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We investigate entanglement dynamics in continuously monitored open quantum systems featur-
ing current-carrying non-equilibrium states. We focus on a prototypical one-dimensional model of
boundary-driven non-interacting fermions with monitoring of the local density, whose average Lind-
blad dynamics features a well-studied ballistic to diffusive crossover in transport. Here we analyze
the dynamics of the fermionic negativity, mutual information, and purity along different quantum
trajectories. We show that monitoring this boundary-driven system enhances its entanglement neg-
ativity at long times, which otherwise decays to zero in absence of measurements. This result is in
contrast with the case of unitary evolution where monitoring suppresses entanglement production.
For small values of -, the stationary-state negativity shows a logarithmic scaling with system size,
transitioning to an area-law scaling as 7 is increased beyond a critical value. Similar critical be-
havior is found in the mutual information, while the late-time purity shows no apparent signature
of a transition, being O(1) for all values of 7. Our work unveils the double role of weak moni-
toring in current-driven open quantum systems, simultaneously damping transport and enhancing

entanglement.

I. INTRODUCTION

Understanding entanglement dynamics in many-body
systems is a fundamental challenge that bridges con-
densed matter to quantum information theory and helps
us to characterize the wide spectrum of possible dynami-
cal phases of matter. While generic isolated systems with
local interactions exhibit universal features of entangle-
ment growth [1, 2|, different scenarios for entanglement
behavior arise in the presence of ergodicity breaking, for
instance due to many-body localization [3], kinetic con-
straints [4-7], long-range interactions [8-13] or integra-
bility [14-20].

Entanglement is commonly believed to be destroyed
by bulk coupling to a noisy environment [21]. This is
usually the case for open-system dynamics which are de-
scribed by a Lindbladian master equation and in which
the environment is dealt with as a black box. A different
behavior emerges by considering an open-system dynam-
ics induced by monitoring the system [22, 23]: in this
setting, the environment is given by the measurement ap-
paratus, which allows us to gain information on its state.
The renewed interest in this type of dynamics has been
largely motivated by the progress in quantum optics ex-
periments, allowing us to manipulate and probe quantum
systems to an unprecedented degree of control [24-28].

The possibility of monitoring the many-body dynam-
ics has already proven its potential to realize new non-
equilibrium phases, as explicitly shown in the simplest
case where local unitary evolution is interspersed by lo-
cal measurements [29-36]. In this setting, extensive theo-
retical research [37-62] has provided strong evidence that
generic systems described by random unitary circuits un-
dergo a new type of measurement induced phase transi-
tion (MIPT), characterized by a change in the scaling of
the subsystems entanglement entropy, from volume-law

to area-law. On the other hand, certain classes of non-
interacting systems under different types of monitoring
protocols have been shown to display MIPT between a
phase with sub-extensive entanglement growth and an
area law [63-69].

In this work, we put forward a different setting where
monitoring might be expected to give rise to novel
nonequilibrium entanglement behavior. Namely, we fo-
cus on current-driven open many-body quantum systems
featuring non-thermal non-equilibrium stationary states
(NESS). For concreteness, we consider the case of a sys-
tem with a local U(1) charge, coupled at its ends to two
reservoirs at different chemical potentials — a prototypi-
cal framework to investigate quantum transport [70, 71].
Accordingly, the dynamics under study is characterized
by three ingredients: unitary evolution, boundary driv-
ing and monitoring of the U(1) charge.

Current-driven setups are known to give rise to a non-
trivial interplay between transport and entanglement.
For instance, current-carrying states of non-interacting
diffusive fermions can sustain extensive entanglement [72,
73], in stark contrast to the universal area-law scaling
characterizing thermal phases [74, 75]. In the presence
of monitoring, one may ask how trajectory-resolved fea-
tures of entanglement depend on its rate. This question is
particularly natural in light of the apparent competition
between different effects: on the one hand, the driving
forces a particle flow through the system while, on the
other, large monitoring tends to pin it to an eigenstate
of particle-density operators.

We will address such a question by studying a sim-
ple but prototypical model of quantum transport: a
one-dimensional chain of non-interacting fermions, where
particles are injected and extracted at the two ends,
respectively. In addition we will consider continuously
monitoring the fermionic particle number, according
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Figure 1. Pictorial representation of the setup. — A chain of
fermionic degrees of freedom is subject to unitary dynamics
dictated by the Hamiltonian H, weak monitoring of strength
7, and particle injection/depletion of the left/right edge sites.
The negativity is computed between the two halves of the
system A and B.

to the so-called quantum-state-diffusion (QSD) proto-
col [76-78], (see Fig 1).

This model was introduced in Ref. [79] where its trans-
port properties were analyzed within the limit of infinite
monitoring rate. We also note that, in the absence of
boundary driving terms, it coincides with that studied
in Refs. [63, 65, 80, 81]. In Ref. [63, 65], in particu-
lar, it was shown that the system undergoes a MIPT
between two phases, with logarithmic and area-law scal-
ing of the entanglement entropy [82]. While our analysis
builds upon these works, the boundary driving introduces
crucial differences. Most prominently, because the parti-
cle reservoirs are treated as an inaccessible environment,
the state of the system along each quantum trajectory
is a mixed state. Accordingly, in order to quantify the
corresponding entanglement, we need to rely on the so-
called negativity [83-90], since the entanglement entropy
is known not to be a genuine measure of entanglement
for mixed states [91].

In our model, the evolution of the average density ma-
trix is described by a well studied Lindbladian master
equation, with boundary driving and bulk dephasing [92—
97]. At late time, any non-zero rate of monitoring leads to
diffusive behavior, thus damping the ballistic transport
characterizing the isolated system. On the contrary, we
show that monitoring can enhance entanglement. Specif-
ically, we find that the negativity displays a logarithmic
growth for small values of v, finally transitioning to an
area-law scaling as -y is increased beyond a critical value.

Before leaving this section, we note that two recent
works also explored the role of a dissipative environment
for a system that is simultaneously monitored [98, 99],
although from a different point of view. Ref. [99] con-
sidered a fermionic chain with a coupling to a dephasing
bath at each bulk site in the system. Ref. [98], instead, fo-
cused on quantum circuit models with boundary dephas-
ing, but featuring no local conservation law and therefore
no current driving.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and the protocol we consider.
In Sec. ITI we study the purity and entanglement in the
late-time regime, providing evidence of a transition in the
scaling of the negativity. Our conclusions are consigned
to Sec. IV. Finally, the most technical aspects of our work

are reported in several appendices.

II. MONITORED DRIVEN FERMIONS

We begin by describing in detail the model studied in
this work (cf. Fig. 1). We consider a one-dimensional
chain of spinless fermions, governed by the Hamiltonian

L-1

H=- Z {c;cﬂ_l + c}+1cj} , (1)
j=1

where L is the system size, while c;, c;r- are canonical
fermionic operators. The system is coupled at its bound-
aries to particle reservoirs at different chemical poten-
tials, and subject to continuous monitoring in the bulk.
Within the so-called QSD protocol [76-78], the evolu-
tion of the system density matrix p is captured by the
stochastic master equation (SME)

L
dpe = dtLpe] + > d=m[p), (2)
L[o] = —i[H, 0] + Dynalo] + Dpulx[o]- 3)

The first term in Eq. (2) describes the deterministic part
of the evolution and includes several contributions, ex-
plicitly reported in Eq. (3). The first one is a coher-
ent term encoding the bulk unitary dynamics driven by
the Hamiltonian (1). The second one corresponds to the
boundary driving and reads Dpnalo] = DE, 4[0] + DE 4[o],
with

1+
,Dkl)‘nd[o} =TIz |:2’u <2CJ{ o€ — {Cch O})

+1_TM (2(31 o 01 {clcl,O})] (4)

and

Dynale] =Tr [ ; (ZCL ocr — {chL,o}>

_~_% (QCL o cL {chL,O})] (5)

These two terms describe injection/depletion of particles
at the two edges of the chain, respectively with rates
Ir(1+p)/2 and Tr(1 F p)/2. In the following we con-
sider equal overall scales I';, = ' = I and unless stated
otherwise set . = 1, corresponding to the maximum dif-
ference in driving potential i.e. pure injection/depletion
on the left/right edge. We will discuss the dependence
on £ in Sec. IIIB. Finally, the last term in (3) encodes
the deterministic back-action due to bulk monitoring of
the local particle density n; = c;fc,;, which takes the form
of a dephasing dissipator

1\3\4

Dhuik|o

an, n;, o] . (6)



Monitoring is also responsible for the stochastic feedback
term in (2), which is defined as

VAAE™ M — ()7, 0} - (7)

It is characterized by independent Brownian processes,
with Tto differentials d¢; such that d&ide], = 6(t—t')d; jdt.
In Eq. (7) we introduced the notation (A)S = tr(peA).
We emphasize the difference of our setting with respect
to Ref. [99], where an additional bulk dephasing channel
was added on top of the monitoring process.

The solution to the SME (3) is a conditional density
matrix pe which encodes complete information on the
monitored quantum system. For a given functional of
the density matrix, F[-], we may define its statistical dis-
tribution as

d=,[0] =

P(F) = / (d€|P(€)5(Flpe] — F). (8)

A natural class of functionals is the expectation value of
an observable O, that is Folp] = tr(pO). In this case,
the average over the trajectories

0= / dOP(0)0, )

coincides with the trace over the average density matrix
tr(Op), where

p= / (A P(€)pe (10)

It is easy to show that p satisfies

d
ETi Llp]. (11)
This Lindbladian equation has been extensively stud-
ied in the literature [92-97], and the structures of its
late-time NESS has been worked out analytically [92].
For completeness, we review its main properties in Ap-
pendix B.

When considering non-linear functionals of the density
matrix, the average behavior can not be computed from
the averaged density matrix. This is the case, in par-
ticular, for the purity and the entanglement negativity,
discussed in Sec. I1I. In general, in order to study the dy-
namics of these quantities, one needs to solve the SME
and sample over different trajectories.

Crucially, in the non-interacting model (2), the dy-
namics along each trajectory can be computed efficiently
starting from a Gaussian initial state [100]. Indeed, a
fermionic Gaussian state evolved under the SME (4) re-
mains Gaussian [100], so that, along each given quantum
trajectory, the state of the system is completely charac-
terized by its covariance matriz.

If the initial state is such that

(clel)izo =0, (12)

it is easy to see that this remains true at later times, and
the state of the system is completely encoded into the
matrix

(Cé)m,n = <Clncn>§ (13)

Accordingly, the full many-body evolution, that is a tra-
jectory in the 22L-dimensional space of fermionic den-
sity matrices, can be replaced by the evolution of the
L x L covariance matrix (13). The explicit stochastic
equation satisfied by the covariance matrix is reported
in Appendix A, where we also provide details on our nu-
merical solution.

III. ENTANGLEMENT NEGATIVITY AND
PURIFICATION

In this section, we present our results for the dynamics
of entanglement, as quantified by the so-called fermionic
negativity. We will also discuss the behavior of mutual
information and study the purity of the system.

A. Fermionic negativity

As already mentioned, because the state of the sys-
tem along each quantum trajectory is mixed, the von
Neumann entropy is not a good measure of quantum
entanglement [91]. Here, we focus on the fermionic
negativity [86], which has been recently proposed as a
measure of mixed-state entanglement alternative to the
logarithmic negativity [83-85]. Contrary to the latter,
the fermionic negativity can be computed efficiently for
fermionic Gaussian states [86], while it is also a genuine
entanglement monotone [87]. In the context of Lind-
bladian dynamics of non-interacting fermionic chains,
the fermionic negativity has been extensively investi-
gated [101, 102], and its behavior has been understood
based on a semi-classical quasi-particle picture. Here, we
show that qualitative differences arise in the presence of
monitoring.

The fermionic negativity is defined based on the con-
cept of partial time reversal [86], as we now briefly
summarize. Let us introduce the Majorana operators
Yop_1 = C + c;rC and Yo, = i(ck — c};) Given a bipar-
tition AU B, and denoting by a; and b; the Majoranas
acting respectively on A and B, the system density ma-
trix is given by

k1+ko even

p= > :Z’;iHa@pr] (14)

k1,k2
Introducing the partial time reversal on the subsystem A
k1+ko even

plta = Z ;1)11: ’7%}221 i HapL H by, » (15)

k1,k2
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Figure 2.  Entanglement negativity as a function of time.
We plot two sets of curves corresponding to zero (y = 0.0)
and weak (y = 0.5) monitoring. In the two cases, we consider
chains of size L = 3296 with I" = 1 and 4 = 1. At late times,
the negativity vanishes in non-monitored systems, while it
approaches a constant increasing with L in the presence of
weak monitoring.

the fermionic negativity is defined as

(i 4) = |t )] (16)

It is a measure of the entanglement of the state p shared
between the regions A and B. Importantly, if the state
p is Gaussian, so is pf4 and, in this case, the entangle-
ment negativity can be obtained with polynomial com-
putational resources. For completeness, we detail the
procedure to compute it in Appendix C, while here we
only report the final results of our analysis.

We focus on the partition given in Fig. 1, with |A] =
L /2 and begin with the real-time evolution of the average
negativity

E(t) = E¢l€(pe; A)], (17)
from the initial state
o) = cfe}---cf_,[0) (18)

where |0) is the vacuum. |¥() has no entanglement, is
Gaussian and satisfies (12). Therefore, we can apply the
numerical scheme described in Appendix A. We note that
the late-time stationary state does not depend on the
choice of the initial state, as we explicitly verified and
discuss in Appendix E; there we also detail the parame-
ters used for the numerical simulations.

An example of our numerical data is shown in Fig. 2.
In the absence of monitoring, we find that the negativ-
ity grows linearly in time, displaying an “entanglement
barrier”. Namely, after a time proportional to L, ()
reaches a maximum value increasing linearly with the sys-
tem size L. Within this time frame, we verified that there

0.8
0.6
0.4

I().2

Figure 3. Large-time limit of the fermionic negativity. We
consider chains of size L = 8 =192 with I' = 1, p = 1, and
v = 0.15 =+ 2. Inset: numerical fit for the effective central
charge appearing in Eq. (19).

is a ballistic data collapse according to the scaling func-
tion e(t) = E(t/L,£/L)/L. At later times, the fermionic
negativity starts decaying, as the quantum correlations
are washed out by the boundary coupling with the dissi-
pative environment. Our numerical data are compatible
with a zero negativity in the infinite-time limit, for all
system sizes.

The evolution is qualitatively different for v > 0. For
weak monitoring, corresponding to v = 0.5 in Fig. 2,
the entanglement negativity £ grows logarithmically in
time, saturating to a non-zero value. Contrary to the
case 7 = 0, the fermionic negativity does not show an
entanglement barrier: this is in line with the expectation
that monitored non-interacting fermionic dynamics can
not sustain extensive entanglement, due to the absence
of scrambling [40, 63, 80, 103]. On the other hand, it is
evident from Fig. 2 that, at late times, the negativity for
v > 0 is larger than in the case v = 0: namely, moni-
toring a boundary-driven system causes an enhancement
of steady-state entanglement, in stark contrast to what
happens in monitored isolated-system evolution [29-35]
where entanglement production is suppressed by mea-
surement, with respect to the unitary dynamics.

As expected, we find that the late-time negativity de-
pends on the monitoring strength. For small v, we see
that the scaling of the latter is consistent with a loga-
rithmic growth in L. Instead, for « sufficiently large, the
late-time stationary value of the negativity appears to be
convincingly independent of L, despite being generically
non-zero. In order to be quantitative, we analyze the
system-size scaling of the stationary negativity £, as a
function of L, for L < 192. Our results are reported in
Fig. 3, from which we see evidence of a transition at a
critical value, v = =, separating a logarithmic from an
area-law scaling. In the small-y regime, we have per-



formed a fit of the negativity against the formula

E:QL?E’Y)lnL—i—eo('y), (19)

obtaining an estimate for the effective central charge
et (77) [104] and the constant eg(vy). Both parameters
are found to continuously vary with 7, as shown in inset
of Fig. 3. For v 2 0.8, our fitting procedure gives us
Cer () = 0, which allows us to identify ~. ~ 0.8 as the
critical value separating the two phases.

We have verified that our estimate for v, does not de-
pend on the strength of the boundary coupling I'. In
addition, it is consistent with the critical value found in
Ref. [63] characterizing the MIPT in the isolated non-
interacting fermionic chain (corresponding to I' = 0).
Therefore, the critical behavior of the bipartite entan-
glement in the stationary state appears to be dominated
by the physics in the bulk, i.e. by the competition be-
tween unitary hopping and monitoring. We note however
that boundary driving can influence bulk properties such
as the density profile, cf. Appendix B.

We expect that this transition in the entanglement neg-
ativity can be understood based on an approach similar
to the one developed in Ref. [65], which introduced an ef-
fective n-replica Keldysh field theory capturing the aver-
age of the n-th moment of the quantum trajectories, fol-
lowed by a bosonization of the bulk monitored problem.
In this framework the boundary driving should appear
as a local non-linearity for the effective replica field the-
ory, not modifying the nature of the bulk transition. In
turn, this would imply that the fermionic negativity un-
dergoes a Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion, as established in Refs. [63, 65] for the entanglement
entropy of the isolated system.

In order to substantiate further this claim, it would
be useful to provide numerical results for larger system
sizes, especially given the expected large finite-size effects
characterizing the BKT transition. Unfortunately, we are
not able to simulate systems of the same sizes studied in
Ref. [63]. In our setting, the main limitation comes from
the fact that we need to follow the evolution up to very
large times, in order to reach the stationary regime. This
can be understood at the level of the average Lindbladian
dynamics, cf. Appendix B. Indeed, because the latter
displays diffusive behavior [92], one has that the sta-
tionary regime is approached at times t ~ L?/D, where
D = (y+ 1/7) is the diffusion constant [93]. Therefore,
in our simulations we need to follow the dynamics up to
times that scale quadratically in L, limiting the system
sizes which can be analyzed.

Together with the fermionic negativity, we have also
studied the Rényi mutual information associated with
the bipartition displayed in Fig. 1. It is defined as

1§5) = S0 + 557 - S{a),  (20)

10
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Figure 4. Comparison between the dynamics of Rényi-1/2
mutual information and fermionic negativity, from the initial
state (18). We consider chains of size L = 32 + 128 with
I'=1,u=1,and v = 0.0, v = 0.25.

where
S§(t) = Ee [Ss[pe]] (21)
Sslpel = T——[ntr [of (£)°]], (22)

is the Rényi entropy and pf (t) is the density matrix re-
duced to the subsystem S. It is a measure of both classi-
cal and quantum correlations [74] which can be non-zero
even for non-entangled states. We recall that the Rényi
entropy of a subsystem for a Gaussian state can be effi-
ciently calculated [105, 106]. Given the reduced correla-
tion matrix ij = (;; for i,j5 € S, the Rényi entropy is
given by

Sslpe] = 1 i —trln [(CEH*+ (1 —C)] . (23)

For unitary quench dynamics in non-interacting
fermionic chains, it has been shown [19] that, in a scaling
limit of large system sizes and times, the fermionic neg-
ativity of a bipartition is proportional to the Rényi-1/2
mutual information, i.e.

1

£=3

15 (24)
Recently, this identification has been extended to arbi-
trary unitary quantum-circuit dynamics up to times lin-
ear in the subsystem sizes [107]. On the other hand,
Eq. (24) does not generally hold for non-unitary evolu-
tion, as shown for non-interacting fermionic chains with
dephasing noise [102].

Motivated by these discussions, we have probed the
validity of Eq. (24) in the presence of monitoring. An
example of our results is shown in Fig. 4. Interestingly,
despite the dynamics being non-unitary, we found that
Eq. (24) is exactly verified up to times proportional to
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Figure 5. Large-time limit of the averaged purity. We

consider chains of size L = 8 - 192 with ' = 1, p = 1,
v =0.15 = 1.5.

the system size, both for v = 0 and v > 0. At later
times, the two deviate from one another, but still remain
numerically close and display the same qualitative be-
havior. In particular, the mutual information shows the
same phase transition of the fermionic negativity. We
note that a similar relation between the two quantities
was also found in Ref. [98] studying monitored quantum
circuits with boundary dephasing.

B. The purity

Finally, we study the dynamics of the purity of the
total system, i.e.

P(t) = Ee[trlp?]] . (25)

For a single quantum trajectory, it is related to the Rényi-

2 entropy via Ppg] = e @lpel | This observation allows
us to compute it efficiently, cf. Eq. (23).

For non-interacting fermionic systems, a mixed state
subject to monitored unitary dynamics purifies, i.e. be-
comes a pure state, in a time that is polynomial in the
system size [103]. However, this is in general not true
in the presence of an incoherent coupling to the envi-
ronment, since the latter tends to increase the system
entropy, competing with the effect of monitoring. In
our setting, a natural question then pertains to the scal-
ing of the purity in the late-time stationary regime, and
whether the latter is able to diagnose a transition as a
function of v. A similar question was also addressed re-
cently in Ref. [99].

We have found that, contrary to the fermionic negativ-
ity, the purity has a strong dependence on u, modeling
the driving potential difference, cf. Egs. (4) and (5). We
begin by discussing our results in the simplest case y = 1.
Our numerical data for the late-time limit of the purity
for different values of ~ are displayed in Fig. 5. The plots
indicate that the purity remains close to 1 for large L,
so that its logarithm is O(1) as L — oo. For small =,
the scaling of P shows a non-monotonic behavior, with
an asymptotic growth towards 1. This trend is manifest

P
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Figure 6. Large-time limit of the averaged purity and entan-
glement negativity, for different choices of the driving poten-
tial difference p. We fix I' = 1 and v = 0.6 = 1.5. As detailed
in the text, the purity is qualitatively sensible to the values
of 1, while the negativity is only quantitatively affected by u,
the scaling being qualitatively the same.

well below the critical value v, ~ 0.8 and is visible, within
the accessible system sizes, at least down to v ~ 0.3.
These numerical results suggest that the purity scal-
ing does not display a transition as a function of v, and
in particular it is never vanishing as L — oco. Although
we were not able to prove this rigorously, in Appendix D
we provide a simple heuristic argument to justify it. In
essence, the idea is that, as L — 0o, the particle densities
in the left-most and right-most sites are close to 1 and
0, respectively. This follows from the knowledge of the
average density profile in the Lindbladian steady state,
as discussed in Appendix B. Accordingly, the injection
and depletion of particles at the ends of the chain is sup-
pressed, damping the rate of entropy growth due to the
boundary Lindbladian. Our argument is completed by
combining this picture with a lower bound on the purifi-
cation rate for non-interacting fermionic systems [103].
This discussion also suggests a non-trivial dependence
of the purity from p, because it changes the particle den-
sities at the boundary sites. We have verified this numeri-
cally, as shown in Fig. 6, where we report data for the pu-
rity and negativity for different values of p and ~. First,
we see that the qualitative behavior of the negativity is
independent from the boundary parameters, confirming
the picture established in the previous section. On the
other hand, the scaling of the purity is more complicated.
For p = 0.5 it appears to be vanishing for weak moni-
toring (v = 0.6), while remaining approximately constant
for v 2 0.9. Our numerics suggest a y-dependent station-



ary value for u < 1 with a finite stationary mixedness;
however, the limited accessible system sizes are not con-
clusive to rule out that these are finite-size effects, and
that for 4 < 1 the purity vanishes for L — oo.

IV. CONCLUSIONS

We have investigated the entanglement dynamics in a
prototypical one-dimensional model of boundary-driven
non-interacting fermions in the presence of monitoring.
We have shown in this context that the interplay between
boundary dissipation and monitoring can enhance entan-
glement, as quantified by the fermionic negativity, as op-
posed to the unitary case where monitoring is detrimental
to entanglement production. Furthermore, we have pro-
vided evidence that the system undergoes a phase tran-
sition that manifests itself in the scaling of the late-time
entanglement negativity, going from a logarithmic to an
area-law scaling. We have also shown that the transition
can be diagnosed from the bipartite mutual information,
but not from the purity of the whole system. Our results
complement recent works studying the effect of a dephas-
ing environment on monitored unitary dynamics [98, 99].

Our work raises several questions. First, it would be
interesting to substantiate analytically our results on the
MIPT of the entanglement negativity. As mentioned, we
expect that a possible strategy could be to extend the
field-theoretical approach developed in Ref. [65]. Second,
a straightforward direction would be to investigate mea-
surement dynamics in transport settings beyond the non-
interacting case considered in this work. For instance, a
natural question is how our findings are modified in the
presence of additional unitary noise, such as in the Quan-

J

tum Symmetric Simple Exclusion Process [108-114], or
of interactions. We believe that an interesting tractable
model to study the latter problem is given by random
unitary circuits featuring a U(1) conserved charge [115-
117], with additional incoherent boundary terms imple-
mentation charge injection and extraction.

Perhaps, the most interesting direction pertains to the
study of transport features beyond the average Lindbla-
dian dynamics. In this respect, a non-trivial task is to de-
fine a meaningful notion of transport at the level of indi-
vidual quantum trajectories, since the monitoring brings
about violations of the local charge continuity equation.
We leave these questions for future work.
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Appendix A: Equation of motion for the correlation
matrix

In this section, we derive the equation of motion for the
correlation matrix Cf. For readability, in this section, we
drop the time label and the trajectory label. Following
the prescriptions in Refs. [63-65, 80, 81], the stochastic
Schrodinger equation for the correlation matrix is easily
derived and reads

dCLj = idt(Ci_Lj + Ci+1-,j — Ci)j+1 — Ci,j—l) — ’)/Ciﬁjdt

L

+dt > CimConj + (14 p)TL6; 18514t + (1 — p)TRd; L6, Ldt

m=1

2

2

1 1-— 1 1-—
_ <FL( Jr'u) —I—FR( B 'u)> (51',1 + 5j71)0,»7jdt — (FR( +N) +FL( 3 M)> ((5,’7L +5j7L)Oi7jdt

L

+ (dgi,t + d&j,t)oi,j -2 Z C’i,mdém,tcnz,j-

m=1

(A1)

Up to a sub-leading Trotterization error, we can consider the equation of motion from two separate contributions: (i)
the Hamiltonian and the boundary Lindbladian, (ii) the monitoring contribution.
The former has been considered in a variety of works (see e.g. Refs. [92, 97, 118, 119]), and is given by the terms

in Eq. (A1) which are not proportional to «y or to d; ¢

d
@C =L[C] +P.

(A2)

The linear operator L and the matrix P are simply read out from the corresponding terms in Eq. (Al), and Eq. (A2)
can be integrated with standard means (e.g. Runge-Kutta algorithms) to obtain the infinitesimal solution Cj g¢.



The noisy contribution can be integrated as well, to obtain [80]

Ct+dt x e

(d€,+~dt(2Cdiag—1)) )ét+dte(dgt +dt(2Caiag — ]l)))

(A3)

where Cyiag is the diagonal part of C. The transformation Eq. (A3) corresponds to

p=e

Zm df:n (N —(nm))—vdt Zm (nm — (”m)z pezm df:n (M —(nm))—dt Zm("7n_<nm)2 .

(A4)

We note that this transformation preserves the norm only up to terms o(dt), and the errors accumulate during the
evolution. Thus, we choose to renormalize the state after each step and consider instead

ezm dfl" (nm 7<n'm>)77dt Em (nm - (”m)2pezm df;n(nm7<”m>)77dt Zm(nm7<”m)2

r= o [ 2 &7 i )T 5 (iG] ]

We can think of this map as a sequence of single-site commuting transformations.

(A5)

The associated map for the

correlation matrix can be obtained within the framework of linear fermionic optics [100, 103]. The final result is given
by the combined action of L commuting channels C'(t 4 dt) = MjoMgo---0 ML[Ciia], each of which is associated

to a given site, and reads

M;(C) = DY) |C + 2;(EIC + CEY) — 20EY)C)

where

_Titl

EW (A6)

2

Zj

" 1—(1-2Cj;)tanh(s;)

iyt =) (A7)
(A8)

tanh(e;) (A9)
;= 1)dt. (A10)

e; = d&] + (20

Appendix B: Average Lindbladian equation and
NESS

In this section we give a brief summary of known re-
sults for the average stationary state p = E¢[pe]. The
density, current density and two-point density functions
in the non-equilibrium steady state were computed in
Ref. [92]. The average current jngss = i{(cl,cmi1 —

Cin+1cm)>NESS is given by

W
T AT L4 (L—1)y/2 (B1)

JNESS =

and displays in the large system size limit L > 1 a dif-
fusive behavior. The average density, on the other hand,
shows a linearly decreasing gradient profile from source
(I=1) todrain (I=1L)

. 1 1
n; = 1+ jNgss (1 + (- 1)% + 551,1 - 251,L) (B2)

with a slope given by the average current jngss ~ 1/L.
The full dynamics was analyzed in Ref. [93]. Within

the Lindbladian framework, large deviations in the statis-

tics of the current were later analyzed in Refs. [95, 120].

(

It is also important to mention that quantum trajecto-
ries in this model were analyzed before in Ref. [96], which,
however, considered a unitary unraveling of the averaged
Lindbladian evolution. Within this framework, and for
~ > 0 the entanglement negativity has been estimated in
Ref. [101].

Appendix C: Fermionic negativity of Gaussian states

In this section we detail the computation of the
fermionic negativity for Gaussian fermionic states. We
consider a density matrix pap over a bipartite system
A U B, characterized by the 2N x 2N Majorana matrix

Mk = %tr (0[5, 0]) - (1)

To compute Eq. (16), the starting point is the block de-
composition over AU B

[ Maa Myp
M= <MBA MBB) . (€2)



From (15), it follows that

M. = <‘MAA ﬂMAB) . (C3)

+iMpa Mpp

are the covariance matrices associated with pf*4 and
[pR4]f. The product of these covariance matrices can
be performed following Refs. [121, 122]. The resulting

J

5(p):21n

()" (59"

density matrix is Gaussian with covariance matrix

1

Mo =1 = (U= M) 53

(L—M.).  (C4)

It can shown that this matrix is antisymmetric and
purely immaginary, and so Hermitian. Furthermore, the
product density matrix has a normalization factor given

by [121] \/det [L + M2/2].

Collecting all the terms, we arrive at the final result

1+
2

(C5)

Jr%Zln
J

Here we denoted by {&;, —¢;} and {{;, —(;} the eigenvalues of M, and M, respectively (in both cases they come in
pairs of opposite sign, because they are symmetric). So in the above sums only a single element in each pair must be

included.

The formula Eq. (C5) holds for any quadratic fermionic
system [102]. For the specific instance considered in the
main text, and for the initial condition <c:flc,t> = 0, the
computation of the negativity can be simplified. Defining
the matrix G, n = 2Cy, n — 6m,n, and given the biparti-
tion AU B, we have

G = (GAA GAB) : (C6)

Gpa GBB

Then, in a similar fashion to the Majorana case, one can
compute

B Gaa TiGap
Gt = (iiGBA —GBB) ' (©)
and the matrix
1
Go=3 - (1+GG) (G +G)]. (C8)

The final expression for the negativity for the restricted
correlation is given by

E(p) = Z (ln[\/;TjJr 1— ]+ %ln[l —2)\ + L\?]) ,
] ()

where p; are the eigenvalues of G, and A; are the eigen-
values of C.

Appendix D: Late-time scaling of the purity

In this section, we provide an heuristic argument to
justify that, for u = 1, the average of the late-time Rényi-
2 entropy is O(1) as L — oo. First, following Ref. [103],
we introduce the quantity

Sproxy (C) =2In(2)tr {1 — [C* + (1 — C)*]} . (D1)

(

It is not difficult to show that, for a Gaussian state,

1
- < s® < .
211,1(2) Sproxy(c> — S — SPYOXY(C)

(D2)
Therefore, Sproxy(C) and the Rényi-2 entropy S ) have
the same scaling in L, so that Sproxy can be considered a
proxy for S(2).

Next, we consider a simplified dynamics which we
expect to display the same qualitative behavior of the
SME (2). Namely, we focus on a discrete, rather
than continuous, model where the single time-step con-
sists in three parts: (i) the application of a quantum
channel [91] acting at the boundary sites, implement-
ing extraction/injection of particles; (ii) a finite-depth
quantum-circuit Gaussian dynamics; (iii) a round of ran-
dom measurements of the local density. For simplicity,
we take the measurements to be projective, although our
conclusions also hold if they are weak. They are per-
formed at each site with a finite probability p € [0,1]. In
the following, we do not need to specify the quantum-
circuit gates, which can be obtained, for instance, by a
Trotterization of the Hamiltonian in Eq. (2). Finally, for
the right quantum channel we choose a Gaussian opera-
tion implementing extraction of particles,

ps — tra{exp[—iH](|0)(0[4 ® ps) expifl},  (D3)
where H = (7r/2)(c£cL + cTLcA). Here cy, cTA act on
an ancillary degree of freedom initialized in the vacuum,
|0), and eventually they are traced over. Note that the
symbol ® in (D3) denotes graded tensor product. Analo-
gously, we can define a Gaussian operation implementing
injection of particles at the left boundary.

Let us consider the stationary state for p = 1. We want
to estimate the variation of Sproxy due to the action of
the right quantum channel, denoted by AS. First, we
recall that the average density at the right boundary site
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Figure 7. Choice of saturation time. — We consider I' = 1,

and show which saturation time (red line) is chosen for v =
0.5, 2 and L = 16 +~ 128.

is ng, = O(1/L), cf. Eq. (B2). Therefore, denoting by C
the covariance matrix along a typical trajectory, we have
CL,L ~ O(l/L) and Cj7LaCL,j ~ O(l/\/f), fOI‘j 75 L.
It follows that AS® ~ 1/L. The same holds for the left
quantum channel, so that we can estimate the variation
of Sproxy due to the action of the boundary channels as

AS® =¢/L, (D4)

for some constant c¢. Next, we would like to estimate the
variation of Sproxy after the discrete steps (ii) and (iii)
described above, which we denote by AS™. On aver-
age, the measurements decrease Sproxy since they have
the tendency of purifying the system. Suppose we re-
place the finite-depth circuit with a random Gaussian
unitary acting on the whole system. In this case, based
on the analysis of Ref. [103], and using that we have
on average pL measurements, we would obtain the es-
timate |AS™| ~ (Sproxy)?/L. For our quantum-circuit
model, we expect |AS™| to be larger than this (measure-
ments purify more), because the unitary dynamics is less
scrambling and so less effective in protecting quantum in-
formation from the measurements. Therefore, we obtain
the lower bound

2
|ASm| 2 C/ (Sprzxy) (D5)

Now, after a single application of steps (i), (ii) and (iii),
the total change of Sproxy 18 ASproxy = ASC — |AS™].
In the stationary regime, we must have ASprexy = 0.
Putting together (D4) and (D5), this readily implies

Sproxy < (¢/¢) ~ O(1). (D6)

10

Namely, even in the weak monitoring limit, the late-time
Rényi-2 entropy does not grow with the system size, con-
sistently with our numerical results.

2
=1
W
0
1.0
po=1/2% £0 = PNecl
. L=16 L =16
50.5 — L-32 — L=32
0.0
107 10° 10t 102 10°
t
Figure 8. Robustness against different initial conditions. —

As an example, here we consider v = 0.5 and various system
sizes with the infinite temperature initial state (blue) and the
initial state (18) (orange). As expected, the dynamics show a
different transient regime, but the same stationary state.

Appendix E: Numerical implementation and
additional numerical benchmarks

In this section, we briefly summarize the numerical im-
plementation and give further numerical results.

We have used a Runge-Kutta algorithm of fourth order
to solve the combined evolution consisting of boundary-
driving and Hamiltonian dynamics and implemented the
mapping Eq. (A6) for the noise contribution. For the
time-evolution of the quantum trajectories, we consid-
ered the average over A/ = 200 <+ 1000 trajectories. Fur-
thermore, we have evidence that a self-averaging property
occurs at late time: hence we also average the stationary
state values over the last 7' = 5000 <+ 20000 time-steps in
the stationary regime. Throughout this paper, we have
chosen dt = 0.05, but we tested, but not shown here, that
the protocol gives the same average results for dt = 0.01.
Another test we have performed is that the results are
qualitatively robust against varying I', which have over-
all set to I' = 1 in this paper.

In Fig. 7 we illustrate the choice of the stationary time
tstat for various v and various system sizes. Typically, due
to the diffusive nature of the average state, the saturation
time scales ad O(L?/v), which combined with the O(L?)
simulation cost of each time step, results in O(L®) cost.

Independence from the initial conditions.— Initial con-
ditions affect the transient dynamics, but results in the
same stationary state. As an example, in Fig. 8 we con-
sider two different initial conditions, the infinite temper-
ature state p = 1/2F and the Néel state (18). focusing
on v = 0.5, I' = 1. Our numerics show the conditional
average of the negativity and of the purity saturates to
the same stationary value. We have also checked the in-
dependence from the initial conditions by taking random
product states and different values of v (not shown here).
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