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Enhanced dynamic functional 
connectivity (whole-brain 
chronnectome) in chess experts
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 Armin Iraji5, Qiyong Gong6, Kaiming Li6, Franco Cauda7,8, Roberto Gasparotti9, 

Alessandro Padovani10, Barbara Borroni10 & Mauro Magoni1

Multidisciplinary approaches have demonstrated that the brain is potentially modulated by the 

long-term acquisition and practice of specific skills. Chess playing can be considered a paradigm for 
shaping brain function, with complex interactions among brain networks possibly enhancing cognitive 
processing. Dynamic network analysis based on resting-state magnetic resonance imaging (rs-fMRI) can 
be useful to explore the effect of chess playing on whole-brain fluidity/dynamism (the chronnectome). 
Dynamic connectivity parameters of 18 professional chess players and 20 beginner chess players were 
evaluated applying spatial independent component analysis (sICA), sliding-time window correlation, 

and meta-state approaches to rs-fMRI data. Four indexes of meta-state dynamic fluidity were studied: 
i) the number of distinct meta-states a subject pass through, ii) the number of switches from one meta-

state to another, iii) the span of the realized meta-states (the largest distance between two meta-states 

that subjects occupied), and iv) the total distance travelled in the state space. Professional chess players 

exhibited an increased dynamic fluidity, expressed as a higher number of occupied meta-states (meta-
state numbers, 75.8 ± 7.9 vs 68.8 ± 12.0, p = 0.043 FDR-corrected) and changes from one meta-state to 
another (meta-state changes, 77.1 ± 7.3 vs 71.2 ± 11.0, p = 0.043 FDR-corrected) than beginner chess 
players. Furthermore, professional chess players exhibited an increased dynamic range, with increased 

traveling between successive meta-states (meta-state total distance, 131.7 ± 17.8 vs 108.7 ± 19.7, 
p = 0.0004 FDR-corrected). Chess playing may induce changes in brain activity through the modulation 
of the chronnectome. Future studies are warranted to evaluate if these potential effects lead to 
enhanced cognitive processing and if “gaming” might be used as a treatment in clinical practice.

Neuroplasticity has always been considered as one of the most intriguing characteristics of the human brain1–4. 
In the last years, multidisciplinary research e�orts have progressively demonstrated that the brain is potentially 
modulable by the long-term acquisition and practice of speci�c skills5,6. From this point of view, several studies 
have clearly reported how chess playing can be considered a paradigm that may induce long term changes in the 
brain. Indeed, advanced chess players can simulate/imagine the best next moves starting from a reservoir of chess 
patterns (chunks)7 through the involvement of high-level cognitive functions such as planning future actions, 
visuo-spatial perception, working memory, problem solving, judgment and decision making, and selection of 
previously acquired schemes7–12.

Continuous practice can boost these speci�c cognitive processes, with consequent enhancement of neuroplas-
ticity mechanisms13,14. In particular, neuroimaging studies have shed light on how the brain is engaged during 
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chess playing7,15,16 and how the brain undergoes long term reshaping due to practice8–10,17. Interestingly, chess 
players show complex interactions among brain networks with i) greater deactivation of the default mode net-
work (DMN) and enhanced striatal-DMN integration during problem-solving8,9, ii) increased hub functional 
connectivity between the posterior fusiform gyrus and visuospatial attention and motor networks17,18, and iii) a 
more e�cient whole-brain organization (increased small-world topology)10 as compared to healthy volunteers 
not engaged in chess playing.

However, functional connectivity approaches usually rely on the conceptual framework that the functional 
coupling among brain regions is a static feature, with no change over short periods of time19–21. In the last few 
years, this paradigm has been shown to be simplistic, as methodological approaches able to study the human brain 
as an interacting dynamic system have been developed (dynamic functional network connectivity (dFNC), the 
chronnectome)22–28. Cross-network correlations on successive sliding windows from the original scan-length net-
work time-courses have revealed reproducible reccurring patterns of brain functional connectivity (time-varying 
connectivity)24,29,30. Recently, to incorporate key features of dynamic functional connectivity, the meta-state 
approach has been proposed31: for each subject, at a given point in time, the weighted probability to be in more 
than one state (distribution of probability of meta-state)31 can be de�ned. Brie�y, with this more �exible approach 
multiple states might be represented to varying degrees at the same point in time, exhibiting lesser distortion in 
the features under investigation since contributions of all overlapping states are considered32, also providing a 
much more condensed summary measure of dynamic functional connectivity. In this view, objective measures of 
meta-state dynamic �uidity may be computed, such as the number of meta-states a subject passes through or the 
overall distance travelled by each subject through the state space. �is highly reproducible approach31,33 has been 
already applied to schizophrenia31 and to neurodegenerative disorders34 and has helped in further understanding 
the neural basis of brain functioning22,35–38.

These premises set the stage for the present work, where we used the meta-state dynamic connectivity 
approach to explore di�erences between professional and beginner chess players, considering whole-brain �uid-
ity/dynamism (the chronnectome).

Methods
Subjects. Data were derived from a public dataset on chess players39 encompassing professional chess players 
with a regular training (training time: 4.17 ± 1.72 h/day) and a control group of sex- and age-matched beginner 
chess players, who knew rules and simple strategies of Chinese chess. Dataset access was made from the “B1000 
Functional Connectomes Project” (https://www.nitrc.org/projects/fcon_1000/). Subjects were recruited from the 
First National Intelligence Games held in Chengdu, China. All participants were right-handed and had no history 
of psychiatric or neurological disorders. No di�erences on observation skills or clear-thinking ability were found 
between these two groups, as already published39. Written informed consent was obtained from each subject 
and approval was obtained through the local Institutional Review Board of the West China Hospital of Sichuan 
University. Studies performed on this dataset are in accordance with relevant guidelines and regulations. Detailed 
information on this dataset has been reported in Li and colleagues’ study39.

Magnetic resonance Imaging (MRI) acquisition and preprocessing. MRI data were acquired on 
a 3T Siemens Trio system (Erlangen, German) at the MR Research Center of West China Hospital of Sichuan 
University, Chengdu, China. All MRI scans were performed when subjects were relaxed with their eyes open and 
�xated on a cross-hair centered on the screen. A T2-weighted gradient- echo echo-planar pulse sequence was 
used to obtain functional MRI (fMRI) images. A total of 205 whole brain echo-planar pulse sequence volumes 
were acquired using the following parameters: TR = 2000 ms, TE = 30 ms, �ip angle = 90°, axial slice thickness = 
5 mm, with no gap, slice number = 30, voxel size = 3.75 × 3.75 × 5 mm3. Functional preprocessing was carried 
out as previously published (for each subject, the �rst 5 volumes of the fMRI series were removed to account 
for magnetization equilibration; the remaining 200 volumes (total acquisition time: 6 minutes and 40 seconds) 
underwent slice-timing correction and were realigned to the �rst volume)34, using the toolbox for data pre-
processing and analysis for brain imaging (DPABI, http://rfmri.org/dpabi)40 based on the Statistical Parametric 
Mapping (SPM12) so�ware. Taking into account the signi�cant impact of head motion on resting-state fMRI41,42, 
we considered absolute (mean translation and mean rotation) and relative (framewise displacement, FD-P)42 
motion parameters. We consequently applied four levels of correction based on motion parameters: i) the abso-
lute motion cut-o�: any subject who had an absolute maximum displacement in any direction larger than 2.5 mm, 
or a maximum rotation (x,y,z) larger than 2.5°, was excluded from the study; ii) the relative motion cut-o�: the 
framewise displacement of head position index (FD-P) (calculated as the sum of the absolute values of the 6 
translational and rotational realignment parameters)42 with a cut-o� of mean FD ≤ 0.2 mm, excluding subjects 
beyond this limit; iii) 12-motion parameters (6 original motion parameters and the 6 �rst-order derivatives) 
were applied on networks time-courses: the single time-courses were detrended (to remove baseline dri�s from 
the scanners and/or physiological pulsations) and orthogonalized with respect to 12-motion parameters; and iv) 
the FD-P index previously calculated42 for each subject was included as nuisance variable in the �nal statistical 
analysis. Data were subsequently spatially normalized to the EPI uni�ed segmentation template in Montreal 
Neurological Institute coordinates derived from SPM12 so�ware and resampled to 3 × 3 × 3 mm3 cubic voxels. 
Spatial smoothing with an isotropic Gaussian kernel with full width at half-maximum (FWHM) 10 mm was 
applied.

Functional network decomposition. As previously reported, the functional imaging data were pre-
processed using GIFT (GIFT toolbox, http://trendscenter.org/so�ware/gi�)43 and a spatially constrained ICA 
algorithm44. Spatially constrained ICA was used to compute intrinsic connectivity networks (ICNs) that corre-
sponded to those from a previous analysis on a very large dataset of healthy subjects for test-retest reliability (37 
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ICNs derived from 7500 healthy subjects as spatial references, see Supplementary Fig. 1 for the visualization of 
the spatial maps of the ICNs used)34,45–47. Subject-speci�c spatial patterns and time-courses were calculated and 
then converted to Z-scores. As already described above, the single time-courses were detrended, orthogonalized 
with respect to 12-motion parameters, despiked (replacement of outlier time points with 3rd order spline �tting 
to clean neighboring points) and �ltered using a 5th order Butterworth �lter (0.01–0.15 Hz)45.

Meta-state computation. Dynamic functional network connectivity (dFNC) was obtained using the 
dynamic FNC toolbox implemented in GIFT48. dFNC was calculated using a sliding-window approach to esti-
mate functional connectivity between ICNs for each segment. Segments were de�ned with a tapered window 
convolving a rectangle (width = 30, TRs = 60 s) with a Gaussian (σ = 3 TRs) and slides in steps of 1 TR. A LASSO 
approach with L1 regularization (100 repetitions) was used to compute the covariance between the independ-
ent component (IC) time-courses. For each subject, the optimal regularization parameter (λ) obtained using 
cross-validation was de�ned, as previously published29,49. To decompose dFNC into connectivity patterns (CPs, 
meta-states), the sICA approach was applied, considering a number of CPs equal to 5, in line with previous 
work on meta-states in dynamic brain connectivity, to have a good balance to take into account complex linearly 
additive e�ects and to retain richly featured basis pattern31,33,34. As previously described, the time-courses were 
discretized (to work over a more tractable space) into 8 bins (positive and negative quartiles) and each timepoint 
was ended into a meta-state33. �e time-courses for sICA CPs were derived from the regression of each subject’s 
dFNC information at each time window on the group of sICA CPs.

In line with meta-states calculation, each subject will have a weighted probability to be in more than one state, 
and this time-varying distribution of probability represents the methodological underpinning to obtain e�ective 
measures of meta-state dynamic �uidity.

For this purpose, four indexes of connectivity dynamism were herein explored: i) the number of distinct 
meta-states the subjects occupied during their scans (meta-state number); ii) the number of times that subjects 
switched from one meta-state to another (meta-state changes); iii) the largest distance between two meta-states 
that subjects occupied (meta-state span); and iv) the overall distance travelled by each subject through the state 
space (the sum of the L1 distances between successive meta-states, i.e., meta-state total distance)33. Moreover, to 
further test the robustness of the approach on the present data we also considered di�erent model dimensionality 
(using a number of CPs from 4 to 8): for each number of CPs, the statistical comparisons between professional 
chess players and beginner chess players were performed.

Statistical analysis. Comparisons of demographic and clinical characteristics among groups (professional 
chess players vs. beginner chess players) were assessed by Mann-Whitney U test for continuous variables and χ2 
test for categorical variables. A general linear model (GLM) considering gender and FD-P as nuisance variables 
was applied to study dFNC in the two groups. Partial Pearson’s correlation analysis was used to assess the relation-
ship between the meta-state measures (meta-state number, meta-state changes, meta-state span and meta-state 
total distance) and the total amount of time spent by professional chess players for training, corrected for gender 
and FD. Statistical analyses were performed by using SPSS so�ware (IBM SPSS Statistics 22.0, Chicago, USA) and 
statistical signi�cance was set at p < 0.05, considering correction for multiple comparisons (Benjamini-Hochberg 
False Discovery Rate-FDR correction) for indexes of connectivity dynamism50.

Results
Considering the original group39 of 29 professional chess players and 29 beginner chess players, 20 subjects were 
excluded for technical reasons, namely 2 beginner chess players for di�erent MRI protocol (number of slices), 1 
professional chess player for excessive absolute motion, 7 beginner chess players and 10 professional chess players 
for excessive relative motion (FD > 0.2 mm). �us, 38 subjects (18 professional chess players and 20 beginner 
chess players) were considered (Table 1).

We considered �ve connectivity patterns (CPs) of dFNC, which are reported in Fig. 1. dFNC was expressed as 
a weighted sum of the discretized �ve-dimensional CPs, considering that 85 = 32,768 distinct �ve-dimensional 

Variable
professional 
chess players

beginner chess 
players P-value

Number of subjects 18 20 —

Age, years 27.50 ± 8.20 25.40 ± 6.50 0.55*

Gender, F% (n) 27.80 (5) 65.00 (13) 0.03^

Chess training, hours 4.06 ± 1.65 — —

Education, years 13.28 ± 2.53 14.20 ± 2.46 0.12*

FD-P (Power) 0.14 ± 0.04 0.16 ± 0.04 0.25*

FD-P (Power) >0.5, n 4.3 ± 5.0 2.5 ± 3.0 0.20*

FD-P (Power) >0.5, % 0.021 ± 0.025 0.013 ± 0.015 0.19*

Table 1. Demographic characteristics and rs-fMRI motion parameters. FD = framewise displacement; 
DVARS = D for the temporal derivative of time-courses, VARS referring to RMS, root mean squared head 
position change; F = female. Results are expressed by mean  ±  standard deviation, otherwise speci�ed. *Mann-
Whitney U test; ^Chi-square test.
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meta-states in our signed quartile discretization were present, with a mean number of occupied meta-states in 
the overall group of 72.1 ± 10.8 (0.22% of the total). Professional chess players showed greater dynamic �uidity, as 
they occupied a higher number of meta-states (i.e., meta-state numbers, p = 0.043 FDR-corrected) and changed 
from one meta-state to another more o�en (i.e., meta-state changes, p = 0.043 FDR-corrected) than beginner 
chess players (see Table 2 and Supplementary Fig. 2). Furthermore, professional chess players operated over an 
increased dynamic range with increased meta-state total distance (p = 0.0004 FDR-corrected), as they travelled 
more overall distance, between successive meta-states, through the state space than beginner chess players (see 
Table 2 and Supplementary Fig. 2). We did not �nd a statistically signi�cant di�erence in meta-state span between 
groups. Considering di�erent numbers of CPs (ranging from 4 to 8) the statistical di�erences between profes-
sional and beginner chess players were quite stable, in particular for meta-state total distance (see Supplementary 
Table 1 for details). In Fig. 2, meta-state dynamics through time, meta-state numbers, meta-state change points, 
and meta-state total distance in a representative beginner chess player (on the le�) and in a representative pro-
fessional chess player (on the right) were reported. �e representative professional chess player showed a greater 
brain dynamism, as compared to the beginner chess player (panel A), as suggested by the more complex pattern 
in the former subject, with a higher number of realized meta-states (panel B), meta-state changes (panel C), and 
greater travelled overall distance (panel D).

Figure 1. �e �ve connectivity patterns (CPs) resulting from the dynamic Functional Network Connectivity 
(dFNC) analysis. �e �ve correlation matrices are reported, in which each square represents one of the 
37 considered network components. �e colors of each CP represent the direction and the strength of the 
relationship between each dFNC pair and time-course of the CP (red: positive correlation of the time-course; 
blue: negative correlation of the time-course).

Variable
professional chess 
players (n = 18)

beginner chess 
players (n = 20) p

Number of distinct meta-states 75.8 ± 7.9 68.8 ± 12.0 0.043*

Number of meta-state changes 77.1 ± 7.3 71.2 ± 11.0 0.043*

Meta-state span 25.5 ± 2.4 23.3 ± 3.8 0.094*

Meta-state total distance 131.7 ± 17.8 108.7 ± 19.7 0.0004*

Table 2. Meta-state measures in the studied groups. *General Linear Model considering gender and FD-P as 
covariates of no interest (chess players vs chess novices), FDR-corrected for multiple comparisons. Results are 
expressed by mean ± standard deviation.
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No signi�cant correlation between time spent by professional chess players for daily training and meta-state 
measures (partial Pearson’s correlation analysis corrected for gender and FD-P: meta-state number: r = 0.150, 
p = 0.580; meta-state changes: r = 0.195, p = 0.469; meta-state span: r = 0.295, p = 0.268; meta-state total distance: 
r = 0.055, p = 0.839) was found.

In the whole group no signi�cant correlation between education and meta state measures (partial Pearson’s 
correlation analysis corrected for gender, chess group and FD-P; meta-state number: r = 0.028, p = 0.872; 
meta-state changes: r = 0.067, p = 0.661; meta-state span: r = −0.023, p = 0.895; meta-state total distance: 
r = 0.195, p = 0.261)) was found.

Discussion
Di�erent board games have been taken into consideration as potential tools to reinforce/strength cognitive abil-
ities in either healthy or diseased brain51–54. Among all, the game of chess has been assumed as a paradigm in the 
�eld, especially because of its high di�usion worldwide with a signi�cant number of professional players55. Several 
brain hotspots have been demonstrated to be selectively strengthen throughout practice of chess playing, mainly 
in the basal ganglia, the fusiform gyrus, the default mode network and the attention network8,9,17. �is re�ects the 
speci�c abilities employed by professional players/grand masters, based on the simulation and planning of the 
next best move using previously acquired chess pattern schemes56.

Our study tries to move forward, with the idea that regardless of the speci�c involved brain hubs/networks8,9,17, 
chess playing can potentially modulate whole-brain activity, shaping the spontaneous and time-varying �uctu-
ation of brain signal22,35,37,57. In fact, compared to beginners, professional chess players demonstrated enhanced 
global dynamic �uidity (with a higher number of occupied meta-states, an increased number of changes from one 
meta-state to another), operating over an extended dynamic range (increased meta-state total distance travelled 
between successive meta-states). �is is in line with a previous study demonstrating an increased small-world 
topology in chess players, re�ecting an optimized cost e�ciency of information processing as well as an optimal 
global network organization as a result of cognitive training10. It is interesting to note that static and dynamic 

Figure 2. Meta-state dynamics through time, meta-state numbers, meta-state changes, and meta-state total 
distance in a representative beginner chess player and a representative professional chess player. Meta-state 
dynamics through time (panel A), meta-state numbers (panel B), meta-state change points (panel C), and meta-
state total distance (panel D) in a representative beginner chess player (le� column) and in a representative 
professional chess player (right column). �e colorbar represents the strength of probability to be in each 
meta-state. For panel A and B Y-axis represents the �ve connectivity patterns (CPs), from 1 to 5 and X-axis 
represented the time-indexed meta-states (seconds, a�er time-course discretization in quartiles). For panel 
C Y-axis represents the distance of each changepoint, whereas the sum of all the blue dots represents the 
cumulative number of changepoints for a given subject. Finally, for panel D the total cumulative distance 
traveled (summed L1 distance between successive meta-states) in the state space is reported on Y-axis. y = 
years; y.o.= years old.
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brain connectivity are intimately linked, the �ne-grained and multi-level organization of the brain based on the 
spontaneous �uctuation of brain signal21,58,59. Considering the theoretic framework of meta-states, these �nd-
ings suggest that chess playing does not merely modulate brain areas strictly involved in chess practice (such as 
visuo-attentional network or frontal executive functions) but is able to shape whole brain functioning at di�erent 
spatial and temporal scales (as suggested in particular by meta-state total distance modulation). Plasticity induced 
by practice produces multiple structural change in the brain such as myelin reorganization and formation, den-
dritic branching and synaptogenesis60 which boost the e�ectivity in the neural communication. �is process may 
maximize neuronal tuning, resulting in magnifying transmission and information capacity to a critical optimal 
point61. From this point of view, dynamic functional connectivity and its related measures could be more e�ective 
in detecting this functional reorganization.

Furthermore, the impact on brain �uidity and dynamism (as measured by meta-state indexes) is not directly 
related to the total amount of time spent by chess players in training as well as it is not related to education. Even 
if the lack of a signi�cant correlation could be related to the small sample size, it might be hypothesized an add-on 
modulating e�ect of chess playing, along with the well-established role of education, on cognitive reserve mecha-
nisms62–64. �us, the increased global brain dynamic �uidity observed in professional chess players could provide 
a direct evidence of neuroplasticity mechanisms related to long-term skill acquisition, potentially representing 
cognitive reserve enhancement65–70. In this view, chess playing may be considered a proxy measure of cognitive 
reserve along with education, occupation attainment or leisure activities71–73 and in some way may protect the 
brain from physiological or pathological aging74.

We acknowledge that this study entails some limits. First, we considered a small number of subjects and 
further studies are warranted to validate the present �ndings, considering di�erent level of confounders (age, 
educational level, etc.). Moreover, impact of head movement on dynamic functional connectivity needs to be 
further addressed, although in this study we applied strict head motion parameters to exclude this possible bias.

In conclusion, this study demonstrated that chess playing may ameliorate whole brain functioning and 
increase whole brain dynamic �uidity. Further studies (collecting data with more time-points as well as a higher 
spatial resolution and applying di�erent dynamic connectivity methodological approaches75,76, in di�erent pop-
ulations and in other board games) may further show how the brain can react and modify itself through the 
continuous practice of high-level activities with long-term skill acquisition77.
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