · ∇ũ > +ν∆tũ0 + [∂tv]∂vC − g − νv′′

)
= −2g

t
− [∂tv]∂vg −

v′

t
< ∇⊥P6=0φ · ∇ũ > +ν∆tg. (2.45)

The form of the dissipation in (2.36b) was made precisely so that a natural dissipation arises on
the LHS of (2.45), as opposed to a dangerous forcing term such as ∆tũ0. The coordinate system
is properly adapting itself to the effect of the dissipation that ũ0 is experiencing. This will also
manifest in another way. Indeed, by (2.43) and the definition of ∆t (2.38), we reduce (2.45) to

∂tg +
2g

t
+ g∂vg = −v

′

t
< ∇⊥P 6=0φ · ∇ũ > +ν(v′)2∂vvg. (2.46)

The cancellation will turn out to be quite useful, as while [∂tv] will decay slowly for long times, g will
decay essentially like O(t−2) uniformly in ν (the same rate as [∂tv] in Euler [9]). This cancellation
in (2.46) occurs throughout several equations so define:

∆̃t = ∂zz + (v′)2 (∂v − t∂z)2 . (2.47)

From (2.40) and (2.43), we derive a similar cancellation on the vorticity evolution:

∂tf + u · ∇f = ν∆̃tf, (2.48)

where we are defining the relative velocity field

u(t, z, v) =

(
0
g

)
+ v′∇⊥P6=0φ. (2.49)

Similarly, if we denote h = v′ − 1, we derive from (2.36b) that

∂th+ g∂vh =
−f0 − h

t
+ ν∆̃th. (2.50)
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Next, we define the unknown h̄ = −f0−h
t (which quantifies the convergence of the background

vorticity) and derive from (2.48) and (2.50)

∂th̄+ g∂vh̄ = −2

t
h̄+

v′

t
< ∇⊥P 6=0φ · ∇f > +ν∆̃th̄. (2.51)

Finally, note from the Biot-Savart law and the definitions of h̄ and g we have

v′∂vg = h̄. (2.52)

The cancellations in (2.46), (2.48), (2.50) and (2.51) imply that we have effectively modded out the
slow decay of [∂tv] – or more precisely, we are moving the coordinate system in such a way so that the
slow part of [∂tv] is balancing the lower order drift term coming from the ∆t in the dissipation. The
choice of (2.36) appears to be the unique coordinate transformation that simultaneously satisfies
this property as well as the properties used to obtain inviscid damping in [9].

Note that from (2.36), the conservation laws of (1.1) and Jensen’s inequality, we have

‖< f >‖p . ‖f‖p .
∥∥(v′)−1

∥∥1/p
∞ ‖ω‖p . ε

∥∥(v′)−1
∥∥1/p
∞ , (2.53)

for all 1 ≤ p ≤ ∞. Similarly, from (2.36) it follows that∥∥v′(t)− 1
∥∥
1
.
∥∥(v′)−1

∥∥
∞ ‖vy(t)− 1‖1 .

∥∥(v′)−1
∥∥
∞

(
sup
τ≤t
‖ω0(τ)‖1

)
. ε

∥∥(v′)−1
∥∥
∞ . (2.54)

2.3 Energy Estimates

In this section we describe the bootstrap argument that propagates estimates from O(1) times to
infinite times. The energy estimates will involve two main multipliers:

A(t, k, η) = eλ(t)|k,η|
s

〈k, η〉σ Jk(t, η), (2.55a)

Aν(t, k, η) = eλ(t)|k,η|
s

〈k, η〉β 〈D(t, η)〉α 1k 6=0. (2.55b)

The properties and detailed definitions of both multipliers can be found in §3 below. The index
λ(t) is the main Gevrey−1

s regularity and is chosen to satisfy (recall definition (2.3)),

λ(t) =
3

4
λ+

1

4
λ′, t ≤ Tλ,λ′ (2.56a)

λ̇(t) = − δλ

〈t〉2q̃
(1 + λ(t)), t > Tλ,λ′ (2.56b)

where δλ ≈ λ−λ′ is a small parameter that ensures λ(t) > λ/2 +λ′/2 and q̃ ∈ (1/2, s/8 + 7/16) is a
parameter chosen by the proof in [9]. Moreover, as in [9], we will assume without loss of generality
that s < 2/3; for larger s, an additional Gevrey regularity correction 1/2 < γ < 2/3 can be added
to replace the role of s in the ensuing proof.

The high norm defined by A is the same used in the work on the Euler equations [9] (and in
particular is independent of ν). The corrector J is defined in §3 of [9] and recalled here along with
the relevant properties below in §3.1. We will also need the stronger variants AR ≥ A, JR ≥ J
defined in (3.7) below. The second multiplier, Aν , quantifies the enhanced dissipation effect through
the inclusion of D, defined by

D(t, η) =
1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+
. (2.57)
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We will choose β + 3α + 8 < σ, so that a sizable regularity gap is maintained between A and Aν

and β > 3α + 2 (for less crucial technical convenience). Hence, for sufficiently high frequencies
(depending on t), A will define a stronger norm, whereas for lower frequencies Aν is stronger (for
k 6= 0). The point of introducing D is so that a uniform bound expresses a powerful enhanced
dissipation effect:

‖P 6=0f(t)‖Gλ(t),β .α

〈
νt3
〉−α ‖Aνf(t)‖2 . (2.58)

The role this estimate plays in the proof is something like a parabolic analogue of the lossy elliptic
Lemma 4.1.

The proof is based on a bootstrap argument. Let [Tλ,λ′ , T
?] be the largest connected, closed

interval with left endpoint Tλ,λ′ such that the following bootstrap hypotheses hold for some fixed,
positive constants Kv and KD depending only on λ, λ′, α and s determined by the proof:

• The ‘high frequency’ controls (the first on the vorticity and the latter four on the coordinate
system)

‖Af(t)‖22 +
ν

10

∫ t

Tλ,λ′

∥∥∥√−∆LAf(τ)
∥∥∥2
2
dτ +

∫ t

Tλ,λ′

CKλ + CKwdτ ≤ 4ε2, (2.59a)

t2+2s

∥∥∥∥ A

〈∂v〉s
h̄

∥∥∥∥2
2

+
ν

10

∫ t

Tλ,λ′

τ2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

dτ +

∫ t

Tλ,λ′

CKv,2
λ + CKv,2

w dτ ≤ 4ε2, (2.59b)

t4−KDε ‖g‖2Gλ,σ−6 + ν

∫ t

Tλ,λ′

τ4−KDε ‖∂vg‖2Gλ(τ),σ−6 dτ ≤ 4ε2, (2.59c)∫ t

Tλ,λ′

CKv,1
λ + CKv,1

w dτ ≤ 4Kvε
2,

(2.59d)∥∥AR(v′ − 1)
∥∥2
2

+

∫ t

Tλ,λ′

2∑
i=1

CCKi
λ + CCKi

wdτ ≤ 4Kvε
2;

(2.59e)

• the enhanced dissipation estimate

‖Aνf‖22 +
ν

10

∫ t

Tλ,λ′

∥∥∥√−∆LA
νf(τ)

∥∥∥2
2
dτ +

∫ t

Tλ,λ′

CKν
λdτ ≤ 4ε2; (2.60)

• the low frequency controls ∥∥v′ − 1
∥∥
∞ <

3

4
, (2.61a)∥∥v′ − 1

∥∥
2

+ 〈νt〉1/2
∥∥∂v (v′ − 1

)∥∥
2
≤ 4Kvε 〈νt〉−1/4 , (2.61b)

‖ũ0(t)‖22 +
ν

10

∫ t

0

∥∥v′∂vũ0(τ)
∥∥2
2
dτ ≤ 4Kvε

2. (2.61c)

The numerous ‘CK’ terms (for Cauchy-Kovalevskaya since the most important of these terms arise
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naturally from the weakening of the norms in time) are given by

CKλ(t) = −λ̇(t)
∥∥∥|∇|s/2Af∥∥∥2

2
, (2.62a)

CKw(t) =
∑
k

∫
∂twk(t, η)

wk(t, η)
eλ(t)|k,η|

s

〈k, η〉σ eµ|η|
1/2

wk(t, η)
Ak(t, η)

∣∣∣f̂k(t, η)
∣∣∣2 dη, (2.62b)

CKν
λ(t) = −λ̇(t)

∥∥∥|∇|s/2Aνf(t)
∥∥∥2
2
, (2.62c)

CKv,2
w (t) = 〈t〉2+2s

∥∥∥∥∥
√
∂tw

w

A

〈∂v〉s
h̄(t)

∥∥∥∥∥
2

2

, (2.62d)

CKv,2
λ (t) = 〈t〉2+2s (−λ̇(t))

∥∥∥∥|∂v|s/2 A

〈∂v〉s
h̄(t)

∥∥∥∥2
2

, (2.62e)

CKv,1
w (t) = 〈t〉2+2s

∥∥∥∥∥
√
∂tw

w

A

〈∂v〉s
g(t)

∥∥∥∥∥
2

2

, (2.62f)

CKv,1
λ (t) = 〈t〉2+2s (−λ̇(t))

∥∥∥∥|∂v|s/2 A

〈∂v〉s
g(t)

∥∥∥∥2
2

, (2.62g)

along with the ‘coefficient Cauchy-Kovalevskaya’ terms

CCK1
λ(t) = −λ̇(t)

∥∥∥|∂v|s/2AR (1− (v′)2
)

(t)
∥∥∥2
2
, (2.63a)

CCK1
w(t) =

∥∥∥∥∥
√
∂tw

w
AR
(
1− (v′)2

)
(t)

∥∥∥∥∥
2

2

, (2.63b)

CCK2
λ(t) = −λ̇(t)

∥∥∥∥|∂v|s/2 AR〈∂v〉v′′(t)
∥∥∥∥2
2

, (2.63c)

CCK2
w(t) =

∥∥∥∥∥
√
∂tw

w

AR

〈∂v〉
v′′(t)

∥∥∥∥∥
2

2

. (2.63d)

For future convenience (see (2.62b) above) we also define

J̃k(t, η) =
eµ|η|

1/2

wk(t, η)
, (2.64a)

Ãk(t, η) = eλ(t)|k,η|
s

〈k, η〉σ J̃k(t, η). (2.64b)

Note that Ã ≤ A and it turns out that if |k| ≤ 1
4 |η| then A . Ã (see Lemma 3.1 below).

It is easy to show that the quantities on the left hand sides of (2.59), (2.60) and (2.61) take
values continuously in time for t > 0 due to the analyticity of solutions to (1.1) and similarly, using
Proposition 2.1, that T ? > Tλ,λ′ . Note by (2.61b), (2.61a) and (2.44c) we have

∥∥v′′∥∥2
2

=
∥∥v′∂vv′∥∥22 . ∥∥v′∥∥2∞ ∥∥∂vv′∥∥22 . ε2

〈νt〉3/2
. (2.65)

The primary step to the proof of Theorem 1 is the following, which shows that the bootstrap
controls can be propagated indefinitely.
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Proposition 2.2. For ε ≤ ε0 chosen sufficiently small depending only on s, λ, λ′ and α, the following
estimates hold uniformly on t ∈ [Tλ,λ′ , T

?]:

• The ‘high frequency’ controls

‖Af(t)‖22 +
ν

10

∫ t

Tλ,λ′

∥∥∥√−∆LAf(τ)
∥∥∥2
2
dτ +

∫ t

Tλ,λ′

CKλ + CKwdτ ≤ 2ε2 (2.66a)

t2+2s

∥∥∥∥ A

〈∂v〉s
h̄

∥∥∥∥2
2

+
ν

10

∫ t

Tλ,λ′

τ2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

dτ +

∫ t

Tλ,λ′

CKv,2
λ + CKv,2

w dτ ≤ 2ε2 (2.66b)

t4−KDε ‖g‖2Gλ,σ−6 +
ν

10

∫ t

Tλ,λ′

τ4−KDε ‖∂vg‖2Gλ(τ),σ−6 dτ ≤ 2ε2 (2.66c)∫ t

Tλ,λ′

CKv,1
λ + CKv,1

w dτ ≤ 2Kvε
2

(2.66d)∥∥AR(v′ − 1)
∥∥2
2

+

∫ t

Tλ,λ′

2∑
i=1

CCKi
λ + CCKi

wdτ ≤ 2Kvε
2;

(2.66e)

• the enhanced dissipation estimate

‖Aνf‖22 +
ν

10

∫ t

Tλ,λ′

∥∥∥√−∆LA
νf(τ)

∥∥∥2
2
dτ +

∫ t

Tλ,λ′

CKν
λdτ ≤ 2ε2; (2.67)

• the low frequency controls ∥∥v′ − 1
∥∥
∞ <

5

8
(2.68a)∥∥v′ − 1

∥∥
2

+ 〈νt〉1/2
∥∥∂v (v′ − 1

)∥∥
2
≤ 2Kvε 〈νt〉−1/4 , (2.68b)

‖ũ0(t)‖22 +
ν

10

∫ t

0

∥∥v′∂vũ0(τ)
∥∥2
2
dτ ≤ 2ε2, (2.68c)

‖f0‖2 ≤
2Kvε

〈νt〉1/4
. (2.68d)

It therefore follows that T ? =∞.

The proof of Proposition 2.2 constitutes the majority of our work; let us briefly outline it here.
Except for the presence of the dissipation integrals, the estimates (2.66) are essentially the same
as those propagated in the bootstrap argument for 2D Euler in [9] (along with (2.68a)). Since we
want to be able to send ν → 0 independently of t and ε, the dissipation cannot help to get these
estimates, and so the proof of (2.66) must also contain all the work done on the inviscid problem
in [9] (we will try to repeat as little as possible). The main new challenge to deducing (2.66) for
the Navier-Stokes equations (1.1) is ensuring that the presence of the variable coefficients in ∆̃t

does not create growth or arrest the decay estimates. In (2.66a), one could worry that having rapid
variations in the v-dependent enhanced dissipation rate could amplify gradients of f . Moreover,
the fact that the enhanced dissipation slows down near the critical times will cause additional
problems here. We will use (2.60) to provide the crucial decay necessary to handle the effect of
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high frequencies in the coefficients of ∆̃t strongly forcing non-zero modes in z. This is detailed
in §5 below. The NSE-specific challenge to deducing (2.66b), (2.66c) and (2.66e) is that having a
v-dependent diffusivity in ∆̃t can induce effective bulk transport in v, a phenomenon that is mostly
associated with low frequencies in the derivative of the coefficients. The effect is nonlinear, as the
coefficients are coupled to f , but is controlled by the low frequency decay estimate (2.68b). This is
detailed in §7.

The proof of the enhanced dissipation estimate (2.67) can be found in §6. The main issue
confronted in §6 is that there are terms in (2.48) which are linear in the k 6= 0 frequencies. For
these terms, we cannot use the enhanced dissipation and so we must still carefully use some of the
structural properties of the Euler nonlinearity (e.g. the transport structure), as if Aνf were the
high norm. As a result, the chosen Aν still needs to satisfy certain amenable properties. Moreover,
these linear terms also express the strong forcing of non-zero frequencies in z by the vastly larger
zero frequencies in z. The regularity gap between A and Aν was chosen so that we could use (2.59a)
to control this effect.

The low frequency controls (2.68) are relatively straightforward consequences of the slow viscous
dissipation of z-independent (equivalently x-independent) quantities and are proved in §8 using the
a priori high norm controls from (2.59a) and (2.60) and standard Moser iteration techniques.

2.4 Conclusion of the proof

To conclude the proof of Theorem 1 from Proposition 2.2 we need to translate the information back
into information on the original unknowns, ω and ψ. This is not trivial, but we may follow closely
the corresponding steps in [9] with some minor alterations. By Proposition 2.2, we have the global
uniform bounds

‖f(t)‖2Gλ(t),σ +
〈
νt3
〉2α ‖P6=0f(t)‖2Gλ(t),β + 〈νt〉1/2 ‖f0(t)‖22 . ε2 (2.69a)

‖ũ0‖2Gλ(t),σ +
〈
νt3
〉2α 〈t〉4 ‖P 6=0φ‖2Gλ(t),β−3 +

∥∥v′ − 1
∥∥2
Gλ(t),σ . ε2. (2.69b)

Define λ∞ = limt→∞ λ(t). In order to complete the proof of Theorem 1, we undo the change of
coordinates in v, switching to the coordinates (z, y). Writing ω̃(t, z, y) = f(t, z, v) = ω(t, x, y) and
ψ̃(t, z, y) = φ(t, z, v) = ψ(t, x, y), one derives from (1.1), as in §2.2, that

∂tω̃ +∇⊥z,yP 6=0ψ̃ · ∇z,yω̃ = ν∂zzω̃ + ν (∂y − t∂yUx0 ∂z)
2 ω̃. (2.70)

Similarly, denoting Ũ(t, z, y) = ũ(t, z, v) = Ux(t, x, y), we deduce from (1.2)

∂tU
x
0 + < ∇⊥z,yP 6=0ψ̃ · ∇z,yŨ >= ν∂yyU

x
0 . (2.71)

We may follow the argument in §2.3 of [9], apply the appropriate Gevrey inverse function theorem [9,
Lemma A.5] and the Gevrey composition inequality [9, Lemma A.4] to deduce from (2.69) and (7.6)
below that the estimates on f, φ and ũ imply estimates on ω̃, ψ̃ and Ũ . The main issue is inverting
the coordinate transform y = y(t, v) and deducing good Gevrey regularity estimates on v(t, v)− y
and y(t, v) − v. The only difference from [9] is in establishing the L2 control on v(t, y) − y, which
here requires a straightforward estimate on the forced heat equation (2.36b). We omit the details
for brevity and conclude that, for ε sufficiently small, there exists some λ′′′∞ ∈ (λ′, λ∞) such that

‖ω̃(t)‖2Gλ′′′∞ +
〈
νt3
〉2α ‖P 6=0ω̃(t)‖2Gλ′′′∞ +

〈
νt3
〉2α 〈t〉4 ∥∥∥P6=0ψ̃(t)

∥∥∥2
Gλ′′′∞

+ 〈νt〉1/2 ‖ω̃(t)‖22 . ε2 (2.72a)∥∥∥Ũ0

∥∥∥2
Gλ′′′∞

+ 〈t〉2
〈
νt3
〉2α ∥∥∥P6=0∇z,yŨ(t)

∥∥∥2
Gλ′′′∞

. ε2. (2.72b)
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In view of the definitions (2.36) and (1.8), estimate (2.72) above implies the claimed bounds on the
vorticity (1.7), (1.10a) and (1.11). The L2 estimates (1.9b) and (1.10b) follow from shifting in the z
variable and using the decay estimates on ψ in (2.72). From (2.70) and (2.72) together, we further
deduce (1.9a). Similarly, (2.71) and (2.72) imply (1.9c). This completes the proof of Theorem 1.

3 Properties of the norms

In this section we detail the properties of the two multipliers A and Aν .

3.1 Inviscid multiplier A

In §3 of [9], the corrector J is designed to deal with a possible frequency cascade caused by hy-
drodynamic echoes, the weakly nonlinear manifestation of the Orr mechanism [15, 46]. We briefly
recall the definition here. For a constant µ > 0 fixed below, we define

Jk(t, η) =
eµ|η|

1/2

wk(t, η)
+ eµ|k|

1/2

, (3.1)

for wk(t, η) specified next as an estimated ‘worst possible growth’. First recall the notation for
critical intervals and times in §1.2. For the remainder of §3.1 assume for notational simplicity that
η > 0. Finally, define κ ∈ (0, 1/2) a fixed constant.

Let wNR be a non-decreasing function of time with wNR(t, η) = 1 for t ≥ 2η. Further, set
wNR(t, η) = wNR(t, 10) for |η| < 10. For k ≥ 1, we assume that wNR(tk−1,η) was computed and for
k = 1, 2, 3, ..., E(

√
η), we define

wNR(t, η) =
(k2
η

[
1 + bk,η|t−

η

k
|
] )Cκ

wNR(tk−1,η), ∀t ∈ IRk,η =
[η
k
, tk−1,η

]
, (3.2a)

wNR(t, η) =
(

1 + ak,η|t−
η

k
|
)−1−Cκ

wNR

(η
k

)
, ∀t ∈ ILk,η =

[
tk,η,

η

k

]
. (3.2b)

The constant bk,η is chosen to ensure that k2

η

[
1 + bk,η|tk−1,η − η

k |
]

= 1. Hence for k ≥ 2, we have

bk,η =
2(k − 1)

k

(
1− k2

η

)
(3.3)

and b1,η = 1− 1/η. Similarly, ak,η is chosen to ensure k2

η

[
1 + ak,η|tk,η − η

k |
]

= 1, which implies

ak,η =
2(k + 1)

k

(
1− k2

η

)
. (3.4)

Finally, we take wNR to be constant on the interval [0, tE(
√
η),η], namely wNR(t, η) = w(tE(

√
η),η, η)

for t ∈ [0, tE(
√
η),η].

On each interval Ik,η, we define wR(t, η) by

wR(t, η) =
k2

η

(
1 + bk,η

∣∣∣t− η

k

∣∣∣)wNR(t, η), ∀t ∈ IRk,η =
[η
k
, tk−1,η

]
, (3.5a)

wR(t, η) =
k2

η

(
1 + ak,η

∣∣∣t− η

k

∣∣∣)wNR(t, η), ∀t ∈ ILk,η =
[
tk,η,

η

k

]
. (3.5b)

Due to the choice of bk,η and ak,η, we get that wR(tk,η, η) = wNR(tk,η, η) and wR(ηk , η) = k2

η wNR(ηk , η).
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To define the full wk(t, η), we then have

wk(t, η) =


wk(tE(

√
η),η, η) t < tE(

√
η),η

wNR(t, η) t ∈ [tE(
√
η),η, 2η] \ Ik,η

wR(t, η) t ∈ Ik,η
1 t ≥ 2η.

(3.6)

Note that wk(t, η) is Lipschitz continuous in time. This completes the construction of the wk(t, η)
which appears in the J defined above in (3.1).

We also define JR(t, η) and AR(t, η) to assign resonant regularity at every critical time:

JR(t, η) =


eµ|η|

1/2

w−1R (tE(
√
η),η, η) + 1 t < tE(

√
η),η

eµ|η|
1/2

w−1R (t, η) + 1 t ∈ [tE(
√
η),η, 2η]

eµ|η|
1/2

+ 1 t ≥ 2η,

AR(t, η) = eλ(t)|η|
s

〈η〉σ JR(t, η). (3.7)

From (3.5) we get that AR(t, η) ≥ A0(t, η) and since the zero frequency is always non-resonant from
(3.6), near the critical times, AR can be as much as a factor of |η| larger.

We next recall basic properties of w, J and A. The proofs can be found in §3 of [9]. The first
shows the origin of the requirement s > 1/2.

Lemma 3.1 (From [9]). There exists some constants µ > 0, C0 > 0 such that for all |η| ≥ 1 there
holds

1

wk(0, η)
=

1

wk(tE(
√
η),η, η)

=
C0

ηµ/8
e
µ
2

√
η + o|η|→∞

(
C0

ηµ/8
e
µ
2

√
η

)
. (3.8)

The next lemma emphasizes the technical advantage of having well-separated critical times.

Lemma 3.2 (From [9]). Let ξ, η be such that there exists some K ≥ 1 with 1
K |ξ| ≤ |η| ≤ K |ξ| and

let k, n be such that t ∈ Ik,η and t ∈ In,ξ (note that k ≈ n). Then at least one of the following holds:

(a) k = n (almost same interval);

(b)
∣∣t− η

k

∣∣ ≥ 1
10K

|η|
k2

and
∣∣∣t− ξ

n

∣∣∣ ≥ 1
10K

|ξ|
n2 (far from resonance);

(c) |η − ξ| &K
|η|
|n| (well-separated).

The next two fundamental lemmas allow first to compare ∂tw/w at different frequencies and
then J at different frequencies in nonlinear terms.

Lemma 3.3 (From [9]). (i) For t ≥ 1, and k, l, η, ξ such that max(2
√
|ξ|,
√
|η|) < t < 2 min(|ξ| , |η|),

∂twk(t, η)

wk(t, η)

wl(t, ξ)

∂twl(t, ξ)
. 〈η − ξ〉 (3.9)

(ii) For all t ≥ 1, and k, l, η, ξ, such that for some K ≥ 1, 1
K |ξ| ≤ |η| ≤ K |ξ|,√

∂twl(t, ξ)

wl(t, ξ)
.K

[√
∂twk(t, η)

wk(t, η)
+
|η|s/2

〈t〉s

]
〈η − ξ〉 . (3.10)
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(iii) For t ∈ Ik,η and t > 2
√
|η|, we have the following with τ = t− η

k and all l ∈ Z,

∂twl(t, η)

wl(t, η)
≈ 1

1 + |τ |
≈ ∂twk(t, η)

wk(t, η)
. (3.11)

Lemma 3.4 (From [9]). In general we have

Jk(t, η)

Jl(t, ξ)
.

|η|
k2
(
1 +

∣∣t− η
k

∣∣)e9µ|k−l,η−ξ|1/2 . (3.12)

If any one of the following holds: (t 6∈ Ik,η) or (k = l) or (t ∈ Ik,η, t 6∈ Ik,ξ and 1
K |ξ| ≤ |η| ≤ K |ξ|

for some K ≥ 1) or (t ∈ Il,ξ) then we have the improved estimate

Jk(t, η)

Jl(t, ξ)
. e10µ|k−l,η−ξ|

1/2

. (3.13)

Finally if t ∈ Il,ξ, t 6∈ Ik,η and 1
K |ξ| ≤ |η| ≤ K |ξ| for some K ≥ 1 then

Jk(t, η)

Jl(t, ξ)
.
l2
(

1 +
∣∣∣t− ξ

l

∣∣∣)
|ξ|

e11µ|k−l,η−ξ|
1/2

. (3.14)

Remark 5. If t ∈ Ik,η ∩ Ik,ξ, k 6= l, then

Jk(t, η)

Jl(t, ξ)
.
|η|
k2

√
∂twk(t, η)

wk(t, η)

√
∂twl(t, ξ)

wl(t, ξ)
e20µ|k−l,η−ξ|

1/2

. (3.15)

While A does not define an algebra (by design), it does when restricted to the zero frequency
in z, as is proved in the next lemma from [9].

Lemma 3.5 (Product lemma (from [9])). For some c ∈ (0, 1), all σ > 1, all β > −σ+1 and α ≥ 0,
the following inequalities hold for all f, g which depend only on v,∥∥∥|∂v|α 〈∂v〉β A(fg)

∥∥∥
2
. ‖f‖Gcλ,σ

∥∥∥|∂v|α 〈∂v〉β Ag∥∥∥
2

+ ‖g‖Gcλ,σ
∥∥∥|∂v|α 〈∂v〉β Af∥∥∥

2
(3.16a)∥∥∥∥∥

√
∂tw

w
〈∂v〉β A(fg)

∥∥∥∥∥
2

. ‖g‖Gcλ,σ

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
〈∂v〉β Af

∥∥∥∥∥
2

+ ‖f‖Gcλ,σ

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
〈∂v〉β Ag

∥∥∥∥∥
2

. (3.16b)

We also have for β > −σ + 1 the algebra property,∥∥∥〈∂v〉β A(fg)
∥∥∥
2
.
∥∥∥〈∂v〉β Af∥∥∥

2

∥∥∥〈∂v〉β Ag∥∥∥
2
. (3.17)

Moreover, (3.16) and (3.17) both hold with A replaced by AR.

Remark 6. Writing (v′)2 − 1 = (v′ − 1)2 + 2(v′ − 1) and v′′ = ∂v(v
′ − 1) + (v′ − 1)∂v(v

′ − 1), by
(2.59e) combined with (3.17) we have,∥∥AR (1− (v′)2

)∥∥
2
.
∥∥AR (1− v′)∥∥

2
+
∥∥AR (1− v′)∥∥2

2
. ε (3.18a)∥∥∥∥ AR〈∂v〉v′′

∥∥∥∥
2

=

∥∥∥∥ AR〈∂v〉 (v′∂vv′)
∥∥∥∥
2

.
∥∥AR (1− v′)∥∥

2
+
∥∥AR (1− v′)∥∥2

2
. ε. (3.18b)
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3.2 Enhanced dissipation multiplier Aν

In this section we focus on the relevant properties of the enhanced dissipation multiplier and the
associated semi-norm. The following lemma summarizes the properties of D(t, η) (defined in (2.57)).
The point is that D(t, η) essentially trades regularity for time-decay when t ≥ 2 |η| but we need to
ensure that it does so in a way that will define a norm suitable for use in nonlinear estimates.

Lemma 3.6 (Properties of D(t, η)). Uniformly in η, ξ, t and ν we have:

(a) the lower bound

max
(
ν |η|3 , νt3

)
. αD(t, η); (3.19)

(b) the ratio estimate:

〈D(t, η)〉
〈D(t, ξ)〉

. 〈η − ξ〉3 ; (3.20)

(c) the difference estimate: if there is some K ≥ 1, such that 1
K |ξ| ≤ |η| ≤ K |ξ|, then

|〈D(t, η)〉α − 〈D(t, ξ)〉α| .α,K
〈D(t, ξ)〉α

〈ξ〉
〈η − ξ〉3α . (3.21)

Proof. First, (3.19) is immediate from (2.57).
For (3.20), write

〈D(t, η)〉
〈D(t, ξ)〉

=

〈
1
3αν |η|

3 + 1
24αν

(
t3 − 8 |η|3

)
+

〉
〈

1
3αν |ξ|

3 + 1
24αν

(
t3 − 8 |ξ|3

)
+

〉

. 〈η − ξ〉3 +

〈
1

24αν
(
t3 − 8 |η|3

)
+

〉
〈

1
3αν |ξ|

3 + 1
24αν

(
t3 − 8 |ξ|3

)
+

〉 .
If t ≤ 2 |η| then we have shown (3.20), so assume otherwise. Then,

〈D(t, η)〉
〈D(t, ξ)〉

. 〈η − ξ〉3 +

〈
1

24αν
(
t3 − 8 |ξ|3 + 8 |ξ|3 − 8 |η|3

)〉
〈

1
3αν |ξ|

3 + 1
24αν

(
t3 − 8 |ξ|3

)
+

〉

. 〈η − ξ〉3 +

〈
1

24αν
(
t3 − 8 |ξ|3

)〉
〈

1
3αν |ξ|

3 + 1
24αν

(
t3 − 8 |ξ|3

)
+

〉 .
If t ≥ 2 |ξ| then (3.20) follows, so assume otherwise. Hence, the only case left is 2 |η| ≤ t ≤ 2 |ξ|.
However in this case, we get that (3.20) follows by |t− 2 |ξ|| ≤ 2 ||η| − |ξ|| ≤ 2 |η − ξ|. This covers
all cases.
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Finally turn to (3.21). First, from the mean value theorem and (3.20),

|〈D(t, η)〉α − 〈D(t, ξ)〉α| =
∣∣∣∣〈 1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+

〉α
−
〈

1

3α
ν |ξ|3 +

1

24α
ν
(
t3 − 8 |ξ|3

)
+

〉α∣∣∣∣
. α sup

ξ?∈[η,ξ]
〈D(t, ξ?)〉α−1

∣∣∣∣〈 1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+

〉
−
〈

1

3α
ν |ξ|3 +

1

24α
ν
(
t3 − 8 |ξ|3

)
+

〉∣∣∣∣
. α 〈η − ξ〉3α−3 〈D(t, ξ)〉α−1

∣∣∣∣〈 1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+

〉
−
〈

1

3α
ν |ξ|3 +

1

24α
ν
(
t3 − 8 |ξ|3

)
+

〉∣∣∣∣ .
If t ≥ 2 max(|η| , |ξ|) then we just have∣∣∣∣〈 1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+

〉
−
〈

1

3α
ν |ξ|3 +

1

24α
ν
(
t3 − 8 |ξ|3

)
+

〉∣∣∣∣ = 0.

If t ≤ 2 min(|η| , |ξ|) then the factor reduces to∣∣∣∣〈 1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+

〉
−
〈

1

3α
ν |ξ|3 +

1

24α
ν
(
t3 − 8 |ξ|3

)
+

〉∣∣∣∣ =

∣∣∣∣〈 1

3α
ν |η|3

〉
−
〈

1

3α
ν |ξ|3

〉∣∣∣∣ .
This is essentially a statement about Sobolev regularity, and it follows from (3.19) that∣∣∣∣〈 1

3α
ν |η|3

〉
−
〈

1

3α
ν |ξ|3

〉∣∣∣∣ . (〈ν |η|2〉+
〈
ν |ξ|2

〉)
|η − ξ|

.
〈D(t, ξ)〉
〈ξ〉

〈η − ξ〉2 |η − ξ| .

If 2 |ξ| < t < 2 |η| then by (3.19) and (3.20) we have∣∣∣∣〈 1

3α
ν |η|3 +

1

24α
ν
(
t3 − 8 |η|3

)
+

〉
−
〈

1

3α
ν |ξ|3 +

1

24α
ν
(
t3 − 8 |ξ|3

)
+

〉∣∣∣∣
=

∣∣∣∣〈 1

3α
ν |η|3

〉
−
〈

1

3α
νt3
〉∣∣∣∣

.
1

α

(〈
ν |η|2

〉
+
〈
νt2
〉)
|η − t|

.
〈D(t, ξ)〉
〈ξ〉

|η − ξ| .

Since (3.20) is symmetric in ξ and η, this completes the proof of (3.20).

From Lemma 3.6, and the choice of β and σ, we may deduce the following important product
inequality about Aν . The lemma allows us to deduce the correct time decay from products of
functions, only one of which might be decaying. The important detail to notice is the loss of 3α
derivatives on the first factor in (3.22). The latter inequality, (3.23), is not directly used in the
proof of Theorem 1 but regardless, the fact that it holds is important to consider when examining
the main difficulties in the proof of (2.67) in §6.

Lemma 3.7 (Aν Product Lemma). The following holds for all q1 and q2 such that P 6=0q
2 = q2,∥∥Aν(q1q2)

∥∥
2
.
∥∥q1∥∥Gλ,β+3α

∥∥Aνq2∥∥
2

(3.22)

If in addition we have P 6=0q
1 = q1 then it follows that∥∥Aν(q1q2)

∥∥
2
.

1

〈νt3〉α
∥∥Aνq1∥∥

2

∥∥Aνq2∥∥
2
. (3.23)
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Proof. First we prove (3.22). Expand via an inhomogeneous paraproduct

̂Aν(q1q2)(k, η) =
1

2π

∑
N≥8

∑
l∈Z

∫
ξ
Aνk(η)q̂1l(ξ)<N/8q̂

2
k−l(η − ξ)Ndξ

+
1

2π

∑
N≥8

∑
l∈Z

∫
ξ
Aνk(η)q̂1l(ξ)N q̂

2
k−l(η − ξ)<N/8dξ

+
1

2π

∑
N∈D

∑
N/8≤N ′≤8N

∑
l∈Z

∫
ξ
Aνk(η)q̂1l(ξ)N ′ q̂

2
k−l(η − ξ)Ndξ

= TLH + THL + TR.

Consider first TLH . Since on the support of the integrand (see §A.1),

||k, η| − |k − l, η − ξ|| ≤ |l, ξ| ≤ 3

16
|k − l, η − ξ| , (3.24a)

13

16
|k − l, η − ξ| ≤ |k, η| ≤ 19

16
|k − l, η − ξ| , (3.24b)

inequalities (A.8) and (3.20) imply that for some c ∈ (0, 1) (depending only on s and our Littlewood-
Paley conventions),

|TLH | .
∑

l∈Z:l 6=k

∑
N≥8

∫
ξ
〈l, ξ〉3α ecλ|l,ξ|

s
∣∣∣q̂1l(ξ)<N/8∣∣∣ 〈k − l, η − ξ〉β eλ|k−l,η−ξ|s 〈D(η − ξ)〉α

∣∣∣q̂2k−l(η − ξ)N ∣∣∣ dξ.
Hence, by (A.4), β > 1 and the almost orthogonality (A.2), we have

‖TLH‖22 .
∑
N≥8

∥∥∥q1<N/8∥∥∥2Gcλ,3α+β ∥∥Aνq2N∥∥22
.
∥∥q1∥∥2Gλ,3α+β ∥∥Aνq2∥∥22 . (3.25)

Turn next to THL. On the support of the integrand we have,

||k, η| − |l, ξ|| ≤ |k − l, η − ξ| ≤ 3

16
|l, ξ| , (3.26a)

13

16
|l, ξ| ≤ |k, η| ≤ 19

16
|l, ξ| , (3.26b)

which implies that, by (A.8) and (3.20), for some c ∈ (0, 1), there holds

|THL| .
∑
l∈Z

∑
N≥8

∫
ξ

∣∣∣〈l, ξ〉β+3α eλ|l,ξ|
s

q̂1l(ξ)N 〈D(η − ξ)〉α q̂2k−l(η − ξ)<N/8ecλ|k−l,η−ξ|
s
∣∣∣ dξ.

Therefore, by (A.2), (A.4) and σ ≥ β + 3α, β > 1,

‖THL‖22 .
∑
N≥8

∥∥q1N∥∥2Gλ,3α+β ∥∥∥〈D(t, ∂v)〉α q2<N/8
∥∥∥2
Gcλ,β

.
∥∥q1∥∥2Gλ,3α+β ∥∥Aνq2∥∥22 . (3.27)

This completes the treatment of THL.
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Finally turn to the remainder term TR. On the support of the integrand, there holds |l, ξ| ≈
|k − l, η − ξ| and therefore by (A.10) and (3.20), there is some c ∈ (0, 1) such that

|TR| .
∑
N∈D

∑
N≈N ′

∑
l∈Z

∫
ξ
〈k, η〉β 〈ξ〉3α ec|l,ξ|

s
∣∣∣q̂1l(ξ)N ′ec|k−l,η−ξ|s 〈D(η − ξ)〉α q̂2k−l(η − ξ)N

∣∣∣ dξ
.
∑
N∈D

∑
N≈N ′

∑
l∈Z

∫
ξ
N−1 〈k − l, η − ξ〉 〈l, ξ〉3α+β ec|l,ξ|

s
∣∣∣q̂1l(ξ)N ′ec|k−l,η−ξ|s 〈D(η − ξ)〉α q̂2k−l(η − ξ)N

∣∣∣ dξ
Therefore, by (A.4) (β > 2),

‖TR‖2 .
∑
N∈D

N−1
∥∥q1∥∥Gcλ,3α+β ∥∥Aνq2∥∥2

.
∥∥q1∥∥Gλ,3α+β ∥∥Aνq2∥∥2 . (3.28)

Upon taking square roots in (3.25) and (3.27) and combining with (3.28), this completes the proof
of (3.22).

The proof of (3.23) is a slight variant of the proof of (3.22) except now the multiplier Aν is
always passed to the ‘high frequency’ factor in the paraproduct and (2.58) is used on the ‘low
frequency’ factor to introduce the additional decay. As (3.23) is not actually used in the proof of
Theorem 1, we omit the details for brevity.

4 Elliptic estimates

The following easy, but fundamental, lemma from [9] shows that by paying regularity, one can still
deduce the same decay from ∆−1t as from ∆−1L . The loss of three derivatives comes from the presence
of v′′ = v′∂vv

′ in the coefficients of ∆t.

Lemma 4.1 (Lossy elliptic estimate (from [9])). Under the bootstrap hypotheses, for ε sufficiently
small,

‖P 6=0φ(t)‖Gλ(t),σ−3 .
‖f(t)‖Gλ(t),σ−1

〈t〉2
. (4.1)

The following lemma quantifies the rapid decay of the z-dependent velocity field due to the
enhanced dissipation, crucial to the proof of (2.67) in §6. The lemma is ‘lossy’ for two reasons.
First, due to the presence of A on the RHS of (4.2), and second due to the hidden loss of 3α
derivatives on the coefficients of ∆t induced by (3.22). From (2.57) we see that for high frequencies
D simply appears as differentiation and Lemma 4.2 is reduced to Lemma 4.1. For a given frequency,
by the time D begins to increase, it is already past the critical time and we do not need to pay
regularity for decay in ∆−1t .

Lemma 4.2 (Lossy elliptic estimate for Aν). Under the bootstrap hypotheses for ε sufficiently small,
for σ ≥ β + 3α+ 4 there holds∥∥∥Aν(∇⊥P 6=0φ)

∥∥∥
2
.

1

〈t〉2
(‖Aνf‖2 + ‖Af‖2) . (4.2)

Proof. We define the Fourier multipliers

̂(
1t≤2|∂v |f

)
k
(η) = 1t≤2|η|f̂k(η), (4.3)

̂(
1t>2|∂v |f

)
k
(η) = 1t>2|η|f̂k(η), (4.4)
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and write ∥∥∥Aν∇⊥P 6=0φ
∥∥∥
2
≤
∥∥∥1t≤2|∂v |Aν∇⊥P 6=0φ

∥∥∥
2

+
∥∥∥1t>2|∂v |A

ν∇⊥P 6=0φ
∥∥∥
2
. (4.5)

Notice that if t ≤ 2 |η| there holds for σ ≥ β + 3α+ 4,

Aνk(t, η) ≈ eλ|k,η|
s

〈k, η〉β+3α . eλ|k,η|
s

〈k, η〉σ−4 ,

and therefore, by Lemma 4.1,∥∥∥1t≤2|∂v |Aν∇⊥P6=0φ
∥∥∥
2
.
∥∥∥∇⊥P6=0φ

∥∥∥
Gλ,σ−4

. 〈t〉−2 ‖Af‖2 . (4.6)

Next, focus on lower frequencies:∥∥1t>2|∂v |A
νP 6=0φ

∥∥2
2

=
∑
k 6=0

∫
η
1t>2|η|e

2λ|k,η|s 〈k, η〉2β 〈D(η)〉α
∣∣∣φ̂k(η)

∣∣∣2 dη
=
∑
k 6=0

∫
η
1t>2|η|e

2λ|(k,η)|s 〈k, η〉
2β 〈D(η)〉α

(k2 + |η − kt|2)2
(k2 + |η − kt|2)2

∣∣∣φ̂k(η)
∣∣∣2 dη

.
1

〈t〉4
‖∆LP6=0A

νφ‖22 . (4.7)

As in the proof of Lemma 4.1 (see [9]), we write ∆t as a perturbation of ∆L via

∆LP6=0φ = P6=0f + (1− (v′)2)(∂y − t∂z)2P6=0φ− v′′(∂y − t∂z)P 6=0φ.

Applying (3.22) implies

‖∆LA
νP 6=0φ‖2 . ‖A

νf‖2 +
∥∥1− (v′)2

∥∥
Gλ,β+3α ‖∆LP 6=0A

νφ‖2 +
∥∥v′′∥∥Gλ,β+3α ‖(∂y − t∂z)P 6=0A

νφ‖2 .

Therefore, (3.18) and σ ≥ β + 3α+ 1 imply

‖∆LA
νP6=0φ‖2 . ‖A

νf‖2 + ε ‖∆LP 6=0A
νφ‖2 .

Together with (4.7), for ε is sufficiently small we get∥∥1t>2|∂v |A
νP 6=0φ

∥∥
2
. 〈t〉−2 ‖Aνf‖2 ,

which, with (4.6) and (4.5), completes the proof of Lemma 4.2.

5 High norm vorticity estimate (2.66a)

We are now ready to begin the proof of (2.66a). Computing the evolution of Af from (2.48) gives,

d

dt

1

2
‖Af‖22 = −CKλ − CKw −

∫
AfA(u · ∇f)dvdz + ν

∫
AfA

(
∆̃tf

)
dvdz. (5.1)

Treating the third term, the Euler nonlinearity, comprises the majority of the work in [9]. Here,
we need only replace the role of [∂tv] in [9] with g here and proceed in the same manner as used in
§5,§6 and §7 of [9] to deduce (under the bootstrap hypotheses for ε sufficiently small) that

−
∫
AfA(u · ∇f)dvdz . εCKλ + εCKw + εCKv,1

λ + εCKv,1
w

+ ε3

(
2∑
i=1

CCKi
λ + CCKi

w

)
+

ε3

〈t〉1+s
. (5.2)
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The new difficulty in deducing (2.66a) from (5.1) is commuting A and ∆̃t in the last term. We follow
an approach which is consistent with the proofs of the elliptic estimates in §4 and [9]. Following
those arguments we write,

ν

∫
AfA(∆̃tf) = ν

∫
AfA(∆Lf)− ν

∫
AfA

[(
1− (v′)2

)
(∂v − t∂z)2f

]
dvdz

= −ν
∥∥∥√−∆LAf

∥∥∥2
2
− ν

∑
k 6=0

∫
AfkA

[(
1− (v′)2

)
(∂v − t∂z)2fk

]
dvdz

− ν
∫
Af0A

[(
1− (v′)2

)
∂2vf0

]
dvdz

= −ν
∥∥∥√−∆LAf

∥∥∥2
2

+ E 6= + E0. (5.3)

Note that while the first term looks like a powerful dissipation term (
√
−∆L contains powers of

t), since we are sending ν → 0 it can only really be useful for controlling the error terms E 6= and
E0. Especially E 6= is dangerous as while the leading order dissipation degenerates near the critical
times, we will see that E 6= can still be large. Since the operator ∆̃t is very anisotropic between
non-zero frequencies in z and the zero frequencies, the two cases, E0 and E 6=, are treated separately
by different methods in §5.1 and §5.2 respectively.

5.1 Dissipation error term: non-zero frequencies

For future notational convenience, use the short hand

G(t, v) =
(
1− (v′)2

)
(t, v). (5.4)

We begin the treatment of E 6= by decomposing with an inhomogeneous paraproduct in v only:

E 6= =
ν

2π

∑
M≥8

∑
k 6=0

∫
Af̂k(t, η)Ak(t, η)Ĝ(η − ξ)M |ξ − tk|2 f̂k(ξ)<M/8dξdη

+
ν

2π

∑
M≥8

∑
k 6=0

∫
Af̂k(t, η)Ak(t, η)Ĝ(η − ξ)<M/8 |ξ − tk|2 f̂k(ξ)Mdξdη

+
ν

2π

∑
M∈D

∑
M/8≤M ′≤8M

∑
k 6=0

∫
Af̂k(t, η)Ak(t, η)Ĝ(η − ξ)M |ξ − tk|2 f̂k(ξ)M ′dξdη

= E 6=HL + E 6=LH + E 6=R.

The E 6=LH term is the easier one, so we will treat this one first. The goal is to pass the Ak(η)

onto f̂k(ξ) and split the (∂v − t∂z)2 between the two factors of f . The latter will use the following
triangle inequality, which holds specifically for k 6= 0,

|ξ − kt| ≤ |η − ξ|+ |η − kt| ≤ 〈η − ξ〉 (|k|+ |η − kt|) . (5.5)

This allows to split the derivatives by losing regularity on the coefficient, which is fine since it is
in ‘low frequency’ (we are essentially integrating by parts). Note that this will not be possible in

treating E 6=HL. An important point is that (3.13) (as opposed to (3.12)) applies to transfer Ak(η) to
Ak(ξ) - resonant vs non-resonant losses can only occur when comparing different frequencies in z.
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Since on the support of the integrand there holds

||k, η| − |k, ξ|| ≤ |ξ − η| ≤ 3

16
|ξ| ≤ 3

16
|k, ξ| , (5.6a)

13

16
|k, ξ| ≤ |k, η| ≤ 19

16
|k, ξ| , (5.6b)

which implies by (A.8) we have for some c ∈ (0, 1),∣∣∣E 6=LH ∣∣∣ . ν
∑
M≥8

∑
k 6=0

∫ ∣∣∣∣Af̂k(t, η)ecλ|η−ξ|
s

Ĝ(η − ξ)<M/8
Jk(η)

Jk(ξ)
|ξ − tk|2Af̂k(ξ)M

∣∣∣∣ dξdη.
Applying (5.5) together with (3.13) followed by (A.13) implies∣∣∣E 6=LH ∣∣∣ . ν

∑
M≥8

∑
k 6=0

∫ ∣∣∣√−∆LAf̂k(t, η)eλ|η−ξ|
s

〈η − ξ〉 Ĝ(η − ξ)<M/8 |ξ − tk|Af̂k(ξ)M
∣∣∣ dξdη,

where we are slightly abusing notation by using
√
−∆Lf̂k(η) = (|k|+ |η − kt|) f̂k(η). Therefore, by

(A.5) (σ > 1), almost orthogonality (A.2) and (3.18) (recall the shorthand (5.4)),∣∣∣E 6=LH ∣∣∣ . ν
∑
M≥8

∑
k 6=0

∥∥(1− (v′)2)<M/8

∥∥
Gλ,σ

∥∥∥√−∆L(Afk)∼M

∥∥∥2
2

. εν
∥∥∥√−∆LAf

∥∥∥2
2
. (5.7)

This term is then absorbed by the leading order dissipation term in (5.3) for ε sufficiently small.
Now, let us turn to the more delicate HL term. Since the paraproduct decomposition was with

respect to v but the norm depends on both z and v, we will need to divide into separate contributions
corresponding to when k is large compared to η and vice-versa. A similar issue arose, for example,
in [9, Proposition 2.5]. Hence,∣∣∣E 6=HL∣∣∣ . ν

∑
M≥8

∫ [
1|k|≥ 1

16
|η| + 1|k|< 1

16
|η|

] ∣∣∣Af̂k(η)∼MAk(t, η)Ĝ(η − ξ)M |ξ − tk|2 f̂k(ξ)<M/8

∣∣∣ dξdη
= E 6=,zHL + E 6=,vHL .

In the ‘z’ case, we can assume that the ‘derivatives’ are still landing on fk(ξ), and hence we may

treat this term in a manner similar to E 6=LH . On the support of the integrand, we claim that there
is some c ∈ (0, 1) such that,

|k, η|s ≤ |k, ξ|s + c |η − ξ|s . (5.8)

To see (5.8), one can consider separately the cases 1
16 |η| ≤ |k| ≤ 16 |η| and |k| > 16 |η|, applying

(A.10) and (A.8) respectively. Therefore, by (5.8) we have∣∣∣E 6=,zHL

∣∣∣ . ν
∑
M≥8

∫
1|k|≥ 1

16
|η|

∣∣∣Af̂k(η)∼Me
cλ|η−ξ|Ĝ(η − ξ)MJk(η) |ξ − tk|2 〈k, η〉σ eλ|k,ξ|

s

f̂k(ξ)<M/8

∣∣∣ dξdη.
Moreover, on the support of the integrand we have 〈k, η〉 . 〈k〉 ≤ 〈k, ξ〉. Therefore, by (5.5) and
(3.13) followed by (A.13) (c < 1 and s > 1/2) we get∣∣∣E 6=,zHL

∣∣∣ . ν
∑
M≥8

∫
1|k|≥ 1

16
|η|

∣∣∣√−∆LAf̂k(η)∼Me
λ|η−ξ|s 〈η − ξ〉 Ĝ(η − ξ)M |ξ − tk|Af̂k(ξ)<M/8

∣∣∣ dξdη.
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By (A.5) (σ > 2), Cauchy-Schwarz in M and k, almost orthogonality (A.2) and (3.18) we get∣∣∣E 6=,zHL

∣∣∣ . ν
∑
M≥8

∑
k 6=0

∥∥(1− (v′)2)M
∥∥
Gλ,σ

∥∥∥√−∆L(Afk)∼M

∥∥∥
2

∥∥∥√−∆L(Afk)<M/8

∥∥∥
2

. εν
∥∥∥√−∆LAf

∥∥∥2
2

(5.9)

This term is then absorbed by the leading order dissipation term in (5.3) for ε sufficiently small.

Turn now to the more challenging v case, E 6=,vHL , which corresponds to |k, η| ≈ |η − ξ| � |k, ξ|.
The challenge here is that we cannot simply use (5.5), as this requires more regularity on the
coefficients then we have to spend. Hence we will have to find another way of controlling this
term and will find it most challenging near the critical times, as there the leading order dissipation
could become weaker than the error term. Indeed, using that |ξ| ≤ 3

16 |η − ξ| on the support of the
integrand, analogous to (5.6) there holds on the support of the integrand:

||η − ξ| − |k, η|| ≤ |k, ξ| ≤ 1

16
|η|+ |ξ| ≤ 1

16
|η − ξ|+ 17

16
|ξ| ≤ 67

256
|η − ξ| . (5.10)

Hence we may apply (A.8) to show there exists some c ∈ (0, 1) such that∣∣∣E 6=,vHL

∣∣∣ . ν
∑
M≥8

∫
1|k|< 1

16
|η|

∣∣∣∣Af̂k(η)∼MAĜ(η − ξ)M
Jk(η)

J0(η − ξ)
ecλ|k,ξ|

s

|ξ − tk|2 f̂k(ξ)<M/8

∣∣∣∣ dξdη.
Near the resonant times, the treatment will be different, so divide further into resonant and non-
resonant contributions:∣∣∣E 6=,vHL

∣∣∣ . ν
∑
M≥8

∫ [
χR + χ∗

] ∣∣∣∣Af̂k(η)∼MAĜ(η − ξ)M
Jk(η)

J0(η − ξ)
ecλ|k,ξ|

s

|ξ − tk|2 f̂k(ξ)<M/8

∣∣∣∣ dξdη
= E 6=;v,R

HL + E 6=;v,∗
HL ,

where χR = 1t∈Ik,η−ξ∩Ik,η1|k|< 1
16
|η| and χ∗ = (1− 1t∈Ik,η−ξ∩Ik,η)1|k|< 1

16
|η|.

Turn first to the ‘R’ contribution. Applying (3.12) followed by (A.13) implies (recall definitions
(3.7) and (3.5)),

E 6=;v,R
HL . ν

∑
k 6=0

∑
M≥8

∫
χR
∣∣∣Af̂k(η)∼MA

R(η − ξ)Ĝ(η − ξ)M |ξ − tk|2 eλ|k,ξ|
s

f̂k(ξ)<M/8

∣∣∣ dξdη.
Since we are near the resonant time, the leading dissipation term in (5.3) is very weak, and in
particular, it cannot directly recover the t2 present in the low frequency factor. In order to deal
with this fundamental difficulty, we will use both the enhanced dissipation estimate (2.60) as well
as the CCK control on G expressed in (2.59e). Using

|k|+ |ξ − tk| . 〈t〉 〈k, ξ〉 , (5.11)
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as well as (3.11), (3.10) and the definition of χR we have

E 6=;v,R
HL . ν

∑
k 6=0

∑
M≥8

∫
χR (|k|+ |η − kt|)1/2

∣∣∣Af̂k(η)∼M

∣∣∣AR(η − ξ)

 1√
1 +

∣∣η
k − t

∣∣


× Ĝ(η − ξ)M (|k|+ |ξ − tk|)1/2 〈t〉3/2 〈k, ξ〉3/2 eλ|k,ξ|
s
∣∣∣f̂k(ξ)<M/8

∣∣∣ dξdη
. ν

∑
k 6=0

∑
M≥8

∫
χR (|k|+ |η − kt|)1/2

∣∣∣∣∣Af̂k(η)∼M

(√
∂tw(η − ξ)
w(η − ξ)

+
|η − ξ|s/2

〈t〉s

)
AR(η − ξ)

∣∣∣∣∣
× Ĝ(η − ξ)M (|k|+ |ξ − tk|)1/2 〈t〉3/2 〈k, ξ〉5/2 eλ|k,ξ|

s
∣∣∣f̂k(ξ)<M/8

∣∣∣ dξdη.
Therefore, by (A.14), (A.5) (using β > 4) and Cauchy-Schwarz,

E 6=;v,R
HL . νt3/2

∑
k 6=0

∑
M≥8

∥∥∥(−∆L)1/4A(fk)∼M

∥∥∥
2

∥∥∥(−∆L)1/4fk

∥∥∥
Gλ,β

×

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)
M

∥∥∥∥∥
2

. νt3/2
∑
M≥8

∑
k 6=0

∥∥∥(−∆L)1/4A(fk)∼M

∥∥∥2
2

1/2∑
k 6=0

∥∥∥(−∆L)1/4fk

∥∥∥2
Gλ,β

1/2

×

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)
M

∥∥∥∥∥
2

. νt3/2
∑
M≥8
‖Af∼M‖1/22 ‖f‖1/2Gλ,β

∥∥∥(−∆L)1/2Af∼M

∥∥∥1/2
2

∥∥∥(−∆L)1/2Af
∥∥∥1/2
2

×

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)
M

∥∥∥∥∥
2

.

Now we crucially apply the enhanced dissipation by using (2.58) and (2.60) to kill the extra powers
of time,

E 6=;v,R
HL .

νt3/2

〈νt3〉α/2
∑
M≥8
‖Af∼M‖1/22 ‖Aνf‖1/22

∥∥∥(−∆L)1/2Af∼M

∥∥∥1/2
2

∥∥∥(−∆L)1/2Af
∥∥∥1/2
2

×

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)
M

∥∥∥∥∥
2

.
√
νε
∑
M≥8
‖Af∼M‖1/22

∥∥∥(−∆L)1/2Af∼M

∥∥∥1/2
2

∥∥∥(−∆L)1/2Af
∥∥∥1/2
2

×

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)
M

∥∥∥∥∥
2

.

34



Therefore, by (2.60), (2.59a), Cauchy-Schwarz in M and almost orthogonality (A.2),

E 6=;v,R
HL . ν

∑
M≥8
‖Af∼M‖

∥∥∥(−∆L)1/2Af∼M

∥∥∥
2

∥∥∥(−∆L)1/2Af
∥∥∥
2

+ ε
∑
M≥8

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)
M

∥∥∥∥∥
2

2

. εν
∥∥∥(−∆L)1/2Af

∥∥∥2
2

+ ε

∥∥∥∥∥
(√

∂tw

w
+
|∂v|s/2

〈t〉s

)
AR
(
1− (v′)2

)∥∥∥∥∥
2

2

. (5.12)

The first term is absorbed by the dissipation term in (5.3) and the latter term is controlled by the
bootstrap control on the CCK1 terms in (2.59e).

The treatment of E 6=;v,∗
HL is easier as the leading order dissipation is much stronger at this set of

frequencies (although we still cannot apply (5.5)). By (3.13) followed by (A.13) we have

E 6=;v,∗
HL . ν

∑
M≥8

∫
A
∣∣∣f̂k(η)∼M

∣∣∣χ∗A0(η − ξ)
∣∣∣Ĝ(η − ξ)M

∣∣∣ |ξ − tk|2 eλ|k,ξ|s ∣∣∣f̂k(ξ)<M/8

∣∣∣ dξdη.
We will introduce

√
−∆L on the first factor with the goal of directly using the dissipation:

E 6=;v,∗
HL . ν

∑
M≥8

∫ √
−∆LA

∣∣∣f̂k(η)∼M

∣∣∣χ∗A0(η − ξ)
∣∣∣Ĝ(η − ξ)M

∣∣∣ |ξ − tk|2√
k2 + |η − kt|2

eλ|k,ξ|
s
∣∣∣f̂k(ξ)<M/8

∣∣∣ dξdη.
By the definition of χ? and Lemma 3.2 (using that η ≈ η − ξ), on the support of the integrand we
have one of two possibilities: either |η − kt| & t or |ξ| & t Therefore, using also (5.11),

E 6=;v,∗
HL . ν

∑
M≥8

∫ √
−∆LA

∣∣∣f̂k(η)∼M

∣∣∣χ∗A0(η − ξ)
∣∣∣Ĝ(η − ξ)M

∣∣∣ 〈t〉−1 |ξ − tk|2 〈ξ〉 eλ|k,ξ|s ∣∣∣f̂k(ξ)<M/8

∣∣∣ dξdη.
Therefore, by (A.5) (β > 3), Cauchy-Schwarz (in M and k) and (3.18a) we have,

E 6=;v,∗
HL . ν

∑
k 6=0

∑
M≥8

∫ ∣∣∣√−∆LAf̂k(η)∼Mχ
∗A0(η − ξ)Ĝ(η − ξ)M

∣∣∣
× 〈k, ξ〉2 |ξ − tk| eλ|k,ξ|

s
∣∣∣f̂k(ξ)<M/8

∣∣∣ dξdη
. ν

∑
M≥8

∥∥A (1− (v′)2
)
M

∥∥
2

∥∥∥√−∆LAf∼M

∥∥∥
2

∥∥∥√−∆Lf<M/8

∥∥∥
Gλ,β

. εν
∥∥∥√−∆LAf

∥∥∥2
2
. (5.13)

Hence, for ε chosen sufficiently small, this is absorbed by the dissipation term in (5.3).

Finally, turn to the remainder term E 6=R. Dividing into two contributions depending on the
relative size of the z vs v frequencies,

E 6=R . ν
∑
M∈D

∑
M/8≤M ′≤8M

∑
k 6=0

∫ [
1|k|>100|ξ| + 1|k|≤100|ξ|

] ∣∣∣Af̂k(t, η)Ak(t, η)Ĝ(η − ξ)M |ξ − tk|2 f̂k(ξ)M ′
∣∣∣ dξdη

= E 6=;z
R + E 6=;v

R .
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Consider E 6=;z
R first. On the support of the integrand,

||k, η| − |k, ξ|| ≤ |η − ξ| ≤ 3M ′

2
≤ 12M ≤ 24 |ξ| ≤ 24

100
|k, ξ| , (5.14)

and hence inequality (A.8) implies there is some c ∈ (0, 1) such that∣∣∣E 6=;z
R

∣∣∣ . ν
∑
M∈D

∑
M≈M ′

∑
k 6=0

∫
1|k|>100|ξ|

∣∣∣∣Af̂k(t, η)ecλ|η−ξ|
s

Ĝ(η − ξ)M |ξ − tk|2
Jk(η)

Jk(ξ)
Af̂k(ξ)M ′

∣∣∣∣ dξdη.
Therefore, by (5.5), (3.13), (A.13) and (A.14) (using c < 1 and s > 1/2) we have∣∣∣E 6=;z

R

∣∣∣ . ν
∑
M∈D

∑
M≈M ′

∑
k 6=0

∫
1|k|>100|ξ|

∣∣∣√−∆LAf̂k(t, η)eλ|η−ξ|
s

Ĝ(η − ξ)M |ξ − tk|Af̂k(ξ)M ′
∣∣∣ dξdη.

Therefore, by (A.5) followed by Cauchy-Schwarz in k and M , almost orthogonality (A.2) and (3.18),∣∣∣E 6=;z
R

∣∣∣ . ν
∑
M∈D

∑
k 6=0

∥∥∥√−∆LAfk

∥∥∥
2

∥∥(1− (v′)2
)
M

∥∥
Gλ,σ

∥∥∥√−∆LA(fk)∼M

∥∥∥
2

. εν
∥∥∥√−∆LAf

∥∥∥2
2
, (5.15)

which can then be absorbed by the leading dissipation term in (5.3) for ε sufficiently small.

Finally turn to E 6=;v
R . On the support of the integrand in this case,

|η − ξ| ≤ 24 |ξ| ≤ 24 |k, ξ|
|k, ξ| ≤ 101 |ξ| ≤ 2424 |η − ξ| .

Therefore by (A.10) there exists a c ∈ (0, 1) such that∣∣∣E 6=;v
R

∣∣∣ . ν
∑
M∈D

∑
M≈M ′

∑
k 6=0

∫
1|k|≤100|ξ|

∣∣∣Af̂k(η)ecλ|η−ξ|
s

〈ξ − η〉σ/2 Ĝ(η − ξ)M
∣∣∣

× |ξ − tk|2 Jk(η)ecλ|k,ξ|
s

〈k, ξ〉σ/2
∣∣∣f̂k(ξ)M ′∣∣∣ dξdη.

By Lemma 3.1, (A.13), (5.5) and (A.14),∣∣∣E 6=;v
R

∣∣∣ . ν
∑
M∈D

∑
M≈M ′

∑
k 6=0

∫
1|k|≤100|ξ|

∣∣∣√−∆LAf̂k(t, η)eλ|η−ξ|
s

Ĝ(η − ξ)M
∣∣∣

× |ξ − tk| eλ|k,ξ|
s
∣∣∣f̂k(ξ)M ′∣∣∣ dξdη.

Finally, by (A.5), Cauchy-Schwarz in M and k, almost orthogonality (A.2) and (3.18),∣∣∣E 6=;v
R

∣∣∣ . ν
∑
M∈D

∑
k 6=0

∥∥∥√−∆LAfk

∥∥∥
2

∥∥(1− (v′)2
)
M

∥∥
Gλ,σ

∥∥∥√−∆LA(fk)∼M

∥∥∥
2

. εν
∥∥∥√−∆LAf

∥∥∥2
2
, (5.16)

which can then be absorbed by the leading dissipation term in (5.3) for ε sufficiently small. This

completes the treatment of E 6=;v
R and of the entire non-zero frequency error term E 6=.
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5.2 Dissipation error term: zero frequencies

For treating E0 in (5.3), the main challenge is dealing with the contributions of low frequencies,
where the leading dissipation term in (5.3) will not directly control E0. Physically, there is an
effective transport of enstrophy due to the motion of the coordinate system inducing a variable
dissipation coefficient. This low frequency effect is controlled by (2.61b), which ensures that the co-
ordinate system is relaxing sufficiently fast. Using again the shorthand (5.4), begin by decomposing
E0 with a homogeneous paraproduct:

E0 = ν
∑
M∈2Z

∫
Af0A

(
G(t, v)M∂vv(f0)<M/8

)
dv + ν

∑
M∈2Z

∫
Af0A

(
G(t, v)<M/8∂vv(f0)M

)
dv

+ ν
∑
M∈2Z

∑
M/8≤M ′≤8M

∫
Af0A (G(t, v)M ′∂vv(f0)M ) dv

= E0
HL + E0

LH + E0
R.

Consider ∣∣E0
HL

∣∣ . ν
∑
M∈2Z

∫ ∣∣∣Af̂0(η)∼MA0(η)Ĝ(η − ξ)Mξ2f̂0(ξ)<M/8

∣∣∣ dη.
On the support of the integrand,

||η| − |η − ξ|| ≤ |ξ| ≤ 3

16
|η − ξ| , (5.17a)

13

16
|η − ξ| ≤ |η| ≤ 19

16
|η − ξ| , (5.17b)

which implies that by (A.8) and (3.13) followed by (A.13) we have,∣∣E0
HL

∣∣ . ν
∑
M∈2Z

∫ ∣∣∣Af̂0(η)∼MA0(η − ξ)Ĝ(η − ξ)Mξ2f̂0(ξ)<M/8e
λ|ξ|s

∣∣∣ dη.
Due to (5.17), on the support of the integrand there always holds |ξ| . |η| and therefore by (A.5),
Cauchy-Schwarz in M and (3.18a) (also almost orthogonality (A.2) and σ > 1)∣∣E0

HL

∣∣ . ν
∑
M∈2Z

∫ ∣∣∣ηAf̂0(η)∼MA0(η − ξ)Ĝ(η − ξ)Mξf̂0(ξ)<M/8e
λ|ξ|s

∣∣∣ dη
. ν

∑
M∈2Z

‖∂vA(f0)∼M‖2
∥∥∂v(f0)<M/8

∥∥
Gλ,σ

∥∥A (1− (v′)2
)
M

∥∥
2

. νε ‖∂vAf0‖22 , (5.18)

which is then absorbed by the dissipation term in (5.3) for ε sufficiently small.
The E0

LH term is treated similarly. The analogue of (5.17) (with the role of ξ and η−ξ swapped)
holds on the support of the integrand and hence from (A.8) and (3.13) followed by (A.13) (s > 1/2),
we have, ∣∣E0

LH

∣∣ . ν
∑
M∈2Z

∫ ∣∣∣Af̂0(η)∼Me
λ|η−ξ|sĜ(η − ξ)<M/8ξ

2A0(ξ)f̂0(ξ)M

∣∣∣ dη
. ν

∑
M∈2Z

∫ ∣∣∣ηAf̂0(η)∼Me
λ|η−ξ|sĜ(η − ξ)<M/8ξA0(ξ)f̂0(ξ)M

∣∣∣ dη.
37



Then by (A.5), almost orthogonality (A.2), Cauchy-Schwarz in M , σ > 1 and (3.18a) we get,∣∣E0
LH

∣∣ . ν
∑
M∈2Z

‖∂vA(f0)∼M‖2 ‖∂vA(f0)M‖2
∥∥∥(1− (v′)2

)
<M/8

∥∥∥
Gλ,σ

. νε ‖∂vAf0‖22 , (5.19)

which is again absorbed by the dissipation term in (5.3) for ε sufficiently small.
Finally, consider the remainder term and divide into separate cases based on the output fre-

quency:

E0
R = ν

∑
M∈2Z

∑
M/8≤M ′≤8M

∫
(Af0)≤1A (GM (∂vvf0)M ′) dv

+
∑
M∈2Z

∑
M/8≤M ′≤8M

∫
(Af0)>1A (GM (∂vvf0)M ′) dv

= E0;L
R + E0;H

R .

The E0;H
R term is relatively straightforward. Indeed, on the support of the integrand we may apply

(A.10) to deduce for some c ∈ (0, 1) that,∣∣∣E0;H
R

∣∣∣ . ∑
M∈2Z

∑
M/8≤M ′≤8M

∫
η,ξ

1|η|>1

∣∣∣Af̂0(η)J0(η)eλ|η|
s

〈η − ξ〉σ/2 Ĝ(η − ξ)M 〈ξ〉σ/2+1 ∂̂vf0(ξ)M ′
∣∣∣ dξdη

.
∑
M∈2Z

∑
M/8≤M ′≤8M

∫
η,ξ

1|η|>1

∣∣∣Af̂0(η)J0(η)ecλ|η−ξ|
s

〈η − ξ〉σ/2 Ĝ(η − ξ)M
∣∣∣

×
∣∣∣〈ξ〉σ/2+1 ecλ|ξ|

s

∂̂vf0(ξ)M ′
∣∣∣ dξdη.

By Lemma 3.1 followed by (A.13) and (A.14) we have∣∣∣E0;H
R

∣∣∣ . ν
∑
M∈2Z

∑
M/8≤M ′≤8M

∫
η,ξ

1|η|>1

∣∣∣Af̂0(η)eλ|η−ξ|
s

Ĝ(η − ξ)Meλ|ξ|
s

∂̂vf0(ξ)M ′
∣∣∣ dξdη

. ν
∑
M∈2Z

∑
M/8≤M ′≤8M

∫
η,ξ

1|η|>1

∣∣∣ηAf̂0(η)eλ|η−ξ|
s

Ĝ(η − ξ)Meλ|ξ|
s

∂̂vf0(ξ)M ′
∣∣∣ dξdη,

where in the last line we used |η| > 1 on the support of the integrand. Therefore, by (A.5) followed
by Cauchy-Schwarz in M and (3.18) (recall (5.4)),∣∣∣E0;H

R

∣∣∣ . ν
∑
M∈2Z

‖∂vAf0‖2
∥∥(1− (v′)2

)
M

∥∥
Gλ,2 ‖∂vA(f0)∼M‖Gλ,0

. εν ‖∂vAf0‖22 , (5.20)

which is then absorbed by the dissipation in (5.3) for ε sufficiently small.
Next we treat E0;L

R , which requires more care than E0;H
R . By Cauchy-Schwarz and Bernstein’s

38



inequalities, ∣∣∣E0;L
R

∣∣∣ ≤ ν ∑
M∈2Z

∑
M ′≈M

‖P≤1Af0‖2 ‖P≤1A (GM ′(∂vvf0)M )‖2

. ν
∑
M∈2Z

∑
M ′≈M

‖f0‖2 ‖GM ′(∂vvf0)M‖2

. ν
∑
M∈2Z

∑
M ′≈M

‖f0‖2
∥∥(1− (v′)2

)
M ′

∥∥
∞ ‖(∂vvf0)M‖2

. ν
∑
M∈2Z

‖f0‖2M
3/2
∥∥(1− (v′)2

)
∼M
∥∥
2
‖(∂vf0)M‖2

. ν
∑

M∈2Z:M≤1

‖f0‖2M
1/2
∥∥∂v (1− (v′)2

)
∼M
∥∥
2
‖(∂vf0)M‖2

+ ν
∑

M∈2Z:M>1

‖f0‖2M
1/2
∥∥∂v (1− (v′)2

)
∼M
∥∥
2
‖(∂vf0)M‖2 .

The first (low frequency) term is summed by Cauchy-Schwarz in M whereas the second term is
summed by paying additional derivatives on the last factor to reduce the power of M . Therefore
by (2.65) and (2.59a),∣∣∣E0;L

R

∣∣∣ . ν ‖f0‖2
∥∥∂v (1− (v′)2

)∥∥
2
‖∂vf0‖2 + ν ‖f0‖2

∥∥∂v (1− (v′)2
)∥∥

2
‖∂vAf0‖2

. ν ‖f0‖2 ‖∂vAf0‖
2
2 + ν ‖f0‖2

∥∥∂v (1− (v′)2
)∥∥2

2

. εν ‖∂vAf0‖22 + ε3
ν

〈νt〉3/2
. (5.21)

For ε small, the first term is absorbed by the dissipation term in (5.3) while the latter is integrable
in time uniformly in ν and cubic in ε.

Putting together all the contributions from (5.1): the Euler nonlinear bound (5.2), the dissipation
terms (5.3), the non-zero frequency dissipation error terms (5.7), (5.9), (5.12), (5.13), (5.15) and
(5.16) with the zero frequency dissipation error terms (5.19), (5.18), (5.20) and (5.21) and integrating
in time gives the bound (2.66a) for ε chosen sufficiently small.

6 Enhanced dissipation estimate (2.67)

Up to an adjustment of the constants in the bootstrap argument, it suffices to consider only t such
that νt3 ≥ 1 (say), as otherwise the decay estimate (2.67) follows trivially from the inviscid energy
estimate (2.66a).

Computing the time evolution of ‖Aνf‖2 from (2.48),

1

2

d

dt
‖Aνf‖22 = −CKν

λ + α

∫
Aνfeλ(t)|∇|

s

〈∇〉β 〈D(t, ∂v)〉α−1
D(t, ∂v)

〈D(t, ∂v)〉
∂tD(t, ∂v)P 6=0fdvdz

−
∫
AνfAν (u · ∇f) dvdz + ν

∫
AνfAν

(
∆̃tf

)
dvdz

≤ −CKν
λ +

1

8
νt2
∥∥1t≥2|∂v |AνP6=0f

∥∥2
2

−
∫
AνfAν (u · ∇f) dvdz + ν

∫
AνfAν

(
∆̃tf

)
dvdz. (6.1)
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As in (5.3) above, we write the dissipation term as a perturbation of ∆L,

ν

∫
AνfAν∆tfdvdz = −ν

∥∥∥√−∆LA
νf
∥∥∥2
2
−
∑
k 6=0

∫
AνfkA

ν
(
(1− (v′)2)(∂v − t∂z)2fk

)
dvdz

= −ν
∥∥∥√−∆LA

νf
∥∥∥2
2

+ Eν . (6.2)

First, we need to cancel the growing term in (6.1) that involves νt2 with part of the leading order
dissipation in (6.2). Indeed, we have

1

8
νt2
∥∥1t≥2|∂v |AνP 6=0f

∥∥2
2
− ν

∥∥∥√−∆LA
νP 6=0f

∥∥∥2
2

= ν
∑
k 6=0

∫ (
1

8
t21t≥2|η| − |k|2 − |η − kt|2

) ∣∣∣Aν f̂k(η)
∣∣∣2 dη

≤ −ν
8

∥∥∥√−∆LA
νP 6=0f

∥∥∥2
2
,

which implies from (6.1),

1

2

d

dt
‖Aνf‖22 ≤ −CK

ν
λ −

∫
AνfAν (u · ∇f) dvdz − ν

8

∥∥∥√−∆LA
νf
∥∥∥2
2

+ Eν . (6.3)

There are two challenges here: the Euler nonlinearity (the second term) and the error from the
dissipation (the final term).

6.1 Euler nonlinearity

We first divide into zero and non-zero frequency contributions, as they will be treated differently:

−
∫
AνfAν (u · ∇f) dvdz = −

∫
AνfAν (g∂vf) dvdz −

∫
AνfAν

(
v′∇⊥P 6=0φ · ∇f

)
dvdz

= E1 + E2.

The reason for this is the large disparity that Aν imposes between the zero-in-z mode and the
non-zero-in-z modes, which are mixed in E2 due to the z dependence of the velocity field ∇⊥P 6=0φ.
Indeed, the commutator trick that is used to recover part of the derivative in the treatment of the
Euler nonlinearity in [41, 9] normally requires that the norm not vary drastically in k (the discrete, z
wavenumber). During the proof of (5.2) in §5 of [9], the disparity introduced by J is recovered using
that it only occurs near the critical times, and hence decay of the velocity field can be transferred
back to regularity. This will not work here; instead we will make use of the high norm estimate
(2.66a) to recover the derivative and take advantage of the rapid decay of the velocity field given
by (4.2).

First consider the estimation of E1, which as various techniques in e.g. [41, 38, 9], begins with
the commutator trick (note that P=0g = g and AνP 6=0 = Aν):

−
∫
AνfkA

ν (g∂vf) dvdz =
1

2

∫
∂vg |Aνf |2 dvdz +

∫
Aνf [g∂vA

νf −Aν (g∂vf)] dvdz. (6.4)

The first term in (6.4) is controlled by Sobolev embedding and the decay from (2.59c),

1

2

∫
∂vg |Aνf |2 dvdz . ‖g‖∞ ‖A

νf‖22 .
ε

〈t〉2−KDε/2
‖Aνf‖22 . (6.5)

40



The latter term in (6.4) is expanded with a paraproduct (in both z and v):∫
Aνf [g∂vA

νf −Aν (g∂vf)] dvdz =
∑
N≥8

∫
Aνf

[
g<N/8∂vA

νfN −Aν
(
g<N/8∂vfN

)]
dvdz

+
∑
N≥8

∫
Aνf

[
gN∂vA

νf<N/8 −Aν
(
gN∂vf<N/8

)]
dvdz

+
∑
N∈D

∑
N/8≤N ′≤8N

∫
Aνf [gN ′∂vA

νfN −Aν (gN ′∂vfN )] dvdz

=
∑
N≥8

T 0
N +

∑
N≥8

R0
N +R0. (6.6)

On the Fourier side,

T 0
N = − i

2π

∑
k 6=0

∫
η,ξ
Aν f̂k(η) [Aνk(η)−Aνk(ξ)] ĝ(η − ξ)<N/8ξf̂k(ξ)Ndηdξ,

and on the support of the integrand there holds

||k, η| − |k, ξ|| ≤ |η − ξ| ≤ 3

16
|k, ξ| , (6.7a)

13

16
|k, ξ| ≤ |k, η| ≤ 19

16
|k, ξ| . (6.7b)

For the commutator, we write,

Aνk(η)−Aνk(ξ) = 〈D(t, η)〉α
[
eλ|k,η|

s

〈k, η〉β − eλ|k,ξ|
s

〈k, ξ〉β
]

+ eλ|k,ξ|
s

〈k, ξ〉β [〈D(t, η)〉α − 〈D(t, ξ)〉α] . (6.8)

Then,

T 0
N = −i

∑
k 6=0

∫
η,ξ
Aν f̂k(η) 〈D(η)〉α

[
eλ|k,η|

s

〈k, η〉β − eλ|k,ξ|
s

〈k, ξ〉β
]
ĝ(η − ξ)<N/8ξf̂k(ξ)Ndηdξ

− i
∑
k 6=0

∫
η,ξ
Aν f̂k(η)eλ|k,ξ|

s

〈k, ξ〉β [〈D(t, η)〉α − 〈D(t, ξ)〉α] ĝ(η − ξ)<N/8ξf̂k(ξ)Ndηdξ

= T 0;1
N + T 0;2

N .

Consider the more standard T 0;1
N first. We claim that by (6.7), on the support of the integrand

there holds, for some c ∈ (0, 1) (depending only on s and our Littlewood-Paley conventions),∣∣∣eλ|k,η|s 〈k, η〉β − eλ|k,ξ|s 〈k, ξ〉β∣∣∣ . |η − ξ|
〈ξ〉1−s

ecλ|η−ξ|
s

eλ|k,ξ|
s

〈k, ξ〉β ; (6.9)

see e.g. §5 of [9] or [41] combined with (A.8). Applying (6.9), (6.7) and (3.20) implies∣∣∣T 0;1
N

∣∣∣ .∑
k 6=0

∫
η,ξ

∣∣∣∣Aν f̂k(η) 〈η − ξ〉3α+1 ecλ|η−ξ|
s

ĝ(η − ξ)<N/8
ξ

〈ξ〉1−s
Aν f̂k(ξ)N

∣∣∣∣ dηdξ
.
∑
k 6=0

∫
η,ξ

∣∣∣|k, η|s/2Aν f̂k(η) 〈η − ξ〉3α+1 ecλ|η−ξ|
s

ĝ(η − ξ)<N/8 |k, ξ|s/2Aν f̂k(ξ)N
∣∣∣ dηdξ.
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Therefore, by σ > 3α+ 8 and (A.5) followed by (2.59c), we get

T 0;1
N .

∥∥g<N/8∥∥Gλ(t),σ−6

∥∥∥|∇|s/2Aνf∼N∥∥∥2
2
.

ε

〈t〉2−KDε
∥∥∥|∇|s/2Aνf∼N∥∥∥2

2
. (6.10)

After summing in N and choosing ε small, this term is absorbed by CKν
λ .

For T 0;2
N we crucially use that (3.21) applies; this is due to the fact that g does not depend on

z and will not work to treat E2. Indeed, (3.21) implies

T 0;2
N .

∑
k 6=0

∫
η,ξ

∣∣∣Aν f̂k(η)eλ|k,ξ|
s

〈k, ξ〉β 〈η − ξ〉3α ĝ(η − ξ)<N/8 〈D(t, ξ)〉α f̂k(ξ)N
∣∣∣ dηdξ.

By σ > 3α+ 8 and (A.5) followed by (2.59c) implies

T 0;2
N . ‖g‖Gλ(t),σ−6 ‖Aνf∼N‖22 .

ε

〈t〉2−KDε
‖Aνf∼N‖22 , (6.11)

which is an integrable contribution.
The ‘reaction’ term R0

N is dealt with easily using Lemma 3.7 and the bootstrap controls on
the higher norms. First note that Aν(g∂vf) = Aν(g∂vP 6=0f). Then, by Cauchy-Schwarz, (3.22),
σ ≥ β + 3α+ 7, Cauchy-Schwarz in N and (2.59c),∣∣∣∣∣∣

∑
N≥8

∫
AνfAν

(
gN∂vP 6=0f<N/8

)
dvdz

∣∣∣∣∣∣ ≤
∑
N≥8
‖Aνf∼N‖2

∥∥Aν (gN∂vP 6=0f<N/8
)∥∥

2

.
∑
N≥8
‖Aνf∼N‖2 ‖gN‖Gλ,β+3α

∥∥Aν∂vP 6=0f<N/8
∥∥
2

.
∑
N≥8
‖Aνf∼N‖2N ‖gN‖Gλ,β+3α

∥∥AνP 6=0f<N/8
∥∥
2

.
∑
N≥8
‖Aνf∼N‖2 ‖gN‖Gλ,β+3α+1

∥∥AνP6=0f<N/8
∥∥
2

. ‖g‖Gλ,σ−6 ‖Aνf‖22

.
ε

〈t〉2−KDε/2
‖Aνf‖22 , (6.12)

which is an integrable contribution. Similarly, by Bernstein’s inequalities, Cauchy-Schwarz in N
and (2.59c) we have∣∣∣∣∣∣

∑
N≥8

∫
AνfgN∂vA

νP 6=0f<N/8dvdz

∣∣∣∣∣∣ ≤
∑
N≥8
‖Aνf∼N‖2 ‖gN‖∞

∥∥∂vAνP6=0f<N/8
∥∥
2

.
∑
N≥8
‖Aνf∼N‖2N

3/2 ‖gN‖2
∥∥Aνf<N/8∥∥2

. ‖g‖H3/2 ‖Aνf‖22

.
ε

〈t〉2−KDε/2
‖Aνf‖22 , (6.13)

which again is integrable. The remainder terms R0 in (6.6) are treated very similar to the reaction
terms R0

N just completed; hence we omit the details and simply conclude∣∣R0
∣∣ . ε

〈t〉2−KDε/2
‖Aνf‖22 . (6.14)
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Next turn to E2. If the zero mode in z interacts with non-zero modes, possible now due to the z
dependence of the velocity field, then we can no longer apply (3.21) to gain regularity. Physically,
the issue is that gradients in the large zero frequency can be converted to large gradients in non-zero
frequencies by transport. By Cauchy-Schwarz and two applications of (3.22),

E2 ≤ ‖Aνf‖2
∥∥∥Aν (v′∇⊥P 6=0φ

)∥∥∥
2
‖∇f‖Gλ,β+3α

. ‖Aνf‖2 ‖f‖Gλ,β+3α+1

(∥∥∥Aν∇⊥P6=0φ
∥∥∥
2

+
∥∥∥Aν ((v′ − 1)∇⊥P 6=0φ

)∥∥∥
2

)
. ‖Aνf‖2 ‖f‖Gλ,β+3α+1

(
1 +

∥∥v′ − 1
∥∥
Gλ,β+3α

)∥∥∥Aν∇⊥P 6=0φ
∥∥∥
2
.

Then by σ ≥ β + 3α+ 1, Lemma 4.2, (2.59a), (2.60) and (2.59e),

E2 . ‖Aνf‖2 ‖Af‖2
(
1 +

∥∥A(v′ − 1)
∥∥
2

) ‖Af‖2 + ‖Aνf‖2
〈t〉2

.
ε3

〈t〉2
, (6.15)

an integrable, cubic in ε contribution and hence this completes the treatment of E2 and of the entire
Euler nonlinearity.

6.2 Dissipation error term

Since at high frequencies Aν defines a weaker norm than A, it will be possible to apply (5.5) and
the stronger control coming from (2.59e). Indeed, writing Eν on the Fourier side and applying (5.5)
implies

|Eν | . ν
∑
k 6=0

∫
η,ξ

∣∣∣Aν f̂k(η)Aνk(η)Ĝ(η − ξ) |ξ − tk|2 f̂k(ξ)
∣∣∣ dηdξ

. ν
∑
k 6=0

∫
η,ξ

∣∣∣√−∆LA
ν f̂k(η)Aνk(η) 〈η − ξ〉 Ĝ(η − ξ) |ξ − tk| f̂k(ξ)

∣∣∣ dηdξ.
By (A.9), (3.20) and 〈η〉β . 〈η − ξ〉β 〈ξ〉β we have

|Eν | . ν
∑
k 6=0

∫
η,ξ

∣∣∣√−∆LA
ν f̂k(η) 〈η − ξ〉β+3α+1 eλ|η−ξ|

s

Ĝ(η − ξ) |ξ − tk|Aν f̂k(ξ)
∣∣∣ dηdξ.

Therefore, by (A.5), σ > β + 3α+ 2 and k 6= 0 followed by (3.18) we get

|Eν | . ν
∑
k 6=0

∥∥1− (v′)2
∥∥
Gλ,σ

∥∥∥√−∆LA
νfk

∥∥∥2
2

. εν
∥∥∥√−∆LA

νf
∥∥∥2
2
, (6.16)

which is absorbed by the leading order dissipation in (6.3) for ε small.
Putting together the estimates on (6.3) from the Euler nonlinearity ((6.5), (6.10), (6.11), (6.12),

(6.13), (6.14) and (6.15)) and from the dissipation error terms (6.16), we deduce (2.67) after inte-
grating in time and choosing ε sufficiently small.
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7 Coordinate system higher regularity controls

In §8 of [9], there are three main estimates on the coordinate system that need to be made, cor-
responding here to (2.66b), (2.66c) and (2.66e). That (2.66d) can be deduced from the proof of
(2.66b), (2.66c) and (2.66e) is shown in §8 of [9] and is not repeated here as there is little difference.

The main new issue for the Navier-Stokes case is to confirm that the variable coefficients in ∆̃t

do not slow down or otherwise impede the decay estimates. This could be possible, for example,
if the diffusion coefficient oscillated too much relative to the strength of the damping terms, as
gradients in the diffusion coefficient induce momentum transport. This effect is controlled by the
gradient decay estimate in (2.68b).

7.1 Proof of (2.66c)

Computing from (2.46) implies

d

dt

(
〈t〉4−KDε ‖g‖2Gλ(t),σ−6

)
= (4−KDε)t 〈t〉2−KDε ‖g‖2Gλ(t),σ−6

+ 〈t〉4−KDε d
dt

∥∥∥∥ A

〈∂v〉s
g

∥∥∥∥2
Gλ(t),σ−6

. (7.1)

Denoting the multiplier AS(t, ∂v) = eλ(t)|∂v |
s

〈∂v〉σ−6 (‘S’ for ‘simple’), the latter term gives

〈t〉4−KDε d
dt
‖g‖2Gλ(t),σ−6 = 2 〈t〉4−KDε λ̇(t)

∥∥∥|∂v|s/2 g∥∥∥2
Gλ(t),σ−6

+ 2 〈t〉4−KDε
∫
ASgAS∂tgdv, (7.2)

From (2.46),

2 〈t〉4−KDε
∫
ASgAS∂tgdv = −4 〈t〉4−KDε

t
‖g‖2Gλ(t),σ−6

− 2 〈t〉4−KDε
∫
ASgAS (g∂vg) dv

− 2 〈t〉4−KDε

t

∫
ASgAS

(
v′ < ∇⊥P6=0φ · ∇ũ >

)
dv

+ 2ν 〈t〉4−KDε
∫
ASgAS

(
∆̃tg

)
dv

= V1 + V2 + V3 + VD. (7.3)

The first three terms are basically the same as in Euler, and are treated accordingly as in [9]. Indeed,
in §8 of [9] it is shown that the bootstrap hypotheses together with (A.12) and (2.52) imply

V2 ≤
KDε

8
〈t〉3−KDε−s ‖g‖2Gλ,σ−6 , (7.4)

where we define KD to be the maximum of the constant appearing in this term and several other
below.

Treating V3 is not hard due to the regularity gap of 6 derivatives. Note that

∇ũ = −
(

v′(∂v − t∂z)∂zφ
∂vv
′(∂v − t∂z)φ+ v′(∂v − t∂z)∂vφ

)
, (7.5)
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and therefore by (A.12), (7.5), Lemma 4.1 and the bootstrap hypotheses,

‖∇P 6=0ũ(t)‖Gλ(t),σ−5 .
ε

〈t〉
. (7.6)

It is shown in §8 of [9] that (7.6), together with (A.12), Lemma 4.1 and the bootstrap hypotheses,
implies we have for some C > 0,

V3 . 〈t〉−KDε ε2 ‖g‖Gλ,σ−6 ≤
KDε 〈t〉4−KDε

8t
‖g‖2Gλ,σ−6 + Cε3t−3−KDε. (7.7)

Focus now on the term that is new for Navier-Stokes, VD. As in many other estimates in this
work, we write this as two contributions:

VD = −2ν 〈t〉4−KDε
∥∥∂vASg∥∥22 − 2ν 〈t〉4−KDε

∫
ASgAS

(
1− (v′)2

)
∂vvgdv

= −2ν 〈t〉4−KDε
∥∥∂vASg∥∥22 − VDE , (7.8)

a leading order dissipation term and an error term which remains to be controlled. We use again
the shorthand (5.4) and decompose the error term with a homogeneous paraproduct

VDE = 2ν
∑
M∈2Z

〈t〉4−KDε
∫
ASgAS

(
GM∂vvg<M/8

)
dv

+ 2ν
∑
M∈2Z

〈t〉4−KDε
∫
ASgAS

(
G<M/8∂vvgM

)
dv

+ 2ν
∑
M∈2Z

〈t〉4−KDε
∑

M/8≤M ′≤8M

∫
ASgAS (GM ′∂vvgM ) dv

= VDE,HL + VDE,LH + VDE,R.

As in the zero frequency dissipation error terms in §5.2, the remainder term is the most delicate
due to the contributions of low frequencies.

First we deal with VDE,LH , which on the Fourier side is written as

VDE,LH . ν
∑
M∈2Z

〈t〉4−KDε
∫
η,ξ

∣∣∣AS ĝ(η)AS(η)Ĝ(η − ξ)<M/8 |ξ|2 ĝ(ξ)M

∣∣∣ dηdξ.
On the support of the integrand, (5.17) holds with the role of ξ and η−ξ reversed. Hence, by (A.8),
for some c ∈ (0, 1):

VDE,LH . ν
∑
M∈2Z

〈t〉4−KDε
∫
η,ξ

∣∣∣ηAS ĝ(η)ecλ|η−ξ|
s

Ĝ(η − ξ)<M/8ξA
S(ξ)ĝ(ξ)M

∣∣∣ dηdξ.
Therefore by (A.5), σ > 8 followed by (A.2) and (3.18a) we have

VDE,LH . ν 〈t〉4−KDε
∑
M∈2Z

∥∥∂vASg∼M∥∥22 ∥∥∥AS ((v′)2 − 1
)
<M/8

∥∥∥
2

. εν 〈t〉4−KDε
∥∥∂vASg∥∥22 , (7.9)

which is absorbed by the leading order dissipation term in (7.8) for ε small.
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The treatment of VDE,HL is similar to VDE,HL. Indeed, we have

VDE,HL . ν
∑
M∈2Z

〈t〉4−KDε
∫
η,ξ

∣∣∣AS ĝ(η)AS(η)Ĝ(η − ξ)M |ξ|2 ĝ(ξ)<M/8

∣∣∣ dηdξ,
and (5.17) holds on the support of the integrand. Therefore, on the support of the integrand there
still holds |ξ| . |η|, and hence using (A.8) we have for some c ∈ (0, 1),

VDE,HL . ν
∑
M∈2Z

〈t〉4−KDε
∫
η,ξ

∣∣∣ηAS ĝ(η)AS(η − ξ)Ĝ(η − ξ)Mξecλ|ξ|
s

ĝ(ξ)<M/8

∣∣∣ dηdξ.
As in (7.9), it follows from (A.5), σ > 2, (A.1) and (3.18a) that

VDE,HL . εν 〈t〉4−KDε
∥∥∂vASg∥∥22 , (7.10)

which is absorbed by the leading order dissipation in (7.8) for ε small.
Finally turn to the remainder, VDE,R. As in §5.2, divide first into low and high frequencies

VDE,R = ν 〈t〉4−KDε
∑
M∈2Z

∑
M ′≈M

∫
(ASg)≤1A

S (GM ′∂vvgM ) dv

+ ν 〈t〉4−KDε
∑
M∈2Z

∑
M ′≈M

∫
(ASg)>1A

S (GM ′∂vvgM ) dv

= V L
DE,R + V H

DE,R.

The high frequencies V H
DE,R, as in §5.2, can be treated by adding a derivative on the first factor and

absorbing by the leading order dissipation in (7.8). We omit the details and simply conclude

V H
DE,R . εν 〈t〉4−KDε

∥∥∂vASg∥∥22 , (7.11)

which is absorbed by the leading order dissipation in (7.8) for ε small.
To treat V L

DE,R, also similar to §5.2, we use Cauchy-Schwarz followed by Bernstein’s inequalities,

V L
DE,R . ν 〈t〉4−KDε

∑
M∈2Z

∑
M ′≈M

∥∥P≤1ASg∥∥2 ∥∥P≤1AS (GM ′∂vvgM )
∥∥
2

. ν 〈t〉4−KDε
∑
M∈2Z

∑
M ′≈M

‖g<1‖2 ‖GM ′∂vvgM‖2

. ν 〈t〉4−KDε
∑
M∈2Z

∑
M ′≈M

‖g<1‖2 ‖GM ′‖∞ ‖∂vvgM‖2

. ν 〈t〉4−KDε
∑
M∈2Z

∑
M ′≈M

M3/2 ‖g‖2 ‖GM ′‖2 ‖∂vgM‖2

. ν 〈t〉4−KDε
∑
M∈2Z

∑
M ′≈M

M1/2 ‖g‖2 ‖∂vGM ′‖2 ‖∂vgM‖2

. ν 〈t〉4−KDε
∑

M∈2Z:M≤1

M1/2 ‖g‖2
∥∥∂v (1− (v′)2

)
∼M
∥∥
2
‖∂vgM‖2

+ ν 〈t〉4−KDε
∑

M∈2Z:M>1

M1/2 ‖g‖2
∥∥∂v (1− (v′)2

)
∼M
∥∥
2
‖∂vgM‖2 .
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The first term is summed by Cauchy-Schwarz in M (and (A.2)) whereas the second term is summed
by paying additional derivatives on the last factor to introduce a negative power of M and then
applying Cauchy-Schwarz. Therefore, since σ > 7,

V L
DE,R . ν 〈t〉4−KDε ‖g‖2

∥∥∂v (1− (v′)2
)∥∥

2
‖∂vg‖2 + ν 〈t〉4−KDε ‖g‖2

∥∥∂v (1− (v′)2
)∥∥

2
‖∂vg‖Gλ,σ−6

. ν 〈t〉4−KDε ‖g‖2
∥∥∂v (1− (v′)2

)∥∥
2
‖∂vg‖Gλ,σ−6

. εν 〈t〉4−KDε ‖∂vg‖2Gλ,σ−6 + ε−1ν 〈t〉4−KDε ‖g‖22
∥∥v′∂vv′∥∥22 .

Now we crucially use (2.65) (from (2.61b)) to deduce for some C > 0

V L
DE,R ≤ Cεν 〈t〉

4−KDε ‖∂vg‖2Gλ,σ−6 +
KD

8
ε 〈t〉3−KDε ‖g‖22 . (7.12)

The first term is absorbed by the leading order dissipation in (7.8) and the latter term is absorbed
by the damping term V1 in (7.3) by choosing ε sufficiently small.

By integrating (7.1) using (7.2), (7.3), (7.4), (7.7) (7.8), (7.9), (7.10), (7.11) and (7.12), the
proof of (2.66c) is completed by choosing ε sufficiently small.

7.2 Proof of (2.66b)

We extend the proof of the corresponding statement in [9]. From (2.51) we have

d

dt

(
〈t〉2+2s

∥∥∥∥ A

〈∂v〉s
h̄

∥∥∥∥2
2

)
= −(2− 2s)t 〈t〉2s

∥∥∥∥ A

〈∂v〉s
h̄

∥∥∥∥2
2

− CKv,2
λ − CK

v,2
w

− 2 〈t〉2+2s
∫

A

〈∂v〉s
h̄

A

〈∂v〉s
(
g∂vh̄

)
dv

+ 2t−1 〈t〉2+2s
∫

A

〈∂v〉s
h̄

A

〈∂v〉s
< v′∇⊥P 6=0φ · ∇f > dv

+ 2ν 〈t〉2+2s
∫

A

〈∂v〉s
h̄

A

〈∂v〉s
(

∆̃th̄
)
dv

= −CKv,2
L − CK

v,2
λ − CK

v,2
w + T h + F +Dh. (7.13)

The main nonlinear terms, T h and F , are treated in §8.2 of [9]. Using the techniques therein implies:∣∣∣T h∣∣∣ . εCKv,2
λ + εCKv,1

λ + ε 〈t〉2s+KDε/2
∥∥∥∥ A

〈∂v〉s
h̄

∥∥∥∥2
2

. (7.14)

Controlling the ‘forcing’ term F is one of the key estimates made in [9] (found in §8.2):

|F | . εCKv,2
λ + εCKv,2

w + εCKλ + εCKw

+ ε3
2∑
i=1

CCKi
λ + CCKi

w + εCKv,2
L + ε3 〈t〉2s−3 . (7.15)

Hence we only need to focus on the dissipation error term Dh, which we treat in a manner very
similar to VDE . Indeed, write

Dh = −2ν 〈t〉2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

− 2ν 〈t〉2+2s
∫

A

〈∂v〉s
h̄

A

〈∂v〉s
(
(1− (v′)2)∂vvh̄

)
dv

= −2ν 〈t〉2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

+ Eh (7.16)
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As usual, we use the shorthand (5.4) and decompose the error term via homogeneous paraproduct:

Eh = −2ν 〈t〉2+2s
∑
M∈2Z

∫
A

〈∂v〉s
h̄

A

〈∂v〉s
(
GM∂vvh̄<M/8

)
dv

− 2ν 〈t〉2+2s
∑
M∈2Z

∫
A

〈∂v〉s
h̄

A

〈∂v〉s
(
G<M/8∂vvh̄M

)
dv

− 2ν 〈t〉2+2s
∑
M∈2Z

∑
M ′≈M

∫
A

〈∂v〉s
h̄

A

〈∂v〉s
(
GM ′∂vvh̄M

)
dv

= EhHL + EhLH + EhR.

The treatments of EhHL and EhLH mirror that of VDE,HL and VDE,LH except using also (3.13). The
argument is essentially the same so it is omitted for brevity and we conclude that

EhHL + EhLH . εν 〈t〉2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

, (7.17)

which is absorbed by the leading order dissipation in (7.16) after choosing ε small.
The treatment of EhR is also very similar to the treatment of VDE,R. Indeed, we first divide into

low and high frequencies:

EhR = −2ν 〈t〉2+2s
∑
M∈2Z

∑
M ′≈M

∫ (
A

〈∂v〉s
h̄

)
≤1

A

〈∂v〉s
(
GM ′∂vvh̄M

)
dv

− 2ν 〈t〉2+2s
∑
M∈2Z

∑
M ′≈M

∫ (
A

〈∂v〉s
h̄

)
>1

A

〈∂v〉s
(
GM ′∂vvh̄M

)
dv

= ELR + EHR .

As for VDE , the high frequencies are treated without much effort as in §5.2 and absorbed by the
leading order dissipation (7.16) after choosing ε small. Hence this contribution is omitted. To
treat the lower frequencies we use an argument similar to that used to treat V L

DE,R. Indeed by
Cauchy-Schwarz and Bernstein’s inequalities we have as above (skipping repetitive details):∣∣ELR∣∣ . ν 〈t〉2+2s

∑
M∈2Z:M≤1

M1/2
∥∥h̄∥∥

2

∥∥∂v (1− (v′)2
)
∼M
∥∥
2

∥∥∂vh̄M∥∥2
+ ν 〈t〉2+2s

∑
M∈2Z:M>1

M1/2
∥∥h̄∥∥

2

∥∥∂v (1− (v′)2
)
∼M
∥∥
2

∥∥∂vh̄M∥∥2 .
The first (low frequency) term is summed by Cauchy-Schwarz in M (and (A.2)) whereas the second
term is summed by paying additional derivatives on the last factor to introduce a negative power
of M and then applying Cauchy-Schwarz. As in §7.1, since σ > s+ 1/2,∣∣ELR∣∣ . ν 〈t〉2+2s

∥∥h̄∥∥
2

∥∥∂v (1− (v′)2
)∥∥

2

∥∥∂vh̄∥∥2 + ν 〈t〉2+2s
∥∥h̄∥∥

2

∥∥∂v (1− (v′)2
)∥∥

2

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥
2

. εν 〈t〉2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

+ ε−1ν 〈t〉2+2s
∥∥h̄∥∥2

2

∥∥∂v (1− (v′)2
)∥∥2

2
.

By (2.65) we have ∣∣ELR∣∣ . εν 〈t〉2+2s

∥∥∥∥∂v A

〈∂v〉s
h̄

∥∥∥∥2
2

+ ε 〈t〉1+2s
∥∥h̄∥∥2

2
. (7.18)
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The first term is absorbed by the leading order dissipation in (7.16) and the latter term is absorbed
by the damping term CKv,2

L in (7.13) by choosing ε sufficiently small.
Combining (7.13) with (7.14), (7.15), (7.17) and (7.18) and integrating in time implies (2.66b)

after choosing ε sufficiently small.

7.3 Proof of (2.66e)

From (2.50) we have

1

2

d

dt

∥∥ARh∥∥2
2

= −CKh
λ − CKh

w −
∫
ARhAR (g∂vh) dv

+

∫
ARhARh̄dv + ν

∫
ARhAR

(
∆̃th

)
dv, (7.19)

where

CKh
w(τ) =

∥∥∥∥∥
√
∂tw

w
ARh(τ)

∥∥∥∥∥
2

2

(7.20a)

CKh
λ(τ) = (−λ̇(τ))

∥∥∥|∂v|s/2ARh(τ)
∥∥∥2
2
. (7.20b)

The nonlinear transport term is controlled in §8 of [9]; here we simply recall the result:∣∣∣∣∫ ARhAR (g∂vh) dv

∣∣∣∣ . εCKh
λ + εCKh

w + εCKv,1
λ + εCKv,1

w + ε3 〈t〉−2+KDε/2 . (7.21)

Similarly, the linear driving term from h̄ is treated in [9]; the result is for some Ch > 0:∣∣∣∣∫ ARhARh̄dv

∣∣∣∣ ≤ 1

4
CKh

λ +
1

4
CKh

w + Ch

(
CKv,2

λ + CKv,2
w

)
. (7.22)

The presence of the constant Ch is the primary reason for the constant Kv in the main bootstrap.
The new term we need to treat in (7.19) is the dissipation term, which we treat in the same

manner as the zero mode dissipation in the proof of (2.66a) in §5.2. As there, we write

ν

∫
ARhAR

(
∆̃th

)
dv = −ν

∥∥∂vARh∥∥22 + ν

∫
ARhAR

((
1− (v′)2

)
∂vvh

)
dv

= −ν
∥∥∂vARh∥∥22 + ER. (7.23)

The treatment of ER is essentially the same as E0 in §5.2 and is hence omitted for brevity. Indeed,
the coefficients of ∆̃t have resonant regularity from (3.18) and hence there is little difference between
AR and A in the proof. Analogous to §5.2 we get for ε sufficiently small,

ER . εν
∥∥∂vARh∥∥22 +

νε

〈νt〉3/2
∥∥ARh∥∥2

2
. (7.24)

Putting together (7.19), (7.21), (7.22), (7.23) and (7.24) and integrating in time completes the
proof of (2.66e) after choosing ε small and Kv sufficiently large (independent of ε of course).
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8 Low frequency estimates

8.1 Kinetic energy and energy dissipation control: (2.68c)

Compute the time evolution from the momentum equation

1

2

d

dt
‖ũ0‖22 = −

∫
ũ0 (g∂vũ0) dv −

∫
ũ0v
′ < ∇⊥P 6=0φ · ∇ũ > dv

+ ν

∫
ũ0(v

′)2∂vvũ0dv. (8.1)

For the first term we use integration by parts following by Sobolev embedding and (2.59c),

−
∫
ũ0 (g∂vũ0) dv =

1

2

∫
∂vg |ũ0|2 dv . ‖∂vg‖∞ ‖ũ0‖

2
2 .

ε

〈t〉2−KDε/2
‖ũ0‖22 . (8.2)

For the forcing from the non-zero frequencies, we use Hölder’s inequality followed by (2.61a),
Gagliardo-Nirenberg-Sobolev and Cauchy-Schwarz in k:∣∣∣∣∫ ũ0v

′ < ∇⊥P6=0φ · ∇ũ > dv

∣∣∣∣ =
∑
k 6=0

∫
ũ0v
′∇⊥φk · ∇ũ−kdv

≤ ‖ũ0‖2
(
1 +

∥∥v′ − 1
∥∥
∞
)∑
k 6=0

∥∥∥∇⊥φk∥∥∥
4
‖∇ũ−k‖4

. ‖ũ0‖2
∥∥∥∇⊥P 6=0φ

∥∥∥
H2
‖∇P6=0ũ‖H2 .

Therefore, by Lemma 4.1, (2.59a) and (7.6) we have∣∣∣∣∫ ũ0v
′ < ∇⊥P 6=0φ · ∇ũ > dv

∣∣∣∣ . ε2

〈t〉3
‖ũ0‖2 .

ε

〈t〉3
‖ũ0‖22 +

ε3

〈t〉3
. (8.3)

Finally we deal with the dissipation term (8.1):

ν

∫
ũ0(v

′)2∂vvũ0dv = −ν
∥∥v′∂vũ0∥∥22 − 2ν

∫
ũ0v
′∂vv

′∂vũ0dv. (8.4)

Note that by (2.61a),

‖∂vũ0‖22 ≈
∥∥v′∂vũ0∥∥22 .

To deal with the error term in (8.4), we employ the following Gagliardo-Nirenberg-Sobolev inequality
for functions X = X(v),

‖X‖∞ . ‖X‖1/22 ‖∂vX‖1/22 . (8.5)

Applying (8.5) along with (2.68b) to the error term in (8.4) implies,∣∣∣∣2ν ∫ ũ0v
′∂vv

′∂vũ0dv

∣∣∣∣ ≤ 2ν ‖ũ0‖∞
∥∥∂vv′∥∥2 ∥∥v′∂vũ0∥∥2

. ν ‖ũ0‖1/22

∥∥∂vv′∥∥2 ∥∥v′∂vũ0∥∥3/22

. νε−3 ‖ũ0‖22
∥∥∂vv′∥∥42 + εν

∥∥v′∂vũ0∥∥22
.

νε

〈νt〉4
‖ũ0‖22 + εν

∥∥v′∂vũ0∥∥22 . (8.6)

The second term is absorbed by the dissipation in (8.4) and the first term gives an integrable
contribution. Hence, integrating (8.1) with (8.6), (8.4), (8.3) and (8.2) implies (2.68c).
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8.2 Decay estimate (2.68b)

First, (2.68b) follows from (2.59a) for t ≤ ν−1, so hence assume t > ν−1 for the rest of the section.
The L2 decay estimate is obtained via an energy estimate and the application of a suitable Gagliardo-
Nirenberg-Sobolev inequality. The L2 gradient decay estimate is then obtained via iterating from
the L2 estimate as in standard Moser iteration methods. The iteration procedure could be carried
out for higher derivatives and higher Lp norms, but this is not necessary for our purposes.

Begin with the L2 norm by computing the time evolution from (2.50),

1

2

d

dt
‖h‖22 = −

∫
hg∂vhdv +

∫
hh̄dv + ν

∫
h(v′)2∂vvhdv. (8.7)

The first term is controlled via integration by parts, Sobolev embedding and (2.59c),

−
∫
hg∂vhdv =

1

2

∫
h2∂vgdv ≤

1

2
‖∂vg‖∞ ‖h‖

2
2 . ε 〈t〉−2+KDε/2 ‖h‖22 . (8.8)

By Cauchy-Schwarz, (2.52), (2.59c) and (2.61a) we have,∫
hh̄dv ≤ ‖h‖2

∥∥v′∂vg∥∥2 . ε

〈t〉2−KDε/2
‖h‖2

.
1

〈t〉3/2−KDε
‖h‖22 +

ε2

〈t〉5/2
; (8.9)

the choice of 5/2 is not sharp or significant.
Turn next to the dissipation term. By integration by parts,

ν

∫
h(v′)2∂vvhdv = −ν

∥∥v′∂vh∥∥22 − 2ν

∫
hv′∂vv

′∂vhdv. (8.10)

However, since ∂vv
′ = ∂vh we have by Sobolev embedding, (2.61a) and (2.59e),∣∣∣∣2ν ∫ hv′∂vv

′∂vhdv

∣∣∣∣ ≤ 2ν ‖h‖∞
∥∥(v′)−1

∥∥
∞
∥∥v′∂vh∥∥22

. ν ‖h‖H2

∥∥v′∂vh∥∥22
. εν

∥∥v′∂vh∥∥22 . (8.11)

Therefore, for ε chosen sufficiently small, this term can be absorbed by the leading order dissipation
in (8.10).

Combining (8.7), (8.8), (8.9), (8.10) and (8.11) with (2.61a) yields the differential inequality,

1

2

d

dt
‖h‖22 . −ν ‖∂vh‖

2
2 +

1

〈t〉3/2−KDε
‖h‖22 +

ε2

〈t〉5/2
. (8.12)

We next show that (8.12) implies ‖h‖2 . ε 〈νt〉−1/4. First, by the Gagliardo-Nirenberg-Sobolev
inequality and the L1 control (2.54) we have

‖h‖2 . ‖h‖
2/3
1 ‖∂vh‖1/32 . ε2/3 ‖∂vh‖1/32 .

Hence, denoting X(t) = ‖h(t)‖22, this implies with (8.12) that for t ≥ ν−1 we have the following
((2.68b) is immediate from (2.66e) for earlier times),

d

dt

(
(νt)1/2X(t)

)
.

√
ν√
t
X(t)− ν(νt)1/2ε−4X3(t) +

1

〈t〉3/2−KDε
(νt)1/2X(t) +

ε2ν1/2

〈t〉2
. (8.13)
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Next use the O(1) integrating factor

Y (t) = X(t) exp

[
−
∫ t

ν−1

〈τ〉KDε−3/2 dτ
]

;

note that X(t) ≈ Y (t). This collapses (8.13) to

d

dt

(
(νt)1/2Y (t)

)
.

√
ν√
t
Y (t)− ν(νt)1/2ε−4Y 3(t) +

ε2ν1/2

〈t〉2
. (8.14)

For K ′h chosen sufficiently large (depending on the constants in (8.14)), the following is a superso-
lution of the differential equality corresponding to (8.14):

YS(t) =
K ′hε

2

〈νt〉1/2
+

K ′h

〈νt〉1/2

∫ t

ν−1

ε2ν1/2

〈τ〉2
dτ.

Moreover, for K ′h large, we have Y (ν−1) ≤ YS(ν−1) and hence by comparison we have Y (t) ≤ YS(t)
for all t ≥ ν−1, from which the L2 estimate in (2.68b) follows after possibly adjusting Kv.

Turn next to the ∂vh bound stated in (2.68b), for which we will bootstrap off the L2 decay
estimate. Taking a derivative of (2.50) gives

∂t∂vh+ ∂vg∂vh+ g∂vvh = ∂vh̄+ ν∂v
(
(v′)2∂vvh

)
.

Hence calculating the evolution of the L2 norm and applying integration by parts:

1

2

d

dt
‖∂vh‖22 = −

∫
∂vg |∂vh|2 dv −

∫
∂vhg∂vvhdv

+

∫
∂vh∂vh̄dv − ν

∥∥v′∂vvh∥∥22
= −1

2

∫
|∂vh|2 ∂vgdv +

∫
∂vh∂vh̄dv − ν

∥∥v′∂vvh∥∥22 . (8.15)

The first term is treated with Sobolev embedding and (2.59c),

−1

2

∫
|∂vh|2 ∂vgdv . ε 〈t〉−2+KDε/2 ‖∂vh‖22 . (8.16)

The second term in (8.15) is controlled by (2.59c) and (2.61a) via (2.52) and Sobolev embedding:∣∣∣∣∫ ∂vh∂vh̄dv

∣∣∣∣ ≤ ‖∂vh‖2 (∥∥v′∥∥∞ ‖∂vvg‖2 + ‖∂vh‖2 ‖∂vg‖∞
)

. ε 〈t〉−2+KDε/2 ‖∂vh‖2 + ε 〈t〉−2+KDε/2 ‖∂vh‖22

. 〈t〉−
5
4
+KDε ‖∂vh‖22 + ε2 〈t〉−11/4 . (8.17)

We note that the 11/4 is not sharp or significant, however, it must be chosen larger than 5/2 to get
the optimal decay (and cannot be as large as 3). Putting together (8.15), (8.16) and (8.17) with
the bootstrap control on v′, we get

d

dt
‖∂vh‖22 . −ν ‖∂vvh‖

2
2 + 〈t〉−

5
4
+KDε ‖∂vh‖22 + ε2 〈t〉−11/4 .
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By interpolation and the L2 decay estimate in (2.61b) we have

‖∂vh‖2 ≤ ‖h‖
1/2
2 ‖∂vvh‖1/22 . 〈νt〉−1/8 ε1/2 ‖∂vvh‖1/22 ,

which therefore implies,

d

dt
‖∂vh‖22 . −νε

−2 〈νt〉1/2 ‖∂vh‖42 + 〈t〉−
5
4
+KDε ‖∂vh‖22 + ε2 〈t〉−11/4 .

Following the proof of the L2 decay estimate, we define Y (t) = ‖∂vh‖22 exp
[
−
∫ t
ν−1 〈τ〉−5/4+KDε dτ

]
and for t ≥ ν−1 we have

d

dt

(
(νt)3/2Y (t)

)
.

(νt)3/2

t
Y (t)− ν(νt)2ε−2Y 2(t) +

ε2ν3/2

〈t〉5/4
.

By comparing against the supersolution (for K ′′h sufficiently large),

YS(t) =
K ′′hε

2

(νt)3/2
+

K ′′hε
2

(νt)3/2

∫ t

ν−1

ν3/2

〈τ〉5/4
dτ,

and choosing K ′′h large enough to ensure Y (ν−1) < YS(ν−1) we deduce Y (t) . YS(t) for t ≥ ν−1,
which implies the ‖∂vh‖2 decay estimate in (2.68b) (after possibly adjusting Kv further).

8.3 Zero frequency L2 decay

Here we prove (2.68d), which is not necessary for the proof of the other statements in Proposition
2.2, but is included in the statement of Theorem 1 and gives the relaxation to the Couette flow.
Begin by computing the evolution of the L2 norm of the zero frequency,

1

2

d

dt
‖f0‖22 = −

∫
f0g∂vf0dv −

∫
f0v
′ < ∇⊥P 6=0φ · ∇f > dv + ν

∫
f0(v

′)2∂vvfdv. (8.18)

The first term is controlled via integration by parts, Sobolev embedding and (2.59c),

−
∫
f0g∂vf0dv =

1

2

∫
|f0|2 ∂vgdv . ε 〈t〉−2+KDε/2 ‖f0‖22 . (8.19)

Using the same proof as in (8.3), it follows from Lemma 4.1, (2.61a) and (2.59a) that

−
∫
f0v
′ < ∇⊥P6=0φ · ∇f > dv .

ε2

〈t〉2
‖f0‖2 .

ε

〈t〉3/2
‖f0‖22 +

ε3

〈t〉5/2
. (8.20)

Turn next to the dissipation term:

ν

∫
f0(v

′)2∂vvfdv = −ν
∥∥v′∂vf0∥∥22 − 2ν

∫
v′∂vv

′f0∂vfdv. (8.21)

By Hölder’s inequality, the Gagliardo-Nirenberg-Sobolev inequality (8.5), and (2.65) we have

ν

∫
f0v
′′∂vf0dv ≤ ν ‖f0‖∞

∥∥v′′∥∥
2
‖∂vf0‖2

. ν ‖f0‖1/22

∥∥v′′∥∥
2
‖∂vf0‖3/22

. ε−3ν
∥∥v′′∥∥4

2
‖f0‖22 + εν ‖∂vf0‖22

. εν 〈νt〉−3 ‖f0‖22 + εν ‖∂vf0‖22 . (8.22)
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Choosing ε sufficiently small and putting (8.19), (8.20), (8.21), (8.22) together with (8.18) gives the
differential inequality

1

2

d

dt
‖f0‖22 . −ν ‖∂vf0‖

2
2 +

(
ε

〈t〉3/2
+

εν

〈νt〉3

)
‖f0‖22 +

ε3

〈t〉5/2
, (8.23)

(the 5/2 is not sharp or significant). By the Gagliardo-Nirenberg-Sobolev inequality together with
(2.53) and (2.61a) we get,

‖f0‖2 . ‖f0‖
2/3
1 ‖∂vf0‖1/32 . ε2/3 ‖∂vf0‖1/32 . (8.24)

As in the proof of (2.68b) in §8.2, we use the integrating factor

Y (t) = ‖f0(t)‖22 exp

[
−
∫ t

ν−1

(
ε

〈t〉3/2
+

εν

〈νt〉3

)
dτ

]
,

together with (8.24), to reduce (8.23) to the differential inequality,

d

dt

(
(νt)1/2Y (t)

)
.

√
ν√
t
Y (t)− ν(νt)1/2ε−4Y 3(t) +

ε3ν1/2

〈t〉2
. (8.25)

For Kf chosen sufficiently large (depending on the constants in (8.25)), the following is a superso-
lution of the differential equality corresponding to (8.25):

YS(t) =
Kf ε

2

〈νt〉1/2
+

Kf

〈νt〉1/2

∫ t

ν−1

ε3ν1/2

〈τ〉2
dτ.

For Kf large, we have Y (ν−1) ≤ YS(ν−1) and hence by comparison it follows that Y (t) ≤ YS(t) for
all t ≥ ν−1, from which we deduce the L2 decay stated in (2.68d).
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A Appendix

A.1 Littlewood-Paley decomposition and paraproducts

In this section we fix conventions and notation regarding Fourier analysis, Littlewood-Paley and
paraproduct decompositions. See e.g. [13, 1] for more details.

For f(z, v) in the Schwartz space, we define the Fourier transform f̂k(η) where (k, η) ∈ Z× R,

f̂k(η) =
1

2π

∫
T×R

e−izk−ivηf(z, v)dzdv.
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Similarly we have the Fourier inversion formula,

f(z, v) =
1

2π

∑
k∈Z

∫
R
eizk+ivηf̂k(η)dη.

As usual the Fourier transform and its inverse are extended to L2 via duality. We also need to apply
the Fourier transform to functions of v alone, for which we use analogous conventions. With these
conventions note, ∫

f(z, v)g(z, v)dzdv =
∑
k

∫
f̂k(η)gk(η)dη

f̂g =
1

2π
f̂ ∗ ĝ

(∇̂f)k(η) = (ik, iη)f̂k(η).

This work makes heavy use of the Littlewood-Paley dyadic decomposition. Here we fix conven-
tions and review the basic properties of this classical theory, see e.g. [1] for more details. First we
define the Littlewood-Paley decomposition only in the v variable. Let ψ ∈ C∞0 (R;R) be such that
ψ(ξ) = 1 for |ξ| ≤ 1/2 and ψ(ξ) = 0 for |ξ| ≥ 3/4 and define ρ(ξ) = ψ(ξ/2)−ψ(ξ), supported in the
range ξ ∈ (1/2, 3/2). Then we have the partition of unity

1 = ψ(ξ) +
∑
M∈2N

ρ(M−1ξ),

where we mean that the sum runs over the dyadic numbers M = 1, 2, 4, 8, ..., 2j , ... and we define
the cut-off ρM (ξ) = ρ(M−1ξ), each supported in M/2 ≤ |ξ| ≤ 3M/2. For f ∈ L2(R) we define

fM = ρM (|∂v|)f,
f 1

2
= ψ(|∂v|)f,

f<M = f 1
2

+
∑

K∈2N:K<M

fK ,

which defines the decomposition

f = f 1
2

+
∑
M∈2N

fM .

Normally one would use f0 rather than the slightly inconsistent f 1
2
, however f0 is reserved for the

much more commonly used projection onto the zero mode only in z (or x). Recall the definition of
D from §1.2. There holds the almost orthogonality and the approximate projection property

‖f‖22 ≈
∑
M∈D

‖fM‖22 (A.1a)

‖fM‖2 ≈ ‖(fM )M‖2 . (A.1b)

The following is also clear:

‖|∂v| fM‖2 ≈M ‖fM‖2 .
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We make use of the notation

f∼M =
∑

K∈D: 1
C
M≤K≤CM

fK ,

for some constant C which is independent of M . Generally the exact value of C which is being used
is not important; what is important is that it is finite and independent of M . Similar to (A.1) but
more generally, if f =

∑
kDk for any Dk with 1

C 2k ⊂ suppDk ⊂ C2k it follows that

‖f‖22 ≈C
∑
k

‖Dk‖22 . (A.2)

During much of the proof we are also working with Littlewood-Paley decompositions defined in
the (z, v) variables, with the notation conventions being analogous. Our convention is to use N to
denote Littlewood-Paley projections in (z, v) and M to denote projections only in the v direction.

We have opted to use the compact notation above, rather than the commonly used alternatives

∆jf = f2j , Sjf = f<2j ,

in order to reduce the number of characters in long formulas. The last unusual notation we use is

P 6=0f = f− < f >,

which denotes projection onto the non-zero modes in z.
Another key Fourier analysis tool employed in this work is the paraproduct decomposition,

introduced by Bony [13] (see also [1]). Given suitable functions f, g we may define the inhomogeneous
paraproduct decomposition (in either (z, v) or just v),

fg = Tfg + Tgf +R(f, g) (A.3)

=
∑
N≥8

f<N/8gN +
∑
N≥8

g<N/8fN +
∑
N∈D

∑
N/8≤N ′≤8N

gN ′fN ,

where all the sums are understood to run over D, or the homogeneous paraproduct

fg =
∑
N∈2Z

f<N/8gN +
∑
N∈2Z

g<N/8fN +
∑
N∈2Z

∑
N/8≤N ′≤8N

gN ′fN .

The choice of which one we employ depends on the role that low frequencies are playing in the
proof. In our work we do not employ the notation in (A.3) since at most steps we are working in
non-standard regularity spaces and are usually applying multipliers which do not satisfy any version
of ATfg ≈ TfAg. Hence, we normally have to prove most everything by hand and only rely on
standard para-differential calculus as a guide.

A.2 Elementary inequalities and Gevrey spaces

In the sequel we show some basic inequalities which are extremely useful for working in this scale
of spaces. The first three are versions of Young’s inequality (applied on the frequency-side here).

Lemma A.1. Let f(ξ), g(ξ) ∈ L2
ξ(Rd), 〈ξ〉

σ h(ξ) ∈ L2
ξ(Rd) and 〈ξ〉σ b(ξ) ∈ L2

ξ(Rd) for σ > d/2,
Then we have

‖f ∗ h‖2 .σ,d ‖f‖2 ‖〈·〉
σ h‖2 , (A.4)∫

|f(ξ)(g ∗ h)(ξ)| dξ .σ,d ‖f‖2 ‖g‖2 ‖〈·〉
σ h‖2 (A.5)∫

|f(ξ)(g ∗ h ∗ b)(ξ)| dξ .σ,d ‖f‖2 ‖g‖2 ‖〈·〉
σ h‖2 ‖〈·〉

σ b‖2 . (A.6)
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The next set of inequalities show that one can often gain on the index of regularity when
comparing frequencies which are not too far apart (provided 0 < s < 1). They are crucial for doing
paradifferential calculus in Gevrey regularity.

Lemma A.2. Let 0 < s < 1 and x ≥ y ≥ 0 (without loss of generality).

(i) If x+ y > 0,

|xs − ys| .s
1

x1−s + y1−s
|x− y| . (A.7)

(ii) If |x− y| ≤ x/K for some K > 1 then

|xs − ys| ≤ s

(K − 1)1−s
|x− y|s . (A.8)

Note s
(K−1)1−s < 1 as soon as s

1
1−s + 1 < K.

(iii) In general,

|x+ y|s ≤
(

x

x+ y

)1−s
(xs + ys) . (A.9)

In particular, if 1
K y ≤ x ≤ Ky for some K <∞ then

|x+ y|s ≤
(

K

1 +K

)1−s
(xs + ys) . (A.10)

Using (A.5), (A.8) and (A.10) together with a paraproduct expansion, the following product
lemma is relatively straightforward. For contrast, the lemma holds when s = 1 only for c = 1.

Lemma A.3 (Product lemma). For all 0 < s < 1, σ ≥ 0 and σ0 > 1, there exists c = c(s, σ, σ0) ∈
(0, 1) such that the following holds for all f, g ∈ Gλ,σ;s:

‖fg‖Gλ,σ . ‖f‖Gcλ,σ0 ‖g‖Gλ,σ + ‖g‖Gcλ,σ0 ‖f‖λ,σ , (A.11a)

in particular, Gλ,σ;s has the algebra property:

‖fg‖Gλ,σ . ‖f‖Gλ,σ ‖g‖Gλ,σ (A.12)

Gevrey and Sobolev regularities can be related with the following two inequalities.

(i) For all x ≥ 0, α > β ≥ 0, C, δ > 0,

eCx
β ≤ eC(Cδ )

β
α−β

eδx
α
; (A.13)

(ii) For all x ≥ 0, α, σ, δ > 0,

e−δx
α
.

1

δ
σ
α 〈x〉σ

. (A.14)

Together these inequalities show that for α > β ≥ 0, ‖f‖Gβ;C,σ .α,β,C,δ,σ ‖f‖Gα;δ,0 .
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