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Abstract
In this work, the engineered polyaniline (PANI)/epoxy composites reinforced with PANI-M (physical mixture of PANI 
spheres and fibers) exhibit significantly enhanced electromagnetic wave absorption performance and mechanical property. 
Due to the synergistic effect of PANI fillers with different geometries, the reflection loss of 10.0 wt% PANI-M/epoxy could 
reach − 36.8 dB at 17.7 GHz. Meanwhile, the mechanical properties (including tensile strength, toughness, and flexural 
strength) of PANI/epoxy were systematically studied. Compared with pure epoxy, the tensile strength of epoxy with 2.0 
wt% PANI-M was improved to 86.2 MPa. Moreover, the PANI spheres (PANI-S) and PANI fibers (PANI-F) were prepared 
by the chemical oxidation polymerization method and interface polymerization method, respectively. The characterizations 
including scanning electron microscope, Fourier transform infrared spectra, and X-ray diffraction were applied to analyze 
the morphology and chemical and crystal structures of PANI filler. This work could provide the guideline for the preparation 
of advanced engineered epoxy nanocomposites for electromagnetic wave pollution treatment.

Keywords PANI/epoxy composites · Mechanical property · Synergistic effect · Electromagnetic wave absorption

1 Introduction

With the rapid rollout and extensive usage of 5G wireless 
communication systems and high-frequency electronic 
equipments, the electromagnetic wave pollution has become 
a serious threat to the environments and our daily life [1–5]. 
The electromagnetic wave interference not only affects the 
precision performance of sensitive electronic devices, but 
also human health [6–9] The electromagnetic wave absorp-
tion plays an important role in mitigating the risks induced 

by the electromagnetic radiation pollution [10–12]. There-
fore, the development of high-performance electromagnetic 
wave absorption materials is of great significance to ensure 
the safe operation of equipment and human health.

Due to the high conductivity and good electromagnetic 
wave permeability, metal and magnetic materials are the 
traditional materials for electromagnetic wave absorp-
tion [13, 14]. However, the drawbacks of those metal 
and magnetic materials including poor corrosion resist-
ance and high density restrict the practical application 
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[15, 16]. In recent years, conductive polymers and their 
nanocomposites have received widespread attention for 
electromagnetic wave absorption because of the versatil-
ity, light weight, good corrosion resistance, and adjust-
able electrical conduction performance [17–26]. Among 
them, polyaniline (PANI) shows great potential for elec-
tromagnetic wave absorption [27–30]. For instance, Zhang 
et al. fabricated the interwoven cellulose/PANI nanofiber 
composites by depositing PANI on cellulose’s surface, 
and minimum reflection loss can reach − 49.24 dB [31]. 
Wang et al. reported the carbon nanotube/polyaniline com-
posites with a reflection loss of −41.5 dB [32]. Kulkarni 
et al. synthesized α-MnO2 nanorod-PANI nanocomposites 
using polymer coating and grafting methods. The mini-
mum reflection loss of α-MnO2-NH2-PANI nanocompos-
ites has been improved to −30.79 dB at 14.5 GHz [33]. 
Although PANI composites show good electromagnetic 
wave absorption property, the poor mechanical property 
of these powder composites limits their value for practical 
application. Hence, it is important to design the compos-
ites with electromagnetic wave absorption property and 
mechanical property simultaneously.

Epoxy, as an engineered thermosetting material, can be 
applied in different fields such as marine, aerospace, and 
electronic devices [34–41]. The insulated epoxy is transpar-
ent to electromagnetic wave, which can be used as matrix 
for electromagnetic wave absorption material. Compared 
with paraffin wax, epoxy shows better mechanical property 
and chemical resistance [41–45]. As previously reported, 
the minimum reflection loss of the carbon nanofiber/epoxy 
composites is up to 12.6 dB [46]. In our former work, we 
demonstrated that PANI could react with epoxy by forming 
the C-N covalent bond, leading to a uniform initiation of 
electrical conduction network in epoxy for electromagnetic 
wave absorption. So, the PANI/epoxy composites show great 
potential for electromagnetic wave absorption. Vigneras 
et al. reported the electromagnetic wave absorption prop-
erty of epoxy nanocomposites with different morphology 
of PANI fillers [47]. However, the synergistic effect of dif-
ferent PANI fillers on the electromagnetic wave absorption 
and mechanical property of PANI/epoxy composites has not 
been reported elsewhere.

In this work, the PANI/epoxy composites with improved 
mechanical property and electromagnetic wave absorption 
property were reported. The PANI fillers with different mor-
phologies (sphere and fiber) were prepared by the chemi-
cal oxidation polymerization (COP) method and interfacial 
polymerization (IP) method, respectively. The characteriza-
tions including scanning electron microscope, Fourier trans-
form infrared spectra, and X-ray diffraction were applied to 
analyze the morphology and chemical and crystal structures 
of PANI fillers. The effects of PANI fillers on the mechanical 
properties (including toughness, flexural strength and tensile 
strength) and electromagnetic wave absorption performance 
are systemically studied. This work would provide the guide-
line for designing epoxy-based composites for electromag-
netic wave pollution treatment.

2  Experimental

2.1  Materials

Monomer aniline  (C6H7N, ≥ 99.5%), chloroform  (CHCl3, 
99.5%), and ammonia water  (NH3·H2O, 25%) were pur-
chased from Sinopharm Co. China. Ammonium persul-
fate (APS,  (NH4)2S2O9, 98%) and p-toluene sulfonic acid 
(PTSA,  C7H8O3SH2O, 98.5%) were obtained from Tianjin 
Kermel, China. Ethanol was supplied by Fuyu Fine Chemi-
cal Co. China. The epoxy resin (Epon 862, ≥ 99.8% with 
epoxy value: 5.8 − 6.1 mol/kg, density: 1.18 g/cm−3) was 
purchased from Guangzhou Picks Chemical Co. China. Die-
thyl methyl benzene diamine (DETDA,  C11H18N2, ≥ 98%) as 
curing agent was bought from Jining Baichuan Chemical Co. 
China. Scheme 1 exhibits the molecular structures of Epon 
862 and DETDA.

2.2  Synthesis of PANI fillers

The PANI fiber (PANI-F) was prepared through the interfa-
cial polymerization method at room temperature. The molar 
ratio of aniline/APS/PTSA was 8:2:25. Firstly, 8 mmol APS 
was added into 100 ml PTSA aqueous solution (1 mol/L) as 
solution 1, and 32 mmol aniline solution dissolved in 100 ml 

Scheme 1  Molecular structure 
of Epon 862 and DETDA
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chloroform as solution 2. Second, solution 1 was rapidly 
added into solution 2 and remained there for 2 h for polym-
erization of aniline monomers. Then, the product was treated 
by vacuum filtration and washed with ethanol and deionized 
water several times to remove organic solvent, oligomers, 
and additional acid. After that, the obtained final products 
were dried in the oven at 50 °C for 12 h.

The PANI sphere (PANI-S) was prepared by the COP 
method. For solution A, 30 mmol PTSA and 18 mmol APS 
were added into 200 mL deionized water and then treated 
by sonication and mechanical stirring for 1 h in ice-water 
bath. The 36 mmol aniline was added into 50 ml deionized 
water as solution B. Then, solution B was mixed in solution 
A for polymerization under mechanical and ultrasonic stir-
ring for 2 h in an ice-water bath. The product was treated 
by vacuum filtration, washed with ethanol and water several 
times, and dried at 50 °C. To make the same amount of pro-
ton acid doping level for PANI fillers, the obtained PANI-S 
was soaked in ammonia water (1 mol/L) for 10 min, then 
washed several times with water and dried at 50 °C. After 
that, the product was soaked in PTSA solution (1 mol/L) for 
10 min and washed several times with water to remove acid. 
The final obtained samples were dried at 50 °C for 12 h.

2.3  Fabrication of PANI/epoxy composites

Firstly, the PANI fillers were immersed in epon monomers 
overnight. Then, the above mixture was mechanically stirred 
(500 rpm) at room temperature for 1 h. After that, curing 
agent DETDA was added (weight ratio of epon monomer to 
curing agent is 100 to 26.5), then treated with mechanical 
stirring for additional 1 h. Then, the above suspension was 
mechanically stirred at 70 °C for 2 h at a speed of 200 rpm. 
Finally, the solutions were poured into the silicone molds 
and cured at 120 °C for 5 h, then cooling to ambient tem-
perature naturally. In this work, The pure epoxy, epoxy with 
10.0 wt% PANI-F, epoxy with 10.0 wt% PANI-S, and epoxy 
with 2.0, 6.0, and 10.0 wt% PANI mixtures (PANI-M) which 
includes PANI-F and PANI-S (the mass ratio of PANI-F to 
PANI-S was 1:1 in PANI-M) were prepared.

2.4  Characterization

FT-IR spectra were acquired on Vertex 70 using the attenu-
ated total reflectance (resolution: 4.0  cm−1). XRD of PANI 
fillers was recorded on D/max2200PC X-ray diffractometer 
with Cu Kα radiation (λ = 1.5418 Å; scan rate: 6°min−1). 
SEM was carried out using a FEI Verios 460 microscope 
to observe the morphology of the fabricated PANI samples 
and the fractured surfaces of PANI/epoxy nanocomposites. 
Mechanical properties of pure epoxy and epoxy nanocom-
posites were measured at least 3 times at room temperature 
including tensile test and bending performance test. Tensile 

measurements were carried out using the AI-7000GD 
unidirectional tensile testing machine (crosshead speed: 
1.00 mm/min). The samples were bone-like according to 
ASTM (D412-98a, 2002) requirement. Bending measure-
ments were characterized at a speed of 0.50 mm/min by 
strength in three-point bending using the 1036PC unidi-
rectional tensile testing machine. The sample dimensions 
were 60 × 12 × 3 mm, which were designed according to the 
GB/T requirement. Dielectric properties and volume resis-
tivity of the samples were conducted by Agilent E4980AL 
in the range of 5 ×  103 to 1 ×  106 Hz at room temperature. 
The reflection loss of epoxy nanocomposites was obtained 
through a vector network analyzer, E5071C, Agilent Tech-
nology, in the frequency range of 2–18 GHz under air con-
dition at room temperature. The sample was shaped as a 
ring, with the inner and outer diameter of 3.04 and 7.00 mm, 
respectively.

3  Results and discussion

3.1  Characterizations for PANI fillers

Figure 1A and B exhibit SEM images of different PANI-F 
and PANI-S prepared by two different methods. The aver-
age diameter of PANI-F and PANI-S is 105 and 170 nm 
measured by nanomeasurer software, respectively. The 
rough surface of PANI-S is due to the insufficient time for 
aniline monomer to grow along the molecular chain under 
sonication treatment and mechanical stirring. For the FT-IR 
of PANI-F and PANI-S in Fig. 1C, the characteristic peaks 
at 1558 and 1488  cm−1 are attributed to C = C stretching of 
the quinoid rings and bezenoid rings [28, 48]. The peak at 
1295  cm−1 is assigned to the C–N stretching vibration of the 
secondary amine [49], indicating the conducting emeraldine 
salt form of PANI originating from the bipolaron structure 
[50]. The peak 1240  cm−1 is related to the C–N stretching 
vibration of the polaronic structure. The peak at 796  cm−1 
is attributed the C–H out-of-plane bending vibrations of 
the benzenoid ring [51]. The peaks located at 1240 and 
1124  cm−1 are assigned to C–H bendings of the benzenoid 
ring and the quinonoid ring, respectively [52]. The XRD 
diffraction is shown in Fig. 1D. There are three diffraction 
peaks at around 14.8°, 19.8°, and 25.4° correspond to the 
(010), (100), and (110) crystallographic planes of the par-
tially crystallized PANI nanostructure [53]. All the above 
results confirm that PANI-F and FANI-S were successfully 
synthesized by two different methods

3.2  Mechanical property

Figure 2 demonstrates the stress–strain curves of epoxy nano-
composites with various PANI fillers. The tensile strength of 
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epoxy with 2.0 wt% PANI-M is 86.2 MPa, which is larger than 
tensile strength (84.9 MPa) of pure epoxy. Compared with 2.0 
wt% PANI-M/epoxy, the tensile strength of 6.0 wt% PANI-M/
epoxy and 10.0 wt% PANI-M/epoxy is much lower (69.7 and 
61.3 MPa), which is due to the agglomeration of PANI filler in 
epoxy, and the similar result is observed in polypyrrole/epoxy 
nanocomposites as well [54]. When the loading of the PANI 
filler is 10.0 wt%, the tensile strength (82.1 MPa) of PANI-F/
epoxy is larger than that of epoxy with PANI-S (65.1 MPa) 
and PANI-M (61.3 MPa). The epoxy nanocomposites with 
different PANI fillers show larger Young’s modulus than pure 
epoxy, indicating stiff interfacial layer formed between PANI 
and epoxy [55]. Flexural strength indicates the tendency for 
a material to resist bending in flexural deformation. Com-
pared with pure epoxy (137.9 MPa), the flexural strength 
of PANI-M/epoxy nanocomposites is lower and decreases 
with the increase of PANI-M loading. The flexural strength 
(97.7 MPa) of 10.0% PANI-F/epoxy is larger than that of 
epoxy with PANI-S (62.5 MPa) and PANI-M (72.9 MPa). 
The toughness for all the samples shows the same tendency as 
the flexural strength. The Young’s modulus, flexural strength, 

and toughness are summarized in Table 1. The PANI filler 
could reduce the flexural strength and toughness of epoxy, but 
enhance its Young’s modulus, demonstrating that stiffness is 
enhanced by sacrificing the flexural strength and toughness. 
It is worth noticing that the PANI-F/epoxy nanocomposites 
show larger tensile strength, flexural strength and toughness 
than epoxy with PANI-S and PANI-M fillers when the loading 
level of PANI fillers is same.

SEM image of the fracture surface after tensile test is 
applied to study the effect of PANI fillers on tensile strength 
(Fig. 3). The pure epoxy displays a relatively smooth fracture 
surface with “river-like” pattern, indicating a typical brit-
tle fracture because of rapid propagation of the cracks [56] 
(Fig. 3a). However, compared with pure epoxy, the fracture 
surface of epoxy nanocomposites reinforced with PANI fill-
ers become much rougher. For 2.0 wt% PANI-M/epoxy, the 
PANI fillers are well dispersed in the epoxy matrix (Fig. 3b), 
and the “river-like” pattern disappeared which indicates the 
strong covalent bond between PANI and epoxy matrix [57]. 
This formed covalent bond cannot only enhance the compat-
ibility, but also enhance interfacial adhesion between the two 

Fig. 1  SEM images of A PANI-F and B PANI-S, C FT-IR spectra and D XRD patterns of a PANI-F and b PANI-S
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phases [58]. Therefore, the tensile strength of 2.0 wt% PANI-
M/epoxy is larger than that of pure epoxy. With increasing the 
PANI filler loading (Fig. 3c–f), the agglomeration of PANI 
fillers are observed in the epoxy nanocomposites, which lead 
to the deceasing of tensile strength. When the PANI loading 
is 10.0 wt%, it is observed that the PANI-F/epoxy show much 
rougher fracture surface than epoxy with PANI-M or PANI-
S, indicating PANI-F makes more contribution to obstruct 
the propagation of the cracks [26]. Thus, the PANI-F/epoxy 
nanocomposites show higher tensile strength when the PANI 
nanofiller loading is 10.0 wt%.

3.3  Electromagnetic wave absorption performance

In general, the real parts (ε′ and μ′) and imaginary parts 
(ε′′ and μ") represent the storage and loss of electrical and 
magnetic energy, respectively. The values of electromag-
netic parameters (ε′, ε′′, μ′, and μ") of PANI/epoxy nano-
composites are shown in Fig. 4. The positive dielectric 
constant of PANI/epoxy composites is due to interfacial 

polarization formed at the interface between PANI fillers 
and epoxy matrix. The charge carriers were hindered by the 
epoxy resin, resulting in the accumulation of space charge 
carriers at the interface between PANI fillers and epoxy 
matrix [59]. In Fig. 4a–c, the ε′ increases with increasing 
PANI-M content at the same frequency. For PANI/epoxy 
composites with 10.0 wt% PANI fillers, Fig. 4c–e, it is 
obvious to observe that the ε′ increase with increasing 
PANI-F content, which is due to the larger specific surface 
area of PANI-F. And ε′′ exhibits the same variation pattern 
as ε′. The μ′ and μ″ of the PANI/epoxy is about 1 and 0, 
demonstrating magnetic loss does not make contribution to 
convert the electromagnetic wave energy to heat.

Generally, the electromagnetic wave absorption property 
of a material is related to the complex permittivity and per-
meability [60]. The reflection loss (RL) can be expressed 
as Eq. 1 [61]:

(1)RL = 20log
||Zin − Z

0
||

||Zin + Z
0
||

Fig. 2  Stress–strain curves for 
a pure epoxy and PANI/epoxy 
nanocomposites with b 2.0 wt% 
PANI-M, c 6.0 wt% PANI-M, d 
10.0 wt% PANI-M, e 10.0 wt% 
PANI-F and f 10.0 wt% PANI-S

Table 1  Young’s modulus, 
flexural strength, and toughness 
of pure epoxy and PANI/epoxy 
nanocomposites with different 
PANI nanofillers

Pure Epoxy 2.0 wt% 
PANI-M

6.0 wt% 
PANI-M

10.0 wt% 
PANI-M

10.0 wt% 
PANI-F

10.0 
wt% 
PANI-S

Young’s modulus (GPa) 1.4 1.6 1.8 1.8 1.8 1.7
Flexural strength (MPa) 137.9 106.0 104.0 72.9 97.7 62.5
Toughness (J  m−3  104) 885.4 506.2 181.6 127.0 258.9 154.0
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Fig. 3  SEM images of the frac-
ture surface after tensile test of 
a cured pure epoxy and PANI/
epoxy nanocomposites with b 
2.0 wt% PANI-M, c 6.0 wt% 
PANI-M, d 10.0 wt% PANI-M, 
e 10.0 wt% PANI-F and f 10.0 
wt% PANI-S

Fig.4  Permittivity and permeability as a function of frequency for PANI/epoxy nanocomposites with a 2.0 wt% PANI-M, b 6.0 wt% PANI-M, c 
10.0 wt% PANI-M, d 10.0 wt% PANI-F and e 10.0 wt% PANI-S
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where Zin is the effective input impedance, and Z0 is the 
impedance in free space. Zin is given by Eq. 2 [62]:

where c, f, and d stand for light velocity, frequency of elec-
tromagnetic wave, and thickness of the absorber, respec-
tively. The RL of with PANI-S/epoxy, PANI-F/epoxy, and 
PANI-M/epoxy is shown in Fig. 5.

Figure 5 exhibits the RL of PANI/epoxy with different 
PANI fillers. It can be seen that the 10.0 wt% PANI-M/epoxy 
nanocomposites achieve a minimum RL value of −36.8 dB 
at 17.7 GHz, and the bandwidth (RL below – 10 dB) is 0.3 
(7.5–7.8 GHz), 1.5 (11–12.5 GHz), and 1.5 GHz (16.5–18 GHz). 
The 10.0 wt% PANI-F/epoxy nanocomposites achieves a 
minimum RL of −19.8 dB at 11.6 GHz and a bandwidth (RL 
below −10 dB) is 0.5 (7.0–7.5 GHz), 0.9 (10.1–12 GHz), and 
1.5 GHz (16–17.5 GHz). However, for the 10.0 wt% PANI-S/
epoxy nanocomposites, the RL is larger than −10 dB from 2 
to 18 GHz. For practical application, RL should be less than 
–10 dB at least. Generally, a good impedance matching is the 
prerequisite for good electromagnetic wave absorption materials, 
and a larger difference between permittivity and permeability 
would lead to a worse impedance matching [59]. In this work, 
with increasing PANI-M loading, the difference between them 
is larger in the PANI-M/epoxy. So, the 10 wt% PANI-M/epoxy 
shows worse impedance matching. On the other hand, the 10.0 
wt% PANI-M/epoxy displays better dielectric loss. Hence, the 
10.0 wt% PANI-M/epoxy shows better electromagnetic wave 
absorption performance than epoxy with lower loading of 

(2)Zin = Z
0

√
�r∕εrtanh(j

2�fd

c

√
�rεr)

PANI-M. When the PANI filler’s loading is 10.0 wt%, although  
PANI-M/epoxy shows worse impedance matching than PANI-
S/epoxy, the PANI-M/epoxy still exhibits better electromagnetic 
wave absorption performance which may be due to the syner-
gistic effect of PANI-F and PANI-S on the interfacial polariza-
tion and dielectric loss. The similar phenomenon is observed 
in polyvinylpyrrolidone@multi-walled carbon nanotubes/ 
graphene composites for electromagnetic wave absorption  
[63].

4  Conclusion

In this study, epoxy resin was used as the matrix, and PANI 
with different morphologies was used as the reinforcing 
material. The tensile strength of epoxy with 2.0 wt% PANI-
M can reach 86.2 MPa. Moreover, a hard interface layer is 
formed between PANI and epoxy matrix, which improves the 
Young’s modulus of the PANI/epoxy. The minimum RL of 
10.0 wt% PANI-M/epoxy nanocomposites reach −36.8 dB, 
due to the synergistic effect of the mixed PANI fillers  
(PANI-F and PANI-S). We hope the described PANI/epoxy 
nanocomposites lay foundation for future engineering appli-
cations that need both good electromagnetic wave absorption  
performance and mechanical property.
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