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Abstract. The power response of a Doppler reflectometer is investigated by means

of the physical optics model, a simple model which considers basic scattering processes

at the reflection layer. Apart from linear and saturated scattering regimes, non-linear

regimes with an enhanced backscattered power are found. The different regimes are

characterized and understood based on analytical calculations.

The power response is also studied with 2D full wave simulations, where the

enhanced backscattered power regimes are also found in qualitative agreement with

the physical optics results. The ordinary and extraordinary mode are compared for

the same angle of incidence, concluding that ordinary mode is better suited for Doppler

reflectometry turbulence level measurements due to the linearity of its response.

The scattering efficiency is studied and a first approximation to describe it is

proposed. At the end, the application of the physical optics results to experimental

data analysis is discussed, in particular a formula to assess the linearity of Doppler

reflectometry measurements is provided.

1. Introduction

Scattering of electromagnetic waves has been widely used to study turbulence in fusion

plasmas [1, 2, 3, 4, 5]. In particular, Doppler reflectometry (DR) uses an oblique

microwave beam and studies the backscattered signal due to the turbulence at the

cut-off layer. This can provide experimental data on the density turbulence amplitude

and its propagation velocity, both important elements for studies of plasma dynamics

and performance [6].

Doppler reflectometry has been shown to be a useful diagnostic as it provides

radially localized, and perpendicular wavenumber (k⊥) resolved measurements [7],

furthermore the Doppler frequency shift of the backscattered signal is proportional
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to the perpendicular flow and hence the radial electric field assuming that the

phase velocity is small against the E × B drift velocity, vph ≪ vE×B. Using such

properties, k⊥-spectra [8, 9, 10, 11], Er-profiles [7, 9, 12, 13] and the dynamics of

turbulence under different conditions [14, 15] have been studied. Moreover the radial

structure of the turbulence can be studied by using two Doppler reflectometer channels

simultaneously [16], which is known as radial correlation Doppler reflectometry.

However, it has been observed in simulations [17, 18], experiments [10] and

theory [19, 20], that a non-linear response of the reflectometer is involved, which makes

the interpretation of data and k⊥-spectra challenging. The measured spectral indices

are small [10] and sometimes the spectra are even flat, in disagreement with gyrokinetic

simulations. This spectral flattening is believed to be due to a non-linear saturation of

the reflectometer signal.

The response of DR has been studied using simplified models such as the Physical

Optics (PO) [21], which simulates the scattering at the cutoff as the scattering of

electromagnetic waves by a corrugated reflecting surface. This model can be considered

a first approximation to the problem which neglects any scattering away from the cutoff.

Nevertheless it has been able to describe qualitatively several of the effects observed in

the experiments [21, 22, 23].

Nowadays DR is widely modelled via 2D full wave simulations (2DFW) [17, 18,

24, 25], which provide a full solution to the Maxwell equations in a plasma and

therefore contain all the relevant physics. They have recovered the effects observed in

the experiments [10], and have been useful for direct comparisons between gyrokinetic

simulations and experimental reflectometry data. However, the fact that 2DFW are

computational demanding for systematic scans of parameters, and since the plasma

is hidden in the currents involved in the codes and the solution is achieved just by

numerical integration, the physical understanding which can be gained is limited.

Analytic solutions to the reflectometry problem have been developed [19, 20]. They

have contributed considerably to the understanding of the physical processes involved,

e.g. linear and non-linear response and poor-localized forward scattering. However

they are still limited to special conditions regarding the density profile, polarization and

turbulence level. In particular for DR an ordinary mode linear [19] and non-linear [20]

theories are available, in the weak and strong phase modulation regime of the probing

wave, respectively. However the response of DR at the transition between both regimes

is not clear yet. The present paper investigates this region.

In this paper we study the power response of Doppler reflectometry by means of PO

and 2D full wave simulations. In Sec. 2 we explain and apply the PO model, in Sec. 3

the power response is studied analytically under this approximation and the scattering

process behind is understood. In Sec. 4, the Doppler reflectometry power response is

modelled using 2D full wave simulation for the ordinary(O) and the extraordinary(X)

mode. Later on the applicability of PO to Doppler reflectometry is discussed and its

capability as a reliable modelling tool is assessed. Finally in Sec. 5, the application of

the results here obtained to experimental data analysis is discussed.
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Figure 1. Schematic of the PO model geometry. A corrugated reflecting surface along

the y-axis is characterized by the displacement ε(y) in the x-direction. An incoming

paraxial Gaussian beam with wave number k0 is scattered at the surface. The angle

of incidence with respect to the x-axis is θ and the beam waist is w.

2. Physical Optics

The Physical Optics theory was originally developed for studying the scattering of

waves by rough surfaces [26]. It has been extensively applied in different fields as

oceanology [27], geology [28], meteorology [29] i.e. where the surfaces are characterized

by their scattering properties. The original theory has been extended [30, 31, 32] to

satisfy specific conditions of such applications.

The original theory [26] was applied for the first time for DR modelling in [21], based

on the idea of a roughness of the cutoff layer due to density turbulence in fusion plasmas.

It was introduced as a simple modelling tool, which makes strong assumptions such as

the slab approximation and the omission of any plasma-wave interaction far from the

cutoff. Consequently, it is not meant to give a complete description of DR. Nevertheless,

as will be shown later, it can describe the problem investigated with sufficient accuracy.

2.1. Original Model

The geometry of the system and the quantities are shown schematically in Fig. 1.

The original model [21] assumes a corrugated reflecting surface along the y-direction

characterized by ε(y), which gives its displacement in x-direction from the mean surface.

This rough surface scatters an incoming paraxial Gaussian beam with wavenumber

k0 = 2π/λ0 and an incidence angle θ, where λ0 is the vacuum wavelength of the incoming

wave and θ is measured with respect to the normal to the mean surface. Invariance along

the z-axis is assumed. PO provides the backscattered normalized electric field V given
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by,

V =

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp(−i2k0ε cos θ)(ε
′ sin θ − cos θ)

×
[∫

dy exp

(

− y2

w2

)]−1

, (1)

where w is the beam waist at the surface and ε′ = dε/dy. The backscattered electric field

is normalized to the reflected electric field from the a smooth surface at perpendicular

incidence, thus V is equivalent to the scattering coefficient in [21].

Equation 1 is deduced by solving the Helmholtz integral in the far field and by

applying the Kirchhoff approximation [26]. The last requires the corrugation amplitude

|ε| to be small compared to the wavelength λ0, this imposes a limitation on the

application range of the model which will be discussed in Sec. 3.1 Apart from its

application to large fusion plasmas where the slab approximation applies, the PO model

can be extended to more general geometries [33].

PO can be applied to Doppler reflectometry assuming that ε is related to the the

density fluctuations at the cut-off layer. The x- and y-directions can be considered

as radial and poloidal directions, respectively, while the z-axis is taken parallel to

the magnetic field. Since the turbulence evolves slowly in time (µs) compared

with the probing wave time scale (ns), the previous integral can be solved at each

time t for different turbulence realizations ε(y, t), obtaining a time signal for the

backscattered electric field V (t). Given that the reflectometer signal is proportional to

the backscattered electric field into the antenna, V (t) can be taken as the hetereodyne

signal I(t) + iQ(t) and can be analysed as in the experiment. The applicability of the

PO relies also on the good localization of the scattering process at the cutoff, this will

be discussed in Sec. 4.2.

2.2. Extensions to the model

In order to apply PO to Doppler reflectometry consistently, the restriction on the

turbulence level imposed by the Kirchhoff approximation has to be carefully considered.

It has to be checked whether Eq. 1 is still valid in the range of parameters of interest.

The Kirchhoff approximation assumes the corrugation to be locally flat, neglecting

the curvature of ε. Rodriguez [30] includes the curvature and gives a more general

expression for the scattered electric field. For our specific case this corrections provides

the extended model:

V = cos θ

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp (−i2k0ε cos θ) exp(−ε′ tan θ)

× exp

(

− i(1 + tan2 θ)ε′′

2k0 cos θ
− (ε′ tan θ)2

2

)[∫

dy exp

(

− y2

w2

)]−1

. (2)

Notice that while the first two exponentials appear also in the original model and the

third one can be reduced to the term ε′ sin θ−cos θ, the last exponential includes further
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Figure 2. (a) 2D wavenumber spectrum h2D(kx, ky) and (b) a sample of the turbulence

field δn(x, y). Elongation and tilting of the spectrum and turbulence structures can

be observed.

correction considering the curvature through ε′′ = d2ε/dy2. See appendix A for more

details on the derivation. In Sec. 3.1 results from Eq. 1 and 2 are compared in order to

establish the validity range of PO.

2.3. Synthetic turbulence

From theory [34] and simulations [35] the turbulence is expected to have a wavenumber

spectrum characterized by a decay of the spectral intensity with k. Furthermore due to

the different processes in the plasma, elongation and tilting of the turbulence structures

are also anticipated [36]. Therefore for the modelling purposes of this paper it is

reasonable to take a 2D Gaussian, elongated and tilted wavenumber spectrum:

h2D(kx, ky) =
ℓminℓmax

8π
exp

[

−(kx cos β + ky sin β)
2ℓ2min + (kx sin β − ky cos β)

2ℓ2max

8

]

, (3)

where β is the tilt angle of the spectrum respect to the x-axis, and ℓmax and ℓmin define the

spectral minor and mayor spectral widths, respectively. Apart of including elongation

and tilting the Gaussian shape provides well define statistical properties. This type of

turbulence has been studied already in [37]. In this paper we use the ℓmax = 1.40 cm,

ℓmin = 0.51 cm and β = 70◦. The contour plots of h2D are shown in Fig. 2a, where the

elongation and the tilting can be recognized.

The turbulence field, δn(x, y), is computed by 2D fast Fourier transform of h2D

after including random phases, a sample contour plot of the turbulence field is shown in

Fig. 2b, where random, elongated and tilted structures can be observed. The obtained

turbulence structures are predominantly elongated and tilted by 70◦ with respect to

the y-axis. The correlation lengths along the major and minor axes are ℓmax and ℓmin,

respectively.

The physical optics considers the turbulence only at the cut-off layer, corresponding

to a vertical slice of the turbulence field δn(x0, y). A sample of it is plotted in Fig. 3a.

Taking the turbulence at a fixed x is equivalent to a delta Dirac filter in x-space, which
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Figure 3. (a) Sample of the turbulence layer δn(x0, y) which is used as input for PO

and (b) the corresponding perpendicular wavenumber spectrum h(ky), the thicker line

depicts the input spectrum from Eq. 4.

requires the integration in the complete kx-space. Integrating h2D along kx provides the

spectrum of δn(x0, y) and equivalently the k⊥-spectrum:

h(ky) =

∫ ∞

−∞

dkxh2D(kx, ky) =
ℓy√
8π

exp(−ℓ2yk
2
y/8). (4)

ℓy is the perpendicular correlation length related to the 2D spectrum widths and tilting

by

ℓy =
ℓminℓmax

√

ℓ2min cos
2 β + ℓ2max sin

2 β
. (5)

In Fig. 3b the k⊥-spectrum computed from δn(x0, y) is plotted, the thicker line

depicts the input h(ky) from Eq. 4. For the parameter of this paper the perpendicular

correlation length is ℓy = 0.54 cm.

2.4. Numerical implementation

The integral in Eq. 2 is numerically computed (midpoint rule) over the interval

(−7w, 7w), ε is chosen to be proportional to the density turbulence δn at the cut-

off which is shown in Fig. 3a, thus ε(y) = σ δn(x0, y). The field δn is normalized to

have a standard deviation of 1, so that the turbulence level is given by the parameter

σ = εrms. Note that σ has the unit of a length.

Here in Sec. 2, we do a broad σ scan in order to study its role in the power response.

Later on, in Sec. 4 when PO and 2D full wave simulations are compare, σ is related to

the density and magnetic field profiles taking into account the polarization.

The time dependence is included by assuming the turbulence to be frozen and to

move along the surface in the y-direction, δn(x0, y− u⊥t). This is numerically achieved
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Figure 4. Power spectra of V simulated with PO for two angles of incidence θ and

two turbulence levels σ. The position of the obtained Doppler peak depends on the

angle of incidence and its intensity depends on the turbulence level.

by displacing the turbulence matrix nd grid points between consecutive time steps, thus

the perpendicular velocity of the turbulence is

u⊥ =
nd ∆y

∆t
, (6)

with ∆y the spatial resolution of the grid and ∆t the time step. Note that ∆t defines

the sampling frequency fS = ∆t−1.

2.5. Doppler reflectometer power response and k⊥-spectrum measurement

The response of the Doppler reflectometer is now studied using PO. The complex

signal V (t) is computed for two incidence angles θ and two turbulence levels σ, with

w = 1.66 cm and λ0 = 0.318 cm corresponding to a probing frequency f0 = c/λ0 =

94.4 GHz. Fig. 4 shows the power spectra of the signal, where the x-axis corresponds to

the frequency f normalized to the probing frequency fS. There Doppler shifted peaks

can be observed, that contain information on the backscattering with the turbulence at

k⊥ fulfilling the Bragg’s condition

kB = 2k0 sin θ. (7)

The area beneath the Doppler peak provides the backscattered power P , and its

frequency shift fD from 0 gives the perpendicular velocity u⊥ = 2πfD/kB.

For fixed θ, the Doppler peak intensity increases as the backscattered power

increases with the turbulence level σ. The frequency shift fD increases with θ as expected

from Eq. 7. For a fixed σ, the Doppler peak intensity decreases with θ because of the

smaller spectral density at larger k, Eq. 4.
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Figure 5. (a) Backscattered power P/P0 and (b) scaling exponent n as a function

of σ/λ0. At small σ the response of the diagnostic is linear with σ2. The critical

turbulence level σc/λ0 at which the response becomes non-linear is computed with

Eq. 18, and is indicated for each angle with dashed lines.

In order to study the linear and non-linear response of the reflectometer, a scan in

both σ and θ was performed. Fig. 5a depicts the backscattered power P as a function

of the turbulence level σ (solid lines), the colours represent different θ values. σ is

normalized with the characteristic length λ0. Given the normalization of V in Eq. 2,

the obtained power is normalized to the input power of the beam P0.

It can be observed for small σ, that the power increases proportionally to σ2 for all

θ values. This is the the so called linear regime, where the power of the signal follows

P ∝ σ2h2(kB). (8)

With increasing σ the power reaches a maximum and then decreases with σ. In this

saturation regime non-linear physical phenomena such as multiple and non-coherent

scattering take place, which explains the decrease of the power despite a turbulence

level increase.

The transition between the regimes is not always clear and appears to depend on

θ. For small angles the transition from linear to saturation is immediate (θ = 0◦ blue

line at σ/λ0 ≈ 10−1). However, for larger θ there is an intermediate non-linear regime

in which the power increases with σ faster than in the linear regime. Furthermore the

location and extension of this regime depends on θ, for larger angles it starts at smaller

σ and ends at larger σ.
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Figure 6. Input k⊥-spectrum (black) and measured k⊥-spectra with PO at different

σ. A good agreement with the input spectrum is found for small σ (blue line) due

to the linear response. For larger σ the spectral power is overestimated (green and

red line) for large k⊥ due to the enhanced power response. For the largest σ value

(magenta line), the obtained spectrum is flat due to saturation.

This transition can be better analysed by considering the local scaling exponent

n defined as P ∼ σn, it is computed from the simulated data series as ni =

ln(Pi+1/Pi)/ ln(σi+1/σi). Fig. 5b shows n as a function of σ/λ0 for the different values

of θ from Fig. 5a. It confirms that for low turbulence level the response is linear since

n = 2 is in agreement with Eq. 8. A transition to a enhanced power response non-linear

regime before saturation is observed, which is characterized by an increase of n. The

vertical dashed lines indicate analytic calculations of the transition points (see Sec. 3.2).

Moreover for large angle, e.g. θ = 30◦, there is a σ range where n ≈ 4, which indicates

the existence of high order regimes with an enhanced power response. The saturation

regime is observed when n decreases with σ.

The k⊥-spectrum is reconstructed in Fig. 6 by plotting the backscattered power P

as a function of kB. The different colours represent various σ values, which are also

marked by the vertical arrows at the top of Fig. 5a. The black line depicts the true k⊥-

spectrum computed from the turbulence field δn and corresponding to h2(ky) from Eq. 4.

Since the input turbulence is proportional to σ, all spectra have been normalized to σ2

in order to compare the different cases with the input spectrum. For a small turbulence

level (blue line) P gives a good measurement of the k⊥-spectrum, as is expected in

the linear regime, Eq. 8. When σ increases, the already discussed non-linear response

flattens progressively the measured k⊥-spectrum, until a flat spectrum is obtained in

the saturation regime (magenta line).

The flattening of the perpendicular wavenumber spectrum has been observed in

simulations and experiments [10, 18]. The common explanation states that the signal at

small k⊥ is saturated because of the higher amplitude of the turbulence while the signal
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Figure 7. Backscattered power P/P0 as a function of the turbulence level σ/λ0.

Extended (dashed), original (dotted) and reduced (solid) models are compared at

normal and oblique incidence. All three models agree in the σ range of interest

at large k⊥ is still linear. The results shown here contradict this explanation; the signal

at large k⊥ (large θ) is enhanced by the non-linear response (n > 2) and overestimates

the spectral density, while the signal at small k⊥ can still be linear and give an accurate

measurement of the spectrum as shown in Fig. 6 (green line).

3. Advanced interpretation of the physical optics model

In order to assess the suitability of PO as an accurate and meaningful modelling tool,

it is important to study the range of validity of PO regarding σ and to understand the

role of each term in Eq. 2. This will allow to identify simplifications of Eq. 2, leading

to a better understanding of the physical processes behind.

3.1. Effective physical optics model

We compute P as a function of σ for the extended model Eq. 2, the original model Eq. 1

and the effective model given by:

V = cos θ

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp(−2ik0ε cos θ)

×
[∫

dy exp

(

− y2

w2

)]−1

. (9)

It corresponds to the Rodriguez’s lowest order expression, which considers only basic

scattering physics and no detailed interaction of the rough surface scattering problem

(see appendix A for more details). The name given here is well justified later. The

results for θ = 0◦ (blue) and θ = 22.7◦ (red) are shown in Fig. 7.
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All the models agree for perpendicular incidence, this can be seen in Eq. 2 where

the first order term and the second part of the second order term disappear for θ = 0◦.

For oblique incidence, all the curves agree in the linear, non-linear and early saturation

range. For the largest turbulence levels the original model diverges. The effective model

saturates and the extended model decreases with the turbulence level.

We can conclude that, although the extended model treats more rigorously the

problem of the scattering from a rough surface, the original and effective models are

good enough in the σ range where we want to study the DR response. Hence the effects

discussed in this paper occur in a parameter range where the PO model obtained with

the Kirchhoff approximation remains valid. Furthermore the effective model of Eq. 9

is more suitable for analytic calculations as it is shown in the next section. The fact

that the effective model is able to describe the power response, suggests that general

scattering physics is relevant here, and not the specific rough surface scattering.

3.2. Perturbative expansion

The effective PO model, neglecting from now normalization terms, can be written as

follows:

V =

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp(−i2k0ε cos θ), (10)

where the first exponential corresponds to a filter in k-space centred at kB and with

a spectral resolution given by ∆k =
√
2/w. The filter f in real space and its Fourier

transform (denoted by a hat) are respectively:

f(y) = exp

(

−(∆k)2y2 cos2 θ

2
+ iykB

)

,

f̂(k) = exp

(

−(k − kB)
2

2(∆k)2

)

.

(11)

The second exponential in Eq. 10 can be Taylor expanded obtaining

V =

∫

dyf exp(−i2k0ε cos θ) ≈
∫

dy f(1− i2k0ε cos θ − 2k2
0ε

2 cos2 θ + ...),

where the different order contributions can be separated obtaining the signal as a series

of contributions,

V =

∫

dy f
︸ ︷︷ ︸

V0

+(−i2)k0 cos θ

∫

dy fε
︸ ︷︷ ︸

V1

+(−2)k2
0 cos

2 θ

∫

dy fε2

︸ ︷︷ ︸

V2

+.... (12)

The first term V0 corresponds to the specular reflection which here is constant and

typically excluded in Doppler Reflectometry data analysis.

The last equation can be regarded as an expansion in the parameter σ = εrms

(turbulence level). If σ is small, the series can be cut at first order, then the magnitude

of the reflectometer signal is proportional to the turbulence level Eq. 8 (linear regime).

On the other hand, if σ is large, all other higher order terms in addition to V1 play an

important role and the reflectometer signal saturates.
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For intermediate σ, the second order term V2 can be important while all other high

order terms are not. In this case the reflectometer signal is proportional to the square of

the turbulence level σ2 (quadratic regime), thus the power increases with the turbulence

level faster than in the linear regime, with n = 4. There is a critical σc at which the

transition from linear to quadratic regime takes place. It can also be considered the

upper limit of the linear regime, which has been observed to move to lower turbulence

levels with θ (Fig. 5) and with the correlation length of the turbulence (extra scans not

shown here).

In order to calculate σc we estimate the magnitude of the different contributions in

Eq. 12. The first order term is

V1(t) = −i2k0 cos θ

∫

dy f(y)ε(y − u⊥t), (13)

The backscattered power can be computed from the Fourier transform of the signal.

Due to the assumed linear dispersion relation ω = u⊥k, the Fourier transform can be

computed in terms of k. Notice that V1(t) can be regarded as a convolution of f(y) and

ε(y), therefore the Fourier transform is calculated using the convolution theorem

V̂1(k) = −i2k0 cos θf̂(k)ε̂(k) = −i2k0 cos θσf̂(k)h(k).

In the last expression the spectrum of ε is given by the k⊥-spectrum and the turbulence

level ε̂(k) = σh(k). Notice that this first order term is linear in σ (turbulence level)

and corresponds to the true k⊥-spectrum filtered by f̂(k), this is in agreement with the

linear response expected for a Doppler reflectometer.

The magnitude of |V̂1| can be estimated taking into account that f̂ gives

contributions coming mostly from kB,

|V̂1| ∼ 2k0 cos θσh(kB), (14)

which is reflected in the description of the linear regime in Eq. 8.

The second order term is

V2(t) = −2k2
0 cos

2 θ

∫

dy f(y)ε2(y − u⊥t),

following the same procedure done for the first order term, the Fourier transform is

obtained,

V̂2(k) = −2k2
0 cos

2 θf̂(k)ε̂2(k) = −2k2
0 cos

2 θf̂(k)(ε̂ ∗ ε̂)(k).
here we used the convolution (∗) theorem. The order of magnitude of this term can be

estimated as

|V̂2| ∼ 2k2
0 cos

2 θσ2(h ∗ h)(kB). (15)

Note that the second order term is quadratic in σ and involves the convolution:

(h ∗ h)(kB) =
∫ ∞

−∞

dk1 h(k1)h(kB − k1). (16)

The linear regime is characterized by a single scattering at kB, Eq. 14, as it is shown

schematically in the the k⊥-spectrum in Fig. 8a. The black arrow represents the single
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Figure 8. Schematic of (a) single and (b) double scattering processes represented on

top of the k⊥-spectrum. In (a) a single scattering event at kB (black arrow) indicates

contribution only from h(kB), while in (b) two scattering events with k1 and k2 (green

and red arrows) give other other contributions.

scattering event, giving a contribution h(kB) only. Moreover according to Eq. 16, the

quadratic regime is characterized by a double scattering event at k1 and k2(= kB − k1)

represented in Fig. 8b by green and red arrows, respectively. Contributions different

from h(kB) are also indicated. Although the Bragg’s condition is still fulfilled for the

entire process k1+k2 = kB, the integration over k1 implies the contribution of turbulence

with multiple k1 and k2 to the reflectometer signal, thereby k-selectivity is impaired.

This effect can be extrapolated to higher order regimes, where multiple

scattering events k1, k2, k3, . . . give contributions from the entire wavenumber spectrum,

independently of kB and the incidence angle θ. This explains the flat spectra observed

in the saturation regime.

The critical turbulence level σc is found by equating the first and second order

terms, Eq. 14 and 15, respectively;

|V̂1| = |V̂2|,

2k0 cos θh(kB)σc = 2k2
0 cos

2 θσ2
c (h ∗ h)(kB),

σc

λ0

=
1

2π cos θ

h(kB)

(h ∗ h)(kB)
. (17)

For the Gaussian k⊥-spectrum under study (Eq. 4) this expression gives:

σc

λ0

=
1

2π cos θ
√
2
exp

(

−
ℓ2yk

2
B

16

)

=
1

2π cos θ
√
2
exp

(

−
ℓ2yk

2
0 sin

2 θ

4

)

. (18)

This equation predicts a decrease of σc with θ and ℓy. In Fig. 5 σc is plotted as dashed

lines together with the simulated data. A good match to the linear - non-linear transition

is achieved.

In principle there are infinite regimes in which the reflectometer signal scales with

σn but the range in which they appear is limited. For large σ, if the argument of

the second exponential in Eq. 10 is larger than 1, all terms contribute and the series in

Eq. 12 cannot be truncated any more, in this case saturation is reached. The turbulence
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level for saturation σs can be roughly estimated from the magnitude of the term in the

exponential

| − i2k0 cos θε| ∼ 2k0 cos θσs = 1,

σs

λ0

=
1

4π cos θ
. (19)

Note that for normal incidence σc ≈ σs, thus in this case there is a direct transition from

the linear to the saturation regime as observed in Fig. 5a, while for oblique incidence

transitions to higher order regimes occur in between σc and σs.

Equations 17 and 19 were derived without any assumption on the k⊥-spectrum,

therefore they are valid for any spectral shape. The exact occurrence of the enhanced

power response regimes depends on the specific spectral shape. However if h(k) decreases

with k (as expected in real turbulence) a behaviour similar to the Gaussian case is

obtained. For a plain k⊥-spectrum (ℓy → 0 in Eq. 18) σc ≈ σs is obtained for every

angle leaving no room for an enhanced power response, thus a direct transition from

linear to saturation is obtained like in the normal incidence case. This case has been

already observed with 2DFW codes in references [17, 25], where either a completely or

locally (around kB) flat k⊥-spectrum was used and no enhanced power response was

reported.

4. 2D full wave simulations

In order to study the existence of enhanced power response regimes in Doppler

reflectometry, the power response is studied in detail using 2D full wave simulations.

This modelling provides a complete description of the interaction between the microwave

and the plasma, therefore these studies apply to the real response of a Doppler

reflectometer. 2DFW simulations are performed using the code presented in [17].

Moreover the suitability of the PO model to describe the real power response is

assessed later by comparing the results from the two modellings techniques for the

same conditions.

Ordinary(O) and extraordinary(X) mode 2DFW simulations with probing

frequencies f0 = 60.2 and 94.4 GHz were performed, respectively. The background

density profile is linear n0 = nc(x/L) and the cut-off is located at L = 5 cm from the

plasma boundary with a density nc = 4.5 · 1019 m−3. A uniform magnetic field with

a strength of 2 T is applied. The beam waist is w = 2.35 and 1.66 cm for O- and

X-mode, respectively. The turbulence field δn(x, y) is normalized and added to the

background density. The normalization is chosen to set the required turbulence level

given by δnrms/nc. Four values of θ are used such that the obtained k⊥ in between 2 and

12 cm−1 is experimentally meaningful. These parameters correspond to typical ASDEX

Upgrade conditions.

An example of the electric field contour plots for O-mode are depicted in Fig. 9.

The angle of incidence is 17.7◦ with respect to the normal of the plasma density isolines.
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Figure 9. Electric field contour plots for O-mode with an incidence angle θ = 17.7◦

and different turbulence level δn/nc = 0.1% (a), 1.6% (b) and 8.0%. The nominal

cutoff is indicated by a dashed line.

The different plots correspond to various δnrms/nc. For low turbulence level Fig. 9a

the beam propagation is barely affected by the turbulence. For higher turbulence level

Fig. 9b and c an interaction with the turbulence is noticeable and the reflected beam is

perturbed.

4.1. Power response

The points in Fig. 10a and b show the backscattered power P computed from 2DFW as

a function of the turbulence level δnrms/nc for O- and X-mode, respectively. The solid

lines depict the results from PO which are discussed in the following sections. For low

turbulence level (∼0.1%) a linear response can be observed specially for the O-mode and

small θ X-mode. For larger turbulence level (∼1.0%) a faster growth of the power with

δnrms/nc is evident for large θ and specially X-mode, this indicates an enhanced power

response. For the largest turbulence level (∼8.0%) a saturation of the power is observed.

In order to study the linearity of the response, the scaling exponent n is computed and

plotted in Fig. 10c and d for O- and X-mode, respectively. The occurrence of n > 2 for

turbulence levels in between the linear and non-linear saturation regime confirms the

existence of the enhanced power response regimes in DR.

Note that for a fixed θ, the X-mode power response becomes non-linear at a lower

turbulence level compared to O-mode, indicating that the latter is better suited for

Doppler reflectometry. This is relevant for some application e.g. for radial correlation

Doppler reflectometry [38], where the comparison is performed at the same angle of

incidence. Nevertheless the role of the probed kB in the linearity of the response will be

discussed later.
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Figure 10. Power P for (a)O and (b)X-mode, and scaling exponent n for (c)O- and

(d)X-mode as a function of the turbulence level for different angles. 2DFW data are

plotted with points and PO results with solid lines.

The 2DFW results are in qualitative agreement with those obtained with PO. Hence

the same interpretation in terms of multiple scattering processes seems to be valid in

general for DR, particularly the enhanced regimes can be explained by double and triple

scattering events.

4.2. On the applicability of the physical optics model

In reality the interaction of the microwave beam with the plasma is a complex process.

Apart from the backscattering at the cutoff layer, forward and backscattering along

the incident and reflected beams are possible and may contribute to the reflectometer

signal. Nevertheless due to the minimization of the refractive index at the cutoff, the

main contribution to the DR signal is expected to be the backscattering well localized

in this region [7]. The last argument justifies the use of PO as a modelling tool for DR,

given that all plasma-wave interactions away from the cutoff are neglected.

In order to apply consistently PO the localization of the scattering has to be

assessed, at least for the case under study. This can be done using the weighting

function, which indicates the localization of the scattering in the linear regime [39, 40].

The absolute value of the weighting function |W | was computed from 2DFW data, it

corresponds to the squared electric field without turbulence averaged within a microwave
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Figure 11. Absolute value of the weighting function computed from 2DFW data for

O-mode and θ = 19.7◦, normalized to its maximum value in the simulated domain.

The strongest contribution can be observed at the cutoff, which is indicated with a

dashed line.The good localization of the interaction justifies the PO application.

period. In Fig. 11 an example weighting function is shown, which corresponds to the

O-mode case at θ = 17.7◦. The strongest contribution can be observed at the cutoff

(there is a slight displacement which is discussed in the Appendix B), whereas weaker

contributions appear in other regions. The dominance of the cutoff contribution justifies

the application of PO for this case. It is important to remark that although the weaker

contributions away from the cutoff are not relevant for the power response, they may be

important for radial correlation length studies, where signal contributions of very low

amplitude can still give strong correlations [41].

The weighting function argument is valid only in the linear regime. In the strong

non-linear regime (saturation) the incoming beam is substantially affected by the

turbulence before it reaches the cutoff, as can be seen in Fig. 9c. This effect is not

included in the PO model, where the beam is always smooth (however a perturbation

of the beam could be included in Eq. 2), hence the PO is not expected to be a good

approximation in such regime. Nevertheless for moderate turbulence level like in Fig. 9b,

where the enhanced power response appears, this effect is small and the PO modelling

is a reasonable approximation to DR.

4.3. Comparison with physical optics results

In order to compare the physical optics and 2DFW, the density turbulence δn of 2DFW

has to be translated into a corrugation ε for PO. This is done by considering the linear
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(Born approximation) O-mode theory presented in [20], where the backscattered signal

is proportional to

VBorn ∝
∫

plasma

d~r δn(~r)E2
0(~r). (20)

E0 is the electric field of the probing beam as if there was no density turbulence.

In the last expression and in the linear contribution (Eq. 13) of PO the turbulence

is weighted by a function related to the beam and integrated over a certain domain,

the weighting function is E2
0(~r) and f(y), respectively. In order to make Eq. 13 and

20 analogous ε ∝ δn is chosen, which means using the density turbulence δn as the

corrugation in PO with a proper normalization.

Accordingly, we define a normalization factor N linking the turbulence level in PO

and 2DFW,

δnrms

nc

= Nσ. (21)

This normalization factor must account for the density gradient and magnetic field, as

well as the polarization which are no included in PO.

It is possible to estimate N using the already developed non-linear conventional

reflectometry theory from [20, 42]. For normal incidence, it predicts the critical

turbulence level for transition to the non-linear regime as,

1 =

(
δnrms

nc

)2

s

G2(2π)2Lrefℓx
λ2
0

ln

(
Lref

ℓx

)

, (22)

where Lref is the gradient scale length of the refractive index, which depends on the

polarization, and ℓx is the correlation length of the turbulence in the x-direction which

for our case is 1.05 cm. In the last expression the polarization is also included in the

enhancement factor G [43],

G =







1 for O-mode

(ω2
0 − 2ω2

p)(ω
2
0 − ω2

c ) + ω4
p

(ω2
0 − ω2

p − ω2
c )

2
for X-mode

, (23)

with ω0 = 2πf0, and ωp =
√

n0e2/ǫ0m and ωc = eB/m the electron plasma and

cyclotron frequencies, respectively.

Since the critical turbulence level for normal incidence in PO is provided by Eq. 19,

it can be compared with Eq. 22 in order to estimate N . Setting (δnrms/nc)s = Nσs one

obtains

N =

√

4

G2Lrefℓx ln(Lref/ℓx)
. (24)

For O-mode the refractive index is linear in the plasma density, therefore Lref

corresponds to the density gradient scale length (∇n0/n0)
−1. It means Lref = L = 5 cm

for our linear density profile. For X-mode on the other hand, the magnetic field has

to be taken into account. The refractive index was numerically computed and from
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its gradient at the cut-off we obtain Lref ≈ 0.5L. The enhancement factor for X-mode

computed at the cut-off is G ≈ 4.9.

The same f0, w and θ as for 2DFW were used for PO simulations, furthermore

a broad and fine scan of σ was performed. Note that the difference between O- and

X-mode is included through the different f0, w, G and Lref . Using the normalization

given in Eq. 21, the PO data are plotted with continuous lines together with 2DFW

results (points) in Fig. 10. Here the qualitative agreement in terms of the occurrence of

the different regimes is evident.

It is remarkable that the difference between O- and X-mode is reproduced by the PO

only by the choice of f0. According to PO, Eq. 17 indicates that the linearity depends

mainly on kB and the specific h. Therefore the large difference observed between both

polarizations is mainly due to the intrinsically smaller kB of the O-mode. Thus if O- and

X-mode are compared at the same θ, O-mode response is expected to be much more

linear, whereas this difference is not expected if they are compared at the same kB.

However the normalization factor N from Eq. 24 introduces a difference in the linearity

of the response between both polarizations.

The agreement of PO and 2DFW for O- and X-mode at θ = 8.73◦ (close to normal

incidence), suggests that the normalization factor N from Eq. 24 is appropriate, thus

PO may be used for quantitative estimations in DR. However here only one scenario of

ℓx, and density and magnetic field profiles has been studied. Further studies are require

in order to validate this normalization factor, specially for the case of shallow density

gradients where PO may fail [23] . Nevertheless the general character of Eq. 22 indicates

that it might remain valid.

Although 2DFW and PO have a qualitatively similar behaviour there are some

quantitative differences. In the pure linear regime at low turbulence level the two

models do not agree, the decay of P with θ is slower for PO. The scaling exponent n

has comparable values and seems to match better for small θ, while for large θ PO run

first into non-linear regime. In the following sections those differences are studied and

the possibility of a renormalization is discussed, seeking a better quantitative agreement

between PO and 2DFWmodelling. Nevertheless, it is remarkable that PO can reproduce

indeed most of the features of the 2DFW power response.

4.4. Linear response

The 2DFW simulations are extended in order to study the linear response, more

angles (including normal incidence) and lower turbulence level (0.01%) for X-mode

are included. The k⊥-spectra computed from the simulated data in linear regime are

plotted with circles in Fig. 12a, the black line represents the input spectrum, Eq. 4.

Although the reflectometer is operating in the linear regime, the reconstructed k⊥-

spectrum underestimates the true one for both O- and X-mode. Notice that the PO

measurements do match the true k⊥-spectrum because the linear response is reduced to

the k⊥-filter according to Eq. 14, the factor cos θ gives a negligible corrections.
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Figure 12. (a) k⊥-spectra in the linear regime obtained with O-mode and X-mode

from PO and 2DFW, the black line depicts the input one. 2DFW underestimates the

true spectrum. (b) Ratio of the 2DFW power and the input spectral density, it gives

the correction factor A2(θ) necessary to recover the true k⊥-spectrum

It is usually assumed that Doppler Reflectometry can provide a good measurement

of the k⊥-spectrum (Eq. 8), at least in the linear regime. However there is no

reason to discard possible extra dependencies of the backscattered power on the

parameters, e.g. on θ or kB. Such dependencies have been already observed in 2DFW

simulations [17, 18, 45], where a correction factor was necessary in order to recover the

input spectrum. Results from linear theory also confirm that the so called scattering

efficiency affects the backscattered power [44] and may introduce a factor depending on

the angle of incidence.

The power measured by the reflectometer can be written

P2DFW = C

(
δnrms

nc

)2

A2(θ)h(kB)
2, (25)

where a correction factor A(θ) accounting for the scattering efficiency has been included,

and C is a normalization constant of the power. A2(θ) is computed by dividing P2DFW

by the true spectral intensity h(kB)
2, the data are normalized to the normal incidence

and plotted (points) as a function of θ in Fig. 12b. The proposed A(θ) to be explained

next is depicted with solid lines. It is observed that the sensitivity of the reflectometer

decreases with θ considerably, also similar behaviour for O- and X-mode is observed.

Although a detailed and consistent study of the scattering efficiency is needed, we

derive and discuss in Appendix B the following formula which should be taken as a first

approximation. Considering the k−1 dependency of the Green function for the Helmholtz

operator in the relevant geometry, and calculating the k value at the scattering position,

one can show that:

A(θ) =

[

1 +

(
2πLeff

λ0

)2/3

sin2 θ

]−1/2

. (26)

Leff is the gradient length of the refractive index, which for O-mode is L from the density

profile, and for X-mode is approximately 0.5L for the given parameters.
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Equation 26 is able to follow approximately the simulated data for O- and X-mode,

see Fig. 12. Thus 2DFW k⊥-spectra for the linear response can be corrected in order to

get the true one.

4.5. Alternative normalization for the physical optics

The scattering efficiency can also be used to improve the quantitative agreement of PO

with 2DFW. The power in PO can be renormalized using A(θ), obtaining an agreement

of the measured k⊥-spectrum of PO and 2DFW in the linear regime. However it has also

been observed in [23], that renormalizing the PO turbulence level can also improve the

agreement between the two models. Therefore including the scattering efficiency A(θ)

in the normalization constant N from Eq. 24, could improve the match in the linear and

non-linear regimes.

5. Discussion on application to experimental data analysis

Although these studies were performed in slab geometry and with a linear density profile,

they could be applied in DR experimental data analysis. The scattering efficiency

expression in Eq. 26 can be used to correct the measured k⊥-spectrum when the

reflectometer is operating in the linear regime. In the experiment θ can be extracted

from k⊥ = 2k0 sin θ where k⊥ is typically obtained using ray tracing, and the refractive

index gradient length Lref can be computed from the density and magnetic field profiles.

The linearity criterion for normal incidence [42] can be generalized to oblique

incidence using the physical optics linearity criterion Eq. 17, obtaining
(
δnrms

nc

)2
G2(2π)2Lrefℓr

λ2
0

ln

(
Lref

ℓr

)[
cos θ

2

(h ∗ h)(2k0 sin θ)
h(2k0 sin θ)

]2

≪ 1, (27)

where ℓr is the radial correlation length of the density turbulence. This may be a

useful tool for DR, because it allows to evaluate whether the response is still linear

considering θ. Its effect is relevant since it reduces considerably the range of linear

operation specially for large θ.

The last expression requires previous knowledge on the k⊥-spectrum and radial

correlation length, however if a Gaussian spectrum is assume and an estimation of the

correlation length ℓ is used, the previous condition can be easily evaluated as follows:
(
δnrms

nc

)2
G2(2π)2Lrefℓ

λ2
0

ln

(
Lref

ℓ

)[
cos θ√

2
exp

(
ℓ2k2

0 sin
2 θ

4

)]2

≪ 1, (28)

Finally PO can be used to calculate efficiently the response to a trial h(k⊥), which

can be compared with the experimental k⊥-spectrum. From the comparison a better

trial h(k⊥) could be proposed and the same procedure repeated. After some iterations

the true k⊥-spectrum could be obtained self-consistently. The technical implementation

and a proof of principle are out of the scope of this paper and left for future work.
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6. Conclusions

The physical optics model has been used as an approximation to study the power

response of Doppler reflectometry. The linear and non-linear saturation regimes already

observed in the references [17, 19, 20] are recovered, however for oblique incidence, higher

order regimes with an enhanced power response are observed. They are characterized

by scaling exponents larger than 2, i.e. the backscattered power grows faster with the

turbulence level than in the linear regime. This enhanced power response is found to be

responsible for the flattening of the k⊥-spectrum, which is over-estimated at large k⊥.

After checking the range of applicability of physical optics, the different regimes

have been studied analytically. A perturbative expansion of the backscattered signal in

the turbulence level has been proposed. This expansion explains the different regimes as

contributions from a multiple scattering process. Furthermore, an analytical expression

for the critical turbulence level for linear response has been found.

Moreover, the power response of Doppler reflectometry has been studied by means

of 2D full wave simulations for O- and X-mode. For this more realistic case, the enhanced

power response regimes are also found in qualitative agreement with the physical

optics results. The latter suggests that the interpretation proposed for physical optics,

regarding the enhance power response regimes and the multiple scattering process, can

be applied to the understanding of 2D full wave simulations, and therefore Doppler

reflectometry in general.

It has also been observed that O-mode is better suited for Doppler reflectometry

turbulence level measurements, since its response is linear over a wider range in

turbulence levels compared with the X-mode for the same angle of incidence. This

difference is mostly due to the intrinsic smaller k⊥ values probed with O-mode.

Nevertheless the specific conditions of the density profile and magnetic field can make

O-mode globally more linear than the X-mode.

It is found that the 2D full wave simulations in the linear regime underestimate

the k⊥-spectrum due to the scattering efficiency. This effect is investigated and a

simple formula to describe it has been proposed as a first approximation. Finally

applications to Doppler reflectometry data analysis based on these results are discussed,

in particular the linearity criterion from [42] has been extended to include measurements

at oblique incidence and a formula to assess the linearity of the Doppler reflectometry

measurements has been provided.
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Appendix A. Extension of the Physical Optics model

The Kirchhoff approximation [26] calculates the reflected electric field by a corrugated

conducting surface assuming it locally flat, meaning this that the radius of curvature of

the surface corrugation is much larger than the incident wavelength λ0, Fig. A1a. This

condition is not always granted, especially for large corrugations ε, Fig. A1b.

λ

λ
(a) (b)

RC

Figure A1. Wavelength compared with the curvature of the surface corrugation, for

a large curvature radius RC (a) the surface can be assumed locally flat and Kirchhoff

approximation holds, but not for a small curvature radius as in (b).

The Kirchhoff approximation limits the applicability of the model to small

fluctuation levels. Such limitation was overcome by Rodriguez [30]. Here we present his

results and apply them to our particular case.

The back-scattered field in the far region is given by (Eq. 33 in [30])

V =

∫

dy exp(i2k0y sin θ) exp(−ik0ε cos θ)F (y), (A.1)

with f(y) the following cumulant expansion (Eq. 21 in [30])

F (y) = −k0 cos θ exp(−ik0ε cos θ) exp

(
∞∑

1

g(n)αn

n!

)

. (A.2)

The series in the last exponential introduces a momentum transfer perturbation

expansion, where α is a small parameter proportional to the ratio of momentum transfer

in the y-direction to momentum transfer in the x-direction. The smallness of α allows

to cut the series up to some order and to obtain a closed expression. The first two terms

in the series are:

g(1)α = −ε′ tan θ,

g(2)α2 = − i

k0 cos θ
(1 + tan2 θ)ε′′ − (ε′ tan θ)2.
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Notice that the beam term exp(− cos2 θy2/w2) can be included in Eq. A.1

To 0th order in α, the backscattered electric field is,

V = −k0 cos θ

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp(−2ik0ε cos θ). (A.3)

Including the normalization factor the last expression gives the effective model Eq. 9

discussed in Sec. 3.1.

To first order in α it is

V = −k0 cos θ

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp(−2ik0ε cos θ) exp(−ε′ tan θ).(A.4)

Notice that in the first order expression, Eq. A.4, the last term can be Taylor expanded,

exp(−ε′ tan θ) ≈ 1 − ε′ tan θ = −(ε′ sin θ − cos θ)/ cos θ, recovering the original PO

model [21].

To second order one obtains

V = −k0 cos θ

∫

dy exp

(

−y2 cos2 θ

w2
+ i2k0y sin θ

)

exp(−2ik0ε cos θ) exp(−ε′ tan θ)

× exp

(

− i(1 + tan2 θ)ε′′

2k0 cos θ
− (ε′ tan θ)2

2

)

.

The second derivative ε′′ contains the curvature of the corrugation, going beyond the

Kirchhoff approximation.

The last expression can be normalized to the reflected electric field without

turbulence for perpendicular incidence, instead of oblique as in [21]. This allows to

compare the signal at different angles of incidence as it is done in the experiments, e.g.

for perpendicular wave number spectra studies. Thus the extended model is

V = cos θ

∫

dy exp

(

−cos2 θy2

w2
+ i2k0y sin θ

)

exp (−i2k0ε cos θ) exp(−ε′ tan θ)

× exp

(

− i(1 + tan2 θ)ε′′

2k0 cos θ
− (ε′ tan θ)2

2

)[∫

dy exp

(

− y2

w2

)]−1

, (A.5)

Appendix B. Scattering efficiency

The effect of the scattering efficiency has been already observed in 2DFW

simulations [17, 18, 45], however it is not yet well understood and predictions applicable

to experimental data analysis are not available. Although a detailed and consistent

study of the scattering efficiency is needed, we derive here a formula which should be

understood as a first approximation. Nevertheless it recovers the trends of the presented

simulations, and allows to understand the role of the basic parameters. A detailed

validation of the proposed formula and a rigorous study of the scattering efficiency are

left for future work.

The electric field E for O-mode propagation in cold plasma is described by,

(∇2 + k2)E =

[

∇2 + k2
0

(

1− n0

nc

)]

E = k2
0

δn

nc

E (B.1)
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where k2 = k2
0(1 − n0/nc) with nc = ǫ0mω2/e2 and n0 the electron density without

turbulence.

If δn ≪ nc, the Born approximation applies [46]. Thus the electric field can be

written as E = E0 + E1, where E0 is the electric field for the no-turbulence case and

E1 is the scattered field. Given that the fields satisfy E1 ≪ E0, after replacing E in

Eq. B.1 one finds,

(∇2 + k2)E0 = 0, (B.2)

(∇2 + k2)E1 = k2
0

δn

nc

E0 (B.3)

Note that E0 fulfils the homogeneous Helmholtz equation, while E1 satisfies the

inhomogeneous Helmholtz equation with a source term (right hand side) proportional

to δnE0. It means that the scattering is produced by the interaction of the unperturbed

field with the density turbulence.

The scattered field E1 can be computed using the Green function G of the 2D

Helmholtz operator using,

E1 = k2
0

∫

dx dy G2D
δn

nc

E0.

However considering that E0 is stronger in a narrow region along the cutoff, as it can be

observed in Fig. 11, one can assume that the system shrinks to one dimension. Therefore

in order to estimate the scattering efficiency, we take the 1D Green function [47]

G1D(y) =
ieik|y|

2k
.

It introduces a k−1 dependency to the scattered field E1, as well as to the scattering

efficiency. Considering that the most of the contribution to the scattering comes from

the point where E0 is maximum (not exactly at the nominal cut-off), the scattering

efficiency is proportional to k−1 at that point.

In the following part, k at the E0 maximum is calculated analytically for O-mode.

For slab geometry with a linear density profile and oblique incidence (following [48])

Eq. B.2 becomes

∂2E0

∂x2
+ k2

0

(

1− x

L
− sin2 θ

)

E0 = 0

Using the transformation

ζ =

(
k2
0

L

)1/3

(L cos2 θ − x),

the previous equation turns into

∂2E0

∂ζ2
+ ζE0 = 0. (B.4)

Note that ζ = 0 gives the nominal cut off, where the normal refractive index vanishes.

The solution to Eq. B.4 is given by the Airy function, which has an absolute

maximum at ζmax ≈ 1. It is from this point (and not ζ = 0) where the most of
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Figure B1. Scattering efficiency A(θ) as a function of kB/k0 computed from Eq. B.6.

Two scalings with kB are indicated in different regions.

the contributions to the backscattering comes. This is evidenced in Fig. 11 where the

absolute maximum of the weighting function i.e. E0 is slightly displaced from the

nominal cutoff (dashed line). It corresponds to a position xmax = L cos2 θ − (L/k2
0)

1/3,

where the wave number is

k = k0

[(
1

k0L

)2/3

+ sin2 θ

]1/2

. (B.5)

The scattering efficiency correction factor is computed by normalizing k0/k for normal

incidence;

A(θ) =

[

1 +

(
2πL

λ0

)2/3

sin2 θ

]−1/2

. (B.6)

In Fig. B1 the scattering efficiency A(θ) is plotted as a function of kB/k0 for

the parameters used in this paper. It can be seen that, in the limit of large kB the

scattering efficiency scales as k−1
B , this would mean that the measured spectral index

can be underestimated by 1. In the limit of small kB the scattering efficiency is constant,

and in between both limits A(θ) scales with a kB exponent in between 0 and 1. Fig. B1

depicts also a scaling k−0.4
B at an intermediate position.

The last derivation assumes a strong localization of the scattering along the cutoff,

this is valid for the case under study as shown in Sec. 4.2. However in more general

cases, contributions far from the cutoff may be important [44] and hence a more general

approach is needed.

The previous calculation is not straight forward for X-mode. Here only an

estimation is provided, it consists in approximating numerically the X-mode dispersion

relation at the cut-off to

k2 = k2
0

(

1−
ω2
p

ω2

ω2 − ω2
p

ω2 − ω2
p − ω2

c

)

≈ k2
0

(
L− x

Lref

)

,
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where Lref is the gradient scale length of the refractive index. Lref can be used in Eq. B.6,

instead of L. For the parameters in this paper it is found Lref ≈ 0.5L. Notice that the

last procedure is the same used to calculate the gradient scale length of the refractive

index in Sec. 4.


