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Abstract

Image Classification is one of the critical computer vision tasks, and it is also the foun-

dation of the related tasks like object detection/recognition/segmentation, which all need

to identify the positive and negative samples. Methods proposed for image classifica-

tion can be divided into two groups: traditional image processing based methods and

modern machine learning based methods. The main difference between these two cat-

egories is how to extract the features, including the common features of the intraclass

samples and the distinguishing features of the interclass samples. For traditional image

processing based methods, researchers focus on extracting features manually after the

mere observation of the samples. While for modern machine learning based methods,

and researchers tend to focus on designing networks based on the training data, building

a model, and evaluating the model on the test data.

Among numerous machine learning methods, we choose the Extreme Learning Ma-

chines (ELMs) for our image classification applications. ELM has been proposed in

more than a decade ago, as a single layer feedforward neural network, its primary ob-

jective is designing classification and regression models. ELM and its variants have

been applied widely in the past years in many fields, including computer vision tasks,

time sequence signals analysis, and so on. A basic ELM network consists of an input

layer L1, a hidden layer L2, a output layer L3, and the connections between L1 and L2,

and L2 and L3. From the view of data flow, it can be summarized as raw data or fea-

tures of the samples are fed into the input layer, then flow into the hidden layer and the

output layer by being operated with similar connections. The most prominent highlight

of ELM is the weights and biases in the connections between L1 and L2 are randomly
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assigned. The aim of ELM is to computing the weights between L2 and L3 based on

minimizing the sum of the norm of the weights and the errors of predicted outputs and

target outputs. In this thesis, we focus on enhancing four aspects of ELM networks and

apply them to the image classification.

The first work in this thesis focuses on the input layer of the ELM network. As intro-

duced above, raw data or extracted features of the samples are fed into the network.

Raw data is the simple straight-line input data for general image classification, but for

some semantic images (e.g., smile images, gesture images), the purposefully designed

feature extraction methods are also essential. In our first work, we take smile image

classification task (or called smile detection) as an example to show the effectiveness of

our handcrafted feature extraction method named “pairwise distance vector”. Compared

with raw data and other existing state-of-the-art smile image classification methods, the

extracted features have advantages of low dimension, easy to understand and visualize,

and high efficiency.

The second work in this thesis focuses on the connections between the input layer and

the hidden layer. Researchers have been assuming the random weights and biases be-

tween L1 and L2 obey uniform distribution or Gaussian distribution since the ELM was

put forward. However, this may lead to the requirement of a significant amount of

memory and time to process them, especially when there are many ELM networks in

one system. Inspired by the discovery on fruit flies’ olfactory systems, we proposed a

method named sparse binary ELM (or Fly-ELM), which adopts sparse binary random

projections between the input layer and hidden layer. The Fly-ELM achieves compara-

ble classification accuracy, but costs much less memory and requires less training and

testing time when compared with the related methods.

The third work in this thesis is extending the single-layer network to a multi-layer net-

work by using ELM Auto-Encoder (ELM-AE). Due to the simple structure, the per-

formance of the ELM networks on large datasets has a certain gap with the existing

state-of-the-art methods. Motivated by the PCA Network (PCANet), we have extended

the single layer ELM network to multiple layers by using ELM-AE and named our new
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method as CFR-ELM. The results show that CFR-ELM obtains higher accuracies than

PCANet on some large public datasets for image classification.

The last work in this thesis focuses on the output layer of the ELM network. In the past

years, the reflection of the similarity of the input samples on target codes (the coding of

the labels) hasn’t been taken into account. However, for image classification tasks, the

intuitive impression is that similar objects should be assigned relevant target codes. In

this thesis, we have analyzed different target coding methods and evaluated the perfor-

mance of them on image classification.

Overall, the thesis contributes to these four aspects. From the view of efficient input

data, we have designed a handcrafted feature extraction method for smile images classi-

fication. From the perspective of the distribution of random weights between the input

layer and the hidden layer, we have proposed and proved the effectiveness of the sparse

binary ELM. Inspired by the deep architecture of deep learning, we have extended the

single layer to multiple layers of ELM networks to achieve good performance on large

image classification datasets. Finally, from the point of target coding, we have intro-

duced and evaluated different target coding methods for image classification.
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Chapter 1

Introduction

Chapter 1 begins with the background and motivation for studying image classification

based on extreme learning machines. Then this chapter continues to set the scope of the

study on how to adopt the enhanced extreme learning machines into image classification

by combining traditional feature extraction, sparse binary projection, deep architecture,

and target coding, respectively. Furthermore, the objectives and contributions of this

thesis are explained. At last, the structure of this thesis is presented.

1



1.1 Background and Motivation

1.1 Background and Motivation

Image classification (also known as image recognition) refers to the task of extract-

ing/learning features from images and classifying them into different categories [3, 4].

That is, a label is assigned to the given image based on the decision from the ex-

tracted/learned features and the classifier [5]. From the perspective of the types of

images, image classification can be further divided into digits image classification [6],

texture image classification [7], scene image classification [8], face/smile/gesture image

classification [9, 10, 11], general image (including different kinds of objects) classifi-

cation [12, 13], and so on. Image classification is an important foundational for many

computer vision fields, like object detection/tracking [14, 15], semantic/instance seg-

mentation [16, 17], etc. Since all these tasks are related to the classification of positive

samples (e.g., true object and instance) and negative samples (e.g., background) in re-

gion level or pixel level.

From the definition of image classification, we know that there are two main parts of a

primary image classification system: feature extraction module and classification mod-

ule. Feature extraction/learning is about how to extract/learn effective features from the

raw images, while the classification module is about how to use classifiers to classify

raw images by using the extracted features. Researchers have proposed a large number

of methods for feature extraction and designed kinds of classifiers in recent decades.

Feature extraction methods (feature descriptors) usually refer to the traditional image

processing methods, which can be roughly devided into two categories: local region-

based feature descriptors (e.g., Scale-Invariant Feature Transform (SIFT) [18], Local Bi-

nary Patterns (LBP) [19], and Histogram of Oriented Gradients (HOG) [20]) and global

region-based feature descriptors (e.g., Gabor features [21] and Principal Component

Analysis (PCA) [22]). While feature learning usually refers to the modern computer

vision methods that can automatically find the features required for image classification

tasks from raw images. Features learning also can be roughly divided into categories:

supervised learning (with labeling information) and unsupervised learning (without la-
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1.2 Research Scope and Questions

beling information).

Classifiers are utilized to analyze the extracted/learned features, associate these features

with the labels of raw images in the training stage, and predict the labels of test images in

the testing stage. Many famous classifiers have been proposed, including Fisher’s linear

discriminant [23], k-nearest neighbor (KNN) [24], Support Vector Machine (SVM) [25,

26], Artificial Neural Networks (ANNs) [27], random decision forests [28] and so on.

Specifically, current popular neural networks like Extreme Learning Machine [29] and

Deep Neural Network (DNN) [13] all belong to ANNs.

Noted that feature learning and classification can also be associated together, and that

is what researchers have been doing nowadays. ELM, DNN, and other neural network-

based methods can learn features from the raw images and complete the classification

task at the same time in one network [30, 31].

1.2 Research Scope and Questions

We have introduced the two main steps for image classification, and in this section, the

research scope and questions will be put forward. Many traditional methods have been

proposed for image classification, and most of them focus on designing handcrafted fea-

ture descriptors (find more details in Chapter 2). These descriptors usually work well

for some specific tasks like corner point detection (classification of pixels), edge detec-

tion, and shape detection. Then, as the improvement of the requirements for practical

applications and the development of the classifiers, traditional methods meet the modern

neural network-based methods like ELM and DNN.

ELM is a very promising algorithm for both feature learning and classification. As a

single-hidden-layer feedforward neural network, ELM has attracted more and more at-

tention from both academia and industry. ELM theories show that hidden neurons can

be assigned randomly and ELM has been applied in many applications, including clus-
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1.2 Research Scope and Questions

tering, classification, and regression [32, 33]. In recent years, researchers have proposed

local receptive fields based extreme learning machine (ELM-LRF) [34] and ELM Auto-

Encoder (ELM-AE) [35], which further enhance ELM’s representation learning ability

locally and globally.

Compared with ELM, DNN has also begun to shine in the field of computer vision over

the past few years. With the development of graphics processing units (GPUs), graph-

ics computing power has become stronger, leading deeper and deeper neural networks

have been designed and implemented for image classification. Here, we have listed

some popular and famous deep neural network-based methods for image classification

in chronological order, they are Alex network (AlexNet) [13], ”VGG” network (VG-

GNet) [36], and deep residual network (ResNet) [37]. These networks are proposed and

have been adopted to win many image classification competitions.

However, in this thesis, we focus our research on enhancing the ELM network for image

classification rather than choosing DNN-based methods due to the following reasons:

(1) Strong theoretical derivation. The ELM has rigorous theoretical proof, while

DNN is more like an engineering technique, which has no solid theoretical proof

yet.

(2) Fast in both training and testing stages. ELM networks usually have much fewer

parameters than DNNs, and all parameters in ELMs either are randomly generated

or computed immediately without any iterations.

(3) Easy for implementation and visualization. ELM is much easier than DNN in

implementation and visualization since DNN is like a “black box” and it is hard

to visualize.

ELM belongs to machine learning, and like many other machine learning methods, it

has been applied to image classification and many other tasks. However, there are still

some research gaps in the ELM-based image classification methods, and four of them

are listed as follows.
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1.2 Research Scope and Questions

Firstly, as we have introduced above, many researchers just fed the raw data into the

input layer of ELM networks. Compared with traditional feature extractions methods, it

is more convenient to use raw data as the input data, and it is more suitable for general

cases. However, for the specific tasks, extracted features are usually more efficient, and

flexible than raw data and the extracted features are generally meaningful and easy to

understand. That is, for the specific tasks (like smile image classification), it is not a

good choice to use the raw data as the input data immediately.

Secondly, one of the core ideas of ELM is that weight matrix W, and bias matrix B

between the input layer and the hidden layer are randomly generated based on a contin-

uous sampling distribution probability and independent of training data [32]. Huang et

al. first introduced and implemented uniform random weights and biases [38] for ELM

on regression and classification problems. From that on, most ELM researchers follow

the similar way of generating W and B, while the majority of the remaining researchers

initialize W and B from the normal/Gaussian distribution [39, 40]. Even ELM with ran-

dom uniform or normal distributed weights and biases has been applied in many fields,

and remarkable results have been obtained, it still has some inconveniences that have

not been solved. For examples, random uniform weights are not easy for understanding

or visualization, and hard for hardware implementation due to the precision problem.

Besides, random weight matrices with a float/double value for each entry takes up a

large amount of memory.

Thirdly, ELM is a single-layer neural network, and most of its variants share the single

or shallow structure. We know that with the development of neural networks, more and

more work has been done on feature learning by adopting deep neural networks, which

have achieved impressive results in feature learning with its ability to unfold the poten-

tial of the data with many hidden layers [36, 41]. There is no doubt that network-based

methods with deep architecture outperform most of the ones with single or shallow ar-

chitecture for computer vision tasks, even there are millions of parameters need to be

tuned for such networks usually, and it may require months to train. So, deep architec-

ture should be considered into the ELM networks.
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Fourthly, target coding (coding for the labels of the samples) is an indispensable part

of image classification. With years of research, there are lots of work that have been

done on how to extract useful features using ELMs [42, 43, 44, 45], but little work has

been done on target coding for ELM. By far, most people adopt one-of-k target coding

methods instantly when they use ELM classifiers, while others choose the numeric cod-

ing methods to simplify the computation. One-of-k (one-hot) coding (specifically refer

to “encoding” in this thesis) comes from electronics, and there is only one ”hot” value

in the coding list. It was introduced into the modern data science by [46], and the one

“hot” value is replaced with “1” for simplicity reasons. One-of-k coding is the most

frequently used target coding method for machine-learning based classification applica-

tions in recent years [33, 47, 48]. More target coding methods should be introduced and

explored for ELMs.

1.3 Objectives and Contributions

The objective of this thesis is enhancing four aspects of ELM networks for image clas-

sification problems. We have listed and analyzed four existing research gaps in Section

1.2, and here we will explain our contributions which correspond to these four gaps.

In our first work, we focus on the data which is fed to the input layer of the ELM net-

work. We propose a novel feature extraction method for smile image classification by

using a short and snappy feature descriptor named Pair-wise Distance Vector, which is

extracted only from the facial landmarks around the mouth. We have tested our algo-

rithms on the public smile image classification database, and the results indicate that

our method is better than the state-of-the-art methods with higher accuracy and lower

dimension of features. Particularly, we list the results of the comparison between the

raw data and the extracted features in Chapter 3.

In our second work, we concentrate on the distribution of the random weights between

the input layer and the hidden layer. Inspired by the findings of the fruit fly olfactory
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1.3 Objectives and Contributions

system, combining this “fly algorithm” and the earlier work on random binary ELM as

well as sparse solutions for ELM, we propose a novel ELM-based image classification

method named sparse binary extreme learning machine. In short, we name it as Fly-

ELM to highlight its biological property found in the fruit fly olfactory system. Fly-

ELM introduces the sparse binary random matrix into ELM networks, which is different

from the consecutive binary/ternary ELMs and sparse binary random winner-take-all

(SBR-WTA). The sparse binary projection restricts the number of non-zero coefficients,

which guarantees non-overfitting and low computational cost. Meanwhile, the random

projection with nonlinearity satisfies the universal approximating capability theory of

ELM networks.

In our third work, we embed the deep architecture into the ELM networks and propose

a Compact Feature Representation algorithm (CFR-ELM) by using Extreme Learning

Machine (ELM) under a shallow (could be extended to deep) network framework. CFR-

ELM consists of a compact feature learning module and a post-processing module. Each

feature learning module in CRF-ELM performs the following operations: 1) patch-based

mean removal; 2) ELM-AE based feature learning; 3) Max pooling to make the features

more compact. Post-processing module is inserted after the feature learning module

and simplifies the features learn by the feature learning modules by hashing and block-

wise histogram. We have tested CFR-ELM on four typical public image classification

databases, and the results demonstrate that our method outperforms the state-of-the-art

techniques.

In our fourth work, we analyze and explore the effects of one-of-k coding methods

on ELM classifiers for image classification. Besides, motivated by the properties of

orthogonality and equal weight (each coding has the same number of non-zero elements)

of Hadamard coding [49, 50, 51], we have compared its effects with one-of-k coding.

Two simple coding methods ordinal coding and binary coding have also been compared

to show the effectiveness of one-of-k coding and Hadamard coding. To the best of our

knowledge, this is the first discussion on target coding for ELM on image classification.
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Noted that even these four contributions are presented individually, they can be arbitrar-

ily combined to accomplish various tasks. We introduce them one by one by order of

the data flows through the ELM networks in this thesis.

1.4 Thesis Overview

The remaining chapters of this thesis are organized as follows. (This thesis interpolates

material from the papers written by the author, and all these papers’ first author is the

author of this thesis.) Chapter 2 goes through the related work on ELM networks and

existing image classification methods, including the traditional methods and learning-

based algorithms. Particularly, we review and analyze the ELM-related methods on

image classification in detail.

Chapter 3 uses the material from References [52, 53]. We take smile images classifi-

cation as a carrier to demonstrate our novel feature extraction method named pair-wise

distance Vector, which can fully reflect object’s shape and has properties of invariance

of translation, rotation, and scaling.

Chapter 4 adopts the material from Reference [54]. We propose a novel neurology-

based method named Fly-ELM by embedding sparse binary random projections into the

existing ELM network for image classification. We also present the architecture of the

Fly-ELM, and each module of the network will be demonstrated and derived clearly.

Chapter 5 uses the material from References [45, 55]. We propose a novel feature repre-

sentation method named CFR-ELM by using ELM-AE for image classification. CFR-

ELM is a multi-stage feature learning network, which contains a patch mean-removal

process and ELM-AE in each stage. The former removes the influence of illumination,

while the latter learns the representation of the input patches, filters the raw samples, and

outputs the practical features. Two post-processing steps (binary hashing and block-wise

histogram) are needed to simplify the final output features.
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1.4 Thesis Overview

Chapter 6 adopts the material from Reference [56]. We explore the effectiveness of tar-

get coding on ELM classifiers for image classification. In particular, we have analyzed

two linearly dependent coding (ordinal coding and binary coding) and two linearly in-

dependent coding (one-of-k coding and Hadamard coding).

Chapter 7 summarizes this thesis and points out several future research directions.
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Chapter 2

Literature Review

Chapter 2 begins with the introduction of basic ELM network, some ELM variants are

presented and explained, and the ELM-AE is highlighted. Then this chapter continues

to review some typical methods for image classification, including traditional image

processing based methods and machine learning based methods. At last, the ELM-

related methods for image classification are reviewed and introduced in detail.
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2.1 Extreme Learning Machines (ELMs)

2.1 Extreme Learning Machines (ELMs)

The feedforward neural networks were developed in the 1990s [57] and spread quickly

due to their abilities on approximating any measurable function to any desired degree of

accuracy. That is, regarding image classification problems, we can always find complex

unknown mappings for the training samples and their corresponding labels by using

feedforward neural networks. The challenging problem is how to find or calculate the

weights and biases in the networks at the expense of reasonable consumption. The

existing methods can be divided into two categories roughly according to the need of

iteration:

(1) Inerative methods: gradient-descent learning based methods (e.g., back-propagation

(BP [58]) and convolutional neural network (CNN [59]) ), kernel learning based

methods (e.g., support vector machine (SVM [60])), and so on.

(2) Non-iterative methods: least square (LS) learning based methods (e.g., extreme

learning machines (ELMs [29])).

ELM is the core of our research, but SVM is also a relatively popular learning algo-

rithm, and it is also adopted in our work. So, here we give a brief review of SVM.

SVM constructs an optimal hyperplane for the independent samples in feature or kernel

space to maximize the functional margin 2
‖w‖ (w is the normal vector to the hyperplane)

and minimizing the misclassification cost ξ (approximately equivalent to the number of

misclassification samples) simultaneously. Smaller misclassification cost means better

fitting for training data while a larger functional margin implies better generalization

ability for test data. Fig. 2.1 illustrates the principle of SVM where the functional

margin 2
‖w‖ and clipped ℓ1-norm misclassification cost function ξ are shown.
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Figure 2.1: The principle of support vector machine.

The mathematical optimization formulation of SVM is:

minimize
w,ξ ,b

1

2
‖w‖2

2 +C‖ξ‖1,

subject to yi(wφ(xi)+b)≥ 1−ξi, ξ ≥ 0.

(2.1)

Where ξ is a non-negative slack variable, b is the bias term, y is the label, and C is the

hyperparameter of SVM which indicates the trade-off between training accuracy and

generalization ability. The advantage of SVM is the sparseness of the solution and good

generalization ability even in a very high dimensional space. The disadvantage of SVM

is that its large memory requirement and slow computation in large-scale tasks. SVM

also leads to imbalanced distortion of data for multi-class classification.

ELMs (shown in Fig. 2.2), originally proposed as “generalized” single-hidden-layer

feedforward networks (including but not limited to sigmoid neural networks, RBF net-

works, threshold networks, Fourier series, Wavelets, etc.), has been extensively stud-

ied in the past decade and attracted increasing attention from academia and industry

[38, 30, 61, 62, 63]. ELM theories demonstrate that hidden neurons can be set randomly

in many applications, including clustering, feature learning, regression, and classifica-

tion [64, 45, 65, 66]. Many variants of the ELM have been proposed in the last decade,

and most of our work concentrate on the early ELM (called “basic ELM” here), explore

and enhance its abilities of image classification and feature learning. In the following
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2.1 Extreme Learning Machines (ELMs)

paragraphs, we will summarize the basic ELM in detail and some ELM variants in brief.

. .

. .
. .

xj1

H

β T

. .

Input layer

xjn

X
tj1

tjm

Hidden nodes

output layer

(ai, bi)

Figure 2.2: The diagram of extreme learning machine (ELM).

Basic ELM. ELM is a very promising algorithm for classification and feature learning.

The weights (W) and bias (B) between the input layer and the hidden layer are randomly

assigned, while only the weights (β ) between the hidden layer and the output layer need

to be computed by solving a linear equation. This network has been proved to have good

generalization performance with high training and test speed with remarkable classifica-

tion and regression abilities [29, 67, 30, 64]. ELM assigns the parameters (ai,bi) of the

hidden nodes randomly without any iterative tuning [38], which makes it much faster

than traditional single hidden layer feedforward neural networks. In classification, as-

sume there are N samples and the training set is {(x j, t j)|x j ∈ Rn, t j ∈ Rm, j = 1, · · · ,N},

where n is the dimension of each feature vector x, and m is the length of output vector

t (or T) (m is 1 here because smile detection is a binary classification problem, and ti is

-1 or 1). The hidden node output function G(ai,bi,x), and i = 1, · · · ,L (L is the number

of hidden nodes). So the hidden layer output matrix is H, and it can be easily calculated
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2.1 Extreme Learning Machines (ELMs)

since we already know that the x and (ai,bi) are randomly assigned.

H(x) =
[
G(a1,b1,x), · · · ,G(aL,bL,x)

]
. (2.2)

Set β as the output weights, and βi as the weight vector connecting the ith hidden node

and output node. Then, the output of ELM is:

fL(x) =
L

∑
i=1

βiG(ai,bi,x). (2.3)

From the above two equations, we can get Hβ = T, that is

β = H†T, (2.4)

where H† is the Moore-Penrose pseudoinverse of H. Once we obtain β , together with

the same weight matrix W between the input layer and the hidden layer, we can predict

the label of new input features.

ELM networks have the “universal approximation capability” [68, 62, 61] and “classifi-

cation capability” [30]. That is, with the randomly assigned hidden neurons and appro-

priate output weights, ELMs can approximate any target function (“universal approxi-

mation capability”) and separate arbitrary disjoint regions of any shapes (“classification

capability”) by only tuning the amount of the hidden neurons. So, it is very intuitive to

apply ELM networks to regression problems and classification problems. Besides, ELM

networks can be adopted in the fields of compression [69], clustering [70] and feature

learning [71, 72].

In past decades, many researchers have developed many ELM variants, and some fa-

mous variants are listed below in the order of the time when they are first proposed, and

brief comparisons with basic ELM are presented.
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2.1 Extreme Learning Machines (ELMs)

(1) Online sequential extreme learning machine (OS-ELM) [73, 74]. Liang et al.

proposed a sequential learning algorithm based on the basic ELM called OS-ELM

in [74]. In basic ELM, we feed the training samples into the network at once, and

it works quite well when the amount of the training samples are small. Limited

by storage space and computing power, it becomes more and more challenging

to train the network when the amount of training samples increases dramatically.

OS-ELM is proposed to solve this kind of problems by feeding the samples in the

form of batching and update the weights between the hidden layer and the output

layer iteratively. The idea of iterative update affects the work of many people

afterward, including the third and fourth contributions in this thesis.

(2) Regularized extreme learning machine [75, 30, 76]. From the above explanation

of basic ELM, we know that we calculate the weights β directly by using the

matrix operation, and there is no constraint on it. While the objective of the regu-

larized ELM is to minimize both the training errors and the norm of β , and it can

be written as:

argmin
β

1

2
‖β‖2 +

1

2
C‖Hβ −Y‖2, (2.5)

where C is called the regularization factor and it is a hyperparameter. Researchers

have proved that the performance of the regularized ELM has improved a lot in

most cases without increasing training time [75]. Our second work in this thesis

is motivated by the regularized ELM, and we review it again with more details in

Section 4.2.

(3) Extreme Learning Machine Auto-Encoder (ELM-AE) [35, 55]. ELM-AE is pro-

posed in [35] to learn features of the input data using singular values for big data

processing. The most noticeable difference between ELM-AE and basic ELM is

that the target output is the same as the input in ELM-AE, while the target output

is the label information in basic ELM. Constrained by orthogonality, the weights

between the hidden layer and the output layer can learn discriminative features of
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2.2 Image Classification

the input samples. That is, β is calculated by Equ. 2.4 and

β T β = I, (2.6)

where I is the identity matrix. Our third work is deeply motivated by ELM-AE

and another existing method called PCA network, and we will introduce the theory

and implementation procedure of ELM-AE in detail in Section 5.3.

(4) Local receptive field based extreme learning machine (ELM-LRF) [34]. Basic

ELM and ELM-AE adopt full connections and response to the input samples glob-

ally, while Bai et al. introduced local connections to ELM and recept the input

data locally. Besides, ELM-LRF shows that each hidden node in ELM can be a

combination of several hidden nodes, which can be taken as a subnetwork. The

combination of the hidden nodes can be random, and the weights can be randomly

generated just like basic ELM. The idea of local connections and subnetworks of

ELM-LRF inspire our first work and the third work.

2.2 Image Classification

In this section, we will review some typical image classification techniques. One of the

critical foundations is the images which are used for classification, so first of all, we

list some famous public datasets for image classification tasks. Similarly, we introduce

them in order of time, while the complexity of these datasets is in the same order.

(1) Coil-20/100 datasets [77, 78] were estimated in 1996, and contains 20 and 100

different objects respectively. Each image contains only one object, and the object

is fine segmented, that is, the background of each image is black.

(2) MNIST dataset [59] was created in 1998, and all the images in this dataset are

handwritten digits from zero to nine. The background of each digit is also filled

with black pixels.
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(3) ETH-80 dataset [79] was collected in 2003, and the background is colored. ETH-

80 contains 80 objects from 8 chosen categories, that is, each category has ten

subcategories.

(4) OCR letter dataset [80] was built in 2004. It is similar to the MNIST dataset but

contains handwritten letters rather than digits.

(5) GENKI-4K [81] dataset was collected in 2009. As one of the most famous smiling

and non-smiling images database, it has been used in many smiling image classi-

fication (or smile detection) related work. In this thesis, this dataset is adopted in

Chapter 3 to evaluate the performance of our novel method by combining hand-

craft features and ELM classifier.

(6) CIFAR10/100 datasets [12] are created in 2009. Each image contains one object

with a complex background.

Different datasets are collected under different scenarios, and the more complicated the

scene, the harder it is for image classification. All the datasets mentioned above will be

introduced in detail in the following corresponding following chapters. In this thesis,

we have chosen different public datasets to test our proposed methods, and the criteria

for selecting a dataset is that it could best describe the characters of our approaches.

In the following paragraphs, we will introduce several existing typical image classifi-

cation methods. Computer vision began in the late 1960s and image classification is

one of the first tasks. In 1966, Seymour Papert [82] started a summer vision project,

which attempted to construct a significant part of a visual system, and the final goal of

this project is to name/classify objects with the known objects by matching the descrip-

tions/features.

Studies from the 1970s focused on extracting features of the basic elements like corner

[83], line [84], edge [85], and shape [86]. Image classification related tasks mainly

based on these basic descriptions and matching techniques in the 20th century, and most

of them are only suitable for the ideal cases [87, 88]. It is notable that Haralick et
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2.2 Image Classification

al. proposed a novel image classification method by computing texture features in [3],

which inspires the following texture-based approaches. The texture is an innate property

of surfaces of objects, and it is a pattern that could be used to identify different objects.

Three easily computable textural features f1, f2, f3 are expressed as:

(1) Augular Second Moment:

f1 = ∑
i

∑
j

p2(i, j). (2.7)

(2) Contrast:

f2 =
Ng−1

∑
n=0

n2

(
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

)
, (|i− j|= n). (2.8)

(3) Correlation:

f3 =
∑i ∑ j(i j)p(i, j)−µxµy

σx,σy
. (2.9)

Here, p(i, j) is the (i, j)th entry in the image, Ng is the quantized levels, µx, µy, σx, and

σy are the means and standard devisions of px and py, while px(i) and py( j) are the ith

and jth sum of the rows of p(i, j) respectively.

The rapid development of image classification originated in the early 2000s, and the

landmark event is that Paul Viola and Michael Jones proposed a machine learning ap-

proach for simultaneous object detection (recall that object detection is essentially an

image classification problem of distinguishing between positive and negative sample

images). This method consists of three main keys: Haar-like features, AdaBoost clas-

sifier, and the Cascade structure. Haar-like features are represented as the difference of

the sum of two/three/four rectangle areas in a digital image, and the integral image is

introduced to calculate the sum of a rectangle area efficiently. Assume the pixel value

of an image at (i, j) is p(i, j) and the pixel value of its corresponding integral image at
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(i, j) is pint(i, j), then we have

pint(i, j) = ∑
i′≤i

∑
j′≤ j

p(i′, j′). (2.10)

The illustration of an integral image is shown in Fig. 2.3, pixel value at location 1

(indicated as pint(1)) in the integral image is the sum of pixels in the area A in the raw

image (indicated as SA). Then we have pint(1) = SA, pint(2) = SA+SB, pint(3) = SA+SC

and pint(4) = SA+SB+SC +SD. So, we can calculate the sum of all pixel values of any

region in a linear time, for example, SD = pint(4)+ pint(1)− pint(2)− pint(3).

D

A C

B

1

2

3

4

Figure 2.3: Illustration of an integral image.

The second step is feeding the extracted haar-like features and learn classifiers based on

AdaBoost. AdaBoost is an iterative algorithm, which trains different weak classifiers

based on the same training samples. In a real application, many weak classifiers are

chained together to form a strong classifier to achieve increased detection accuracy.

The third step is detection with cascade structure, whose schematic is shown in Fig. 2.4,

and “1”, “2” and “3” represent the AdaBoost classifiers. From the schematic, we can

see that the cascade structure detection completes coarse-to-fine processing by striking

out false samples step by step.

With these three steps, an efficient face detection method is proposed, and this method

has a profound impact on the following object detection (and image classification) ap-

proaches. By following the framework of efficient feature extraction methods and appro-

priate classifiers, researchers have presented many practical image classification systems

with high performance.
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Figure 2.4: Cascade structure detection.

Later, Pietikainen et al. proposed an excellent feature extraction method named lo-

cal binary patterns (LBPs) and applied it to the multiresolution gray-scale and rotation

invariant texture images classification system in 2002 [19], and to the practical face

recognition system in 2006 [89].

After that, methods of combining LBPs and suitable classifiers (e.g., SVM and ELM)

have been implemented in many other fields such as gender/age/ethnicity classification

and facial expression classification with excellent performance [90, 91, 92, 47]. In this

thesis, we have compared some of our work with LBP-based methods, so here we give

a brief review of this famous feature descriptor. The principle of LBP is very straight-

forward. First, each pixel value is compared with its eight neighboring pixels. If the

adjacent pixel value is smaller than the center value, it is assigned with the value 0;

otherwise, it is assigned with 1. Then, the eight adjacent values are treated as an 8-bit

binary number and this binary number is converted to a decimal value. The center pixel

is then assigned with this decimal number. The LBP basic operator is shown in Fig. 2.5.

0 0 0

1 1

1 0 0

1 2 2

9 5 6

5 3 1

Threshold Binary: 00010011
Decimal: 19

Figure 2.5: Basic local binary pattern operator.

This process of extracting features first and then putting features into one or many clas-

sifiers is still prevalent until now.

Deep neural networks was developed for image classification in the 1990s, and the first

popular deep neural network is proposed in [6] for handwritten digit image classifi-
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cation. In 2012, benefit from the growth of computing power of GPUs, DNN-based

(or deep learning based) image classification methods became very hot. As one of the

most representative deep neural networks, AlexNet was implemented on ImageNet (the

large image classification dataset at that time) and achieved the state-of-the-art result

[13]. After that, VGGNet [36] was proposed in 2014, and it achieved better results with

more layers than Alexnet. Later, ResNet [37] and DenseNet [93] were developed to

explore the ability of cross-layer connections. The deep architecture of these methods

has inspired our third work in this thesis, and we have analyzed the difference between

DNN-based methods and ELM-based methods in Chapter 1. We haven’t compared our

methods with DNN-based methods since our main work is on how to enhance the ELM

networks for image classification.

Even deep learning based methods have achieved very high accuracies on some specific

datasets, they still suffer from some inherent disadvantages like the lack of solid theo-

retical proof, consuming enormous computing resources, costing long training time and

so on [55].

2.3 Existing ELM-Based Methods for Image Classifica-

tion

Lots of ELM-based algorithms for image classification have been proposed, and they

can be grouped into the primitive application and advanced application.

The primitive ELM-based application means algorithms only use the ELMs as classi-

fiers. In [47], a framework for hyperspectral imagery (HSI) classification is presented

by extracting LBP features and using ELM as a classifier. As we have introduced above,

LBP descriptor is proposed for texture classification, and then it is applied to many other

fields like describing the local spatial pattern. Here, Li et al. extracted LBP features of

the images from real hyperspectral datasets and then fed them into the ELM networks.
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They have compared their proposed method with other related approaches and found

that LBP representations are quite useful in HSI spatial features, and the ELM classifier

outperforms SVM-based algorithms.

Many other primitive uses of ELMs mostly within the framework of extracting features

and classifying these features with ELMs [94, 95, 96, 97]. Most of them work quite

well for some specific applications, but not suitable for other uses. In this thesis, our

first proposed system is for smiling images and non-smiling images classification, and

the novel feature descriptor we have designed is based on the facial landmarks since

facial landmarks detection methods are more and more accurate and efficient nowadays

[98]. From the view of the ELM network, our first work focuses on its input layer.

The advanced ELM-based application means the methods modify the structures of ex-

isting ELMs, including diverse optimization of the weights [32, 35], various connection

methods between different layers [34, 43, 99], changeable output layers [69] and so on.

. .
. .

. .

. .
. .

Random Connections

Input layer

X

Hidden nodes
output layer

X

Figure 2.6: Structure of the ELM-AE.

Kasun et al. [35] proposed a famous variant of basic ELM called ELM auto-encoder

(ELM-AE, shown in Fig. 2.6) for representation learning and dimension reduction, and

applied it to image classification. In the ELM-AE, the output nodes are the same as the

input nodes, and random weights and biases between the input layer and the hidden layer

are orthogonal here. Theory of ELM-AE has shown that output weights could represent

the raw input data efficiently for image classification problems. An ELM-based method

for texture was also proposed later for image classification by taking the output weights
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2.3 Existing ELM-Based Methods for Image Classification

of the ELM as feature vectors in [100].

In 2015, Huang et al. [34] introduced a local receptive field into ELM networks and

proposed local receptive field based ELM (ELM-LRF) for classification problems. Un-

like full connections in basic ELM, ELM-LRF adopts local connections between the

input layer and the hidden layer, and learn the output weights by using ridge regression.

Later, multi-layer ELM [99] and hierarchical ELM [43] were proposed which extend

single layer ELM to multiple (hidden) layer networks.

Our last three work in this thesis all belong to the advanced ELM-based algorithms, and

our second work and third work are directly inspired by ELM-LRF and Hierarchical

ELM. More details will be presented in the following corresponding chapters.
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Chapter 3

ELM-Based Pairwise Distance Vector

for Smiling and Non-Smiling Images

Classification

Chapter 3 begins with the introduction of applications of facial expression recognition

and smile detection (smiling and non-smiling images classification), then we analyze the

gaps of current smile detection algorithms, and propose our novel algorithm based on

ELM and the snappy set of features extracted from a few of facial landmarks around the

mouth. Furthermore, we have theoretically proved that the proposed feature extraction

method has properties of invariance of translation, rotation, and scaling. At last, We have

tested our ELM-based algorithms on the smile images classification database, and the

results indicate that our method is better than the state-of-the-art methods with higher

accuracy and lower dimension of features.
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3.1 Introduction

3.1 Introduction

Facial expressions recognition has attracted increasing attention in past years [101, 102]

and smile (as one of the most common facial expressions) detection has become one

of the hotspots recently. Accurate identification of smiles can verify a person’s true

feelings [103, 104]. Smile detection is to distinguish between smiling face images and

non-smiling face images.

Many researchers have proposed various methods for smile images classification in the

last decade. In general, most of them have a facial feature extraction module followed

by classification. There are two groups of feature extraction methods. The first group

is based on extracting features from the raw images, while the second group relies on

extracting features from the facial landmarks (facial key points which can be adopted

for face recognition, head pose estimation, face morphing, etc.). A brief introduction

of these two groups of feature extraction methods is given, and the dimensions of the

feature vectors are presented in the following two paragraphs.

Shinohara et al. [105] extracted Higher-order Local Auto-Correlation (HLAC) features

at each pixel in the raw image. The HLAC features are integrated with a weight map

to form a feature vector, and the dimension of this vector is proportional to the total

number of pixels in the image. Gabor Energy Filters (GEF) [106] was applied, and

Gabor vector was adopted as features in [10]. The dimension of Gabor feature vector

is O(105) in their work. Shan put forward an efficient approach for smile detection by

comparing the pixel intensities and used the binary results of each comparison (which

is represented numerically as 1 or 0) as features in [107]. The dimension of the features

is O(106) in his work. Later on, he improved this method by replacing the comparison

operators with the intensity difference between arbitrary two pixels in [108] because

the intensity difference provides more information than comparison operators. A mixed

feature vector was used in [109] by combining three popular feature descriptors: Local

Binary Pattern (LBP) [110, 111], Local Phase Quantization (LPQ) [112] and Histogram

of Oriented Gradients (HOG) [113]. The dimension of the mixed feature is reduced to
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500 by Principal Component Analysis (PCA) [114]. The features mentioned above are

all extracted from raw aligned face images, since [10] has shown that image alignment

is helpful to increase the accuracy of object detection.

Huang et al. [115] adopted the x−direction distance between the left mouth corner and

right mouth corner as a measure to distinguish whether there exists a smiling face. The

criterion is the x−direction distance of the smiling face is larger than a standard length

plus a threshold Tsmile. However, the threshold is hard to determine, and this method is

not robust since people can have various head pose in real scenarios and the distance be-

tween the left and right mouth corner can vary considerably. The x and y coordinates of

eight particular mouth corners were used as input to a three-layer feedforward network

in [2], but we know that absolute locations of mouth are quite unstable in different facial

images [116, 117, 118].

In this chapter, we propose a novel smile images classification system by using a short

and snappy feature descriptor for smile detection named Pair-wise Distance Vector,

which is extracted only from the facial landmarks around the mouth. Commonly, we

annotate 68 facial landmarks within seven facial regions, including eyebrows (10 land-

marks), eyes (12 landmarks), nose (9 landmarks), mouth (20 landmarks) and face con-

tour (17 landmarks). The motivation of only using facial landmarks around the mouth

in this chapter is that a smile is performed by moving cheeks and lips [119]. To verify

the effectiveness of facial landmarks around the mouth in detecting a smile, we calcu-

late the importance of all the facial components (facial subregions, including eyebrows,

eyes, nose, mouth, face contour.) by using MUG Facial Expression Database (some

examples of this database are shown in Fig. 3.1), which contains the manual-annotated

facial landmarks for 401 images of 26 subjects [120]. The details are as follows:

• Each smile-face image and its corresponding neutral images are treated as a pair

of images, and their facial landmarks are aligned according to three fixed position

(centers of the left eye, right eye and the apex of the nose)

• For the facial landmarks within each facial component of each pair images, the
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(a)

(b)

Figure 3.1: An example of MUG Facial Expression Database. (a) shows neutral images

and (b) shows the corresponding smile-face images.

movements are calculated, and the variance of these movements is calculated.

• All these variances are added together for each corresponding facial component,

and their proportions are shown in Fig. 3.2.

Apparently, the movements of facial landmarks around the mouth achieve the maximum

variance, which implies that mouth deformation can indicate a smile.

After extracting Pair-wise Distance feature vectors from the training samples, we adopt

Extreme Learning Machine (ELM) [121] as a classifier to train a model due to ELM’s

outstanding performance regarding accuracy and speed of training and testing.

Our work has four main contributions:
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Figure 3.2: Impact proportions of seven facial components for smiling face compared

with neutral.

(a) We verify the effectiveness of mouth deformation as an indicator of a smile.

(b) We introduce a new framework which takes detection of face and facial landmarks as

a preprocessing step, extracts a feature vector from facial landmarks, and classify these

feature vectors with a classifier (like ELM).

(c) We propose a novel and snappy feature extraction method that extracts a feature vec-

tor only from the facial landmarks around the mouth. This feature vector can describe

the shape of the mouth with little distortion no matter how the shape is changed. We

have proved that the extracted feature vector has the property of invariance of transla-

tion, rotation, and scaling.

(d) We provide an updated GENKI-4K benchmark by relabeling all the images and re-

moving the duplicate images. We also evaluate our proposed algorithm again according

to the new annotations.

The remainder of this chapter is organized as follows. Section 3.2 introduces the related

work of our method, including CFAN for facial landmarks detection and ELM for clas-

sification. In Section 3.3, we describe the proposed smile detection method using the

novel features (Pair-wise Distance Vector). The experiments and results are discussed

in detail in Section 3.4, and the conclusion is given to summarize this chapter finally.
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3.2 Related Works

3.2 Related Works

As shown in Fig. 3.3, we need a preprocessing step to locate the essential facial land-

marks and a classifier to determine between smiling and non-smiling faces based on

the extracted features. In our work, we adopt Coarse-to-Fine Auto-encoder Networks

(CFAN) and ELM for these two modules respectively. These two related work and the

novel feature vector (introduced in Section 3.3) are integrated and form the proposed

novel smile detection algorithm. More details of these two techniques are presented

below.

3.2.1 Facial Landmarks Detection

The foundation of our study is the accurate detection of facial landmarks, and research

on facial landmarks detection (or estimation) can be divided into two categories [98]:

holistic feature extraction based and local feature extraction based. The representative

holistic feature extraction method is Active Appearance Models (AAM) [122], and the

typical local feature extraction technique is Constrained Local Model (CLM) [123].

In this chapter, we obtain facial landmarks automatically by adopting CFAN [98], has

achieved the highest accuracy at present to the best of our knowledge. Besides, CFAN

(with Matlab codes) has been evaluated on a common desktop machine with Intel Core

i7-3770 Quad-Core Processor 3.4GHz CPU and 32GB DDR3 SDRAM. The program

runs rather efficiently by processing more than 40 fps per second.

CFAN consists of a global Stacked Auto-encoder Network (SAN) and several local

SANs. The mapping F of global SAN from input image I to shape S is taken as a

stacked auto-encoder.Local SANs share the similar objective function to the global SAN

by replacing the input image with the output of global SAN. More details of CFAN are

introduced in Section 3.3.

Global SAN can quickly reach the approximate locations of the facial landmarks and
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Facial Landmarks Detection 

(CFAN, AAM, CLM, ...)
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Distance Vector
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(ELM, SVM, ...)

Input Image Preprocessing
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Extraction
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Figure 3.3: Flowchart for smile detection.

local SANs refine these positions step by step.

3.3 ELM-Based Smile Image Classification Using Dis-

tance Vector

Our framework for smile detection is shown in Fig. 3.3. Firstly, a step of preprocessing

is performed on the input image to locate all the facial landmarks (68 facial landmarks

in total in our work) by CFAN. Then, the proposed novel feature extraction method is

performed on these facial landmarks, and Pair-wise Distance Vector is extracted Finally,

ELM is carried out to classify smile based on these feature vectors. Particularly, the

necessity of using ELM for the specific task is that the effectiveness of ELM on classi-

fication problems has been proved from theory and practice. Therefore, our technique

approach consists of three main parts: picking up the facial landmarks around the mouth,

extracting pair-wise distance vector, and classifying the features with ELM.

3.3.1 Landmarks Extraction for Smile Detection

The facial landmarks around the mouth are extracted using a modified CFAN. First of

all, a face detector is performed to find the boundary box of the face roughly in the

input image, and then facial landmarks are located within the facial region. Kinds of

face detectors have been proposed in the past decades [124, 125, 118, 126, 127], and

many detectors can be employed here. Exploring the best detector is out of the scope of
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3.3 ELM-Based Smile Image Classification Using Distance Vector

this chapter. Instead, we focus on tuning the exist CFAN (which could locate 68 facial

landmarks) to extract the 20 landmarks around the mouth which are required for smile

detection.

CFAN can be divided into two parts: the global SAN and local SANs. The global

SAN estimates the rough locations of facial landmarks by using global raw features at a

low-resolution image. The objective of facial landmarks detection is to find a mapping

function F(x) which project the input face image x to the coordinates of the facial land-

marks (donated as L(x)). By stacking k auto-encoders (the mapping function of ith layer

is fi), we have the objective function as:

F∗ = argmin
F
‖Lg(x)− fk( fk−1(... f1(x)))‖

2
2, (3.1)

where F = { fi|i ∈ [1,k]} and Lg is the actual locations of the facial landmarks. Global

SAN is optimized by adopting a regularization term and an unsupervised pre-train pro-

cess to overcome over-fitting and local minimum respectively (details can be found in

[98]). The outputs of global SAN are the approximate locations of facial landmarks.

The local SANs are designed similarly to tune these locations further. Different from

the raw global features adopted in the stage of global SAN, local SANs use the local

shape-indexed features (i.e., Scale-invariant feature transform (SIFT)[18]) as input.

CFAN in [98] outputs 68 facial landmarks in total, shown in Fig. 3.4 (c). However, only

facial landmarks around the mouth are needed for smile detection, and 48 facial land-

marks are superfluous. So in our work, we only adopt the 20 facial landmarks around

the mouth and three anchors (centers of two eyes and the tip of the nose). These three

key facial landmarks are chosen because they are the most commonly used reference

facial landmarks for face alignment [128, 129, 130, 131]. They will be ignored in the

final layer of the auto-encoder network on the stage of local SANs, which reduces about

two-thirds of the computational complexity.
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3.3 ELM-Based Smile Image Classification Using Distance Vector

(a) (b) (c)

Figure 3.4: The result of preprocessing. (a) shows the original image comes from Helen

database [1]. (b) is the result of face detection (marked with yellow rectangle). (c) is the

result of facial landmarks based on coarse-to-fine auto-encoder network (marked with a

green cross).

3.3.2 Pair-Wise Distance Vector

We obtain 68 facial landmarks with the preprocessing step. Twenty facial landmarks

around the mouth are used according to the reason we have analyzed in Section 3.1.

These 20 facial landmarks and their sequence numbers are shown in Fig. 3.5.
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Figure 3.5: Twenty facial landmarks around the mouth.

Assume there are N facial landmarks in a geometric figure, and the coordinates of an

arbitrary point Pi (i ∈ [1,n]) are (xi,yi). The Euclidean distance matrix of these N facial
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3.3 ELM-Based Smile Image Classification Using Distance Vector

landmarks is:

MED =




|v11| |v12| · · · |v1n|

|v21| |v22| · · · |v2n|
...

...
. . .

...

|vn1| |vn2| · · · |vnn|




=




d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

. . .
...

dn1 dn2 · · · dnn




=




0 d12 · · · d1n

d12 0 · · · d2n

...
...

. . .
...

d1n d2n · · · 0



,

(3.2)

where vi j (i, j ∈ [1,n]) is the vector from point Pi to point Pj. The norm of vi j is di j which

stands for the Euclidean distance between Pi and Pj. We know the coordinates of Pi and

Pj are (xi,yi) and (x j,y j) respectively, so Mi j =
∣∣vi j

∣∣= di j =
√

(xi− x j)2 +(yi− y j)2 =

d ji =M ji, and MED is a symmetric matrix. Extract the upper triangular part of this matrix

(diagonal elements are ignored since they are all zeros) and convert these elements into

a vector D:

D =[d12,d23, · · · ,d1n,d23, · · · ,d2n, · · · ,d(n−1)n]. (3.3)

After normalizing D with its ℓ1 norm, we obtain a feature vector F :

F = Normalization(D) =
D

‖D‖1

, (3.4)
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Figure 3.6: Sketch for translation invariance.

and

‖D‖1 = |d12|+ |d13|+ · · ·+ |d1n|+ |d23|+ · · ·+

|d2n|+ · · ·+
∣∣d(n−1)n

∣∣ .
(3.5)

This feature vector F is named as Pair-wise Distance Vector, and the length of F is

n(n−1)/2. F is a shape descriptor which can adequately reflect an object’s shape since

we can reconstruct the same normalized figure as the original figure by F . Besides, this

feature vector has properties of invariance of translation, rotation, and scaling, and the

proofs are as below.

Translation Invariance

There are two figures in Fig. 3.6, A and B. A is a geometric figure, and B is the translated

geometric figure of A, which has an offset ∆x in the horizontal direction and ∆y in the

vertical direction. The coordinates of point Pi in A are (xi,yi), then the coordinates of

point Pi′ in B are (x′i,y
′
i), which equal to (xi +∆x,yi +∆y).

Proof: Assume the distance between Pi and Pj in A is di j, and the distance between Pi′
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and Pj′ in B is d′i j. Then we have:

(x′i− x′j)
2 = ((xi +∆x)− (x j +∆x))2

= ((xi− x j)+(∆x−∆x))2

= (xi− x j)
2.

(3.6)

Similar to equation (3.6), we have:

(y′i− y′j)
2 = (yi +∆y)− (y j +∆y))2

= (yi− y j)
2.

(3.7)

Then,

d′i j =
√
(x′i− x′j)

2 +(y′i− y′j)
2

=
√

(xi− x j)2 +(yi− y j)2 = di j.
(3.8)

So D′ = D, and finally, we know the feature vector F ′ = F , which means F is a transla-

tion invariant shape descriptor.

Rotation Invariance

In Fig. 3.7, A is an original geometric figure, and B is the rotated geometric figure

with rotation angle θ . So coordinates of point Pi′ in B are (x′i,y
′
i), which equals to

(xicosθ − yisinθ ,xisinθ + yicosθ).

Proof: Similar to the proof of translation invariance, we have:

(x′i− x′j)
2 =((xicosθ − yisinθ)− (x jcosθ − y jsinθ))2

=(xi− x j)
2cos2θ +(yi− y j)

2sin2θ

−2(xi− x j)(yi− y j)sinθcosθ

, (3.9)
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Figure 3.7: Sketch for rotation invariance.

and

(y′i− y′j)
2 =((xisinθ + yicosθ)− (x jsinθ + y jcosθ))2

=(xi− x j)
2sin2θ +(yi− y j)

2cos2θ

+2(xi− x j)(yi− y j)sinθcosθ .

(3.10)

Based on equation (3.9) and equation (3.10), we have:

(x′i− x′j)
2 +(y′i− y′j)

2 =(xi− x j)
2(sin2θ + cos2θ)

+(yi− y j)
2(sin2θ + cos2θ)

=(xi− x j)
2 +(yi− y j)

2.

(3.11)

Then the distance between Pi′ and Pj′ in B is:

d′i j =
√

(x′i− x′j)
2 +(y′i− y′j)

2

=
√

(xi− x j)2 +(yi− y j)2 = di j.
(3.12)

So the feature vector F ′ = F , and F is a rotation invariant shape descriptor.
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Figure 3.8: Sketch for scaling invariance.

Scaling Invariance

In Fig. 3.8, A is an original geometric figure and B is the scaled geometric figure of

A with a scaling factor α (α > 0). The coordinates of point Pi′ in B are (x′i,y
′
i), which

equal to (αxi,αyi).

Proof: Similar to the above two proofs, we have:

d′i j =
√

(x′i− x′j)
2 +(y′i− y′j)

2

=
√

(αxi−αx j)2 +(αyi−αy j)2

= α
√
(xi− x j)2 +(yi− y j)2 = αdi j.

(3.13)

Then, D′ = αD. So the feature vector F ′ = D′

‖D′‖1
= αD
‖αD‖1

= αD
α‖D‖1

= D
‖D‖1

= F , and F

is a scaling invariant shape descriptor.

3.3.3 ELM for Smile Detection

The last step of our technical approach for smile detection is using ELM to classify the

feature vectors we have got into two categories: smile(or positive, denoted as “1”) and

non-smile(or negative, denoted as “−1”). In the section of related work, we have briefly
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introduced the theories of the early ELM which were developed in 2006 [38]. In 2012,

Huang et al. [30] introduced a user-specified parameter C (regularization factor) into

the ELM theory under the Karush-Kuhn-Tucker (KKT) conditions [132].

The dimension of the features we have achieved is 190, which is much smaller than

the training samples (there are 4000 samples in the dataset we use, and 3000 of them

are used to train the model. See Section 3.4 for more details). Refer to the analysis

of constrained-optimization-based ELM in [30], the relationship between hidden layer

output matrix H, output weight matrix β between the hidden layer and output layer, and

output vector Y of the output layer is established as:

Hβ −Y+
I

C
(HT )β = 0. (3.14)

Here H=G(WX+B), where W and B are weight and bias matrices between input layer

and the hidden layer, X represents the input samples, and G(·) is an activation function.

Solve the equation, we have

β =

(
I

C
+HT H

)−1

HT Y. (3.15)

Smile detection is a binary classification case, and one single-output node is enough. So

the decision function of the classifier is

f (x) = sign(h(x)β ) . (3.16)

So, f (x) = 1 indicates that the predicted label of sample x is positive. Otherwise, the

predicted label is negative.

The training procedure of the proposed smile detection system is shown in Algorithm 1,

and the test procedure is shown in Algorithm 2.
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Algorithm 1: ELM Training

Input: Training image I and their corresponding labels Y. The number of

hidden nodes L and the normalization factor C.

Output: An ELM model which contains the weight matrices W and β , and

bias matrix B.

1 Use CFAN to locate 20 facial landmarks around mouth: P←CFAN(I) ;

2 Compute Euclidean distance matrix according to Equ. 3.2: M← P ;

3 Compute pair-wise distance feature vectors according to Equ. 3.3: D←M ;

4 Normalize D with its ℓ1-norm according to Equ. 3.4: X← D ;

5 Generate W and B randomly, and their dimensions are both L×N1, where N1 is

the length of each input sample. ;

6 Calculate the hidden layer output matrix according to Equ. 3.14:

H← (W,X,B);
7 Calculate the output weight according to Equ. 3.15: β ← (H,Y,C);
8 return W, β , and B;

Algorithm 2: ELM Testing

Input: Test image I, the weight matrices W and β , and bias matrix B.

Output: A smile indicator y, which is -1 (non-smile) or 1(smile).

1 Use CFAN to locate 20 facial landmarks around mouth: P←CFAN(I) ;

2 Compute Euclidean distance matrix according to Equ. 3.2: M← P ;

3 Compute pair-wise distance feature vectors according to Equ. 3.3: D←M ;

4 Normalize D with its ℓ1-norm according to Equ. 3.4: x← D ;

5 Calculate the hidden layer output matrix according to Equ. 3.14:

H← (W,x,B);
6 Calculate the predictor according to Equ. 3.16: y← (H,x) ;

7 return the indicator y;

3.4 Experimental Results

In our experiment, we test the proposed method on GENKI-4K [81, 133] database.

First, a brief introduction of GENKI-4K is given in subsection 3.4.1, and the primary

challenges are analyzed. Subsection 3.4.2 shows the visualization of our proposed fea-

ture vector. We evaluate related classifiers by using the same database in subsection

3.4.3. Then we compare our feature extraction method with two related methods based

on facial landmarks and some state-of-the-art smile detection algorithms in Subsection

3.4.4 and Subsection 3.4.5 respectively. In Subsection 3.4.6, we evaluate our proposed

approach in terms of the accuracy on various head poses. Finally, we update the GENKI-
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4K database by correcting some false annotations and removing the duplicates in Sub-

section 3.4.7.

Figure 3.9: Images randomly selected from GENKI-4K database.

3.4.1 GENKI-4K Database

In our experiment, GENKI-4K database is adopted. This database is the most famous

database for smile detection and has been widely used in many studies [134, 10, 135,

108, 136, 137, 109, 138]. It contains 4000 real-world scene images, and each image has

one valid facial region (2162 smiling faces and 1838 non-smiling faces). These facial

images span a broad range of illumination conditions, geographical locations, personal

identity, and ethnicity. Fig. 3.9 shows some images which are randomly selected from

GENKI-4K database. Images in the first two rows show smiling faces while the rest im-

ages show non-smiling faces. This database has fully reflected the two most challenging

issues for detecting smiling faces in real applications. One is the head pose, and the
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Figure 3.10: Examples for various head poses selected from GENKI-4K database. Im-

ages from top left to bottom right are smiling and non-smiling faces with an angle of

yaw, pitch, and roll respectively.

Figure 3.11: Examples of three kinds of facial occlusions from GENKI-4K database.

Occlusions covering facial images from the left column to right column are glasses,

hairs, and hats respectively.

other is the occlusion. Fig. 3.10 shows some examples of the three degrees of freedom

of a human head by the egocentric rotation angles, which are yaw, pitch, and roll [139].

Some facial images with occlusions (glasses, hairs, and hats) are shown in Fig. 3.11.

In the experiment, our method is based on facial landmarks around the mouth, and it

does not have these problems. Our algorithm works quite well as long as no occlusion

exists in the mouth region, which is a more common condition than no occlusion in the

face region (none of the 4000 images in GENKI-4K database has an occlusion covering

the mouth). Moreover, we adopt Coarse-to-Fine Auto-Encoder Networks to detect facial

41



3.4 Experimental Results

Figure 3.12: Some implement results of coarse-to-fine auto-encoder network on

GENKI-4K database.

landmarks around the mouth, which is quite robust to variation of head pose. Some

detection results are shown in Fig. 3.12.

3.4.2 Visualization of Pair-Wise Distance Vector

To visualize the high-dimension Pair-wise Distance Vector directly, we perform the PCA

on it in the experiment. Here, we extracted 20 facial landmarks around the mouth for

all M (= 4000) images in GENKI-4K. The dimension L of Pair-wise Distance Vector is

190 (= (20−1)×20÷2). We follow the following five steps to visualize the proposed

vector:

(1) Combine all features together as a matrix X = [F1;F2; · · · ;FM].

(2) Compute all principal components scores S of X and eigenvalues E = [e1,e2, · · · ,eL]

of the covariance matrix of X according to the definition of PCA.

(3) Calculate the sum of eigenvalues ∑
i=L
i=1 ei and find the first K eigenvalues which

satisfy the condition that ∑
i=K
i=1 ei ≥ T ×∑

i=L
i=1 ei (here we set T = 0.85, so K = 4).

(4) Extract first K columns of S and each column is then treated as a variable.
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Figure 3.13: Visualization of pair-wise distance vectors. Red dots indicate positive

samples (smiling faces) while blue dots denote negative samples (non-smiling faces).

1st , 2nd , 3rd and 4th PC represent first, second, third and fourth principal component

respectively.

(5) Display each pair of variables as a scatterplot, along with a univariate histogram

for each variable, shown in Fig. 3.13.

Two conclusions can be drawn from the scatterplots above. First, the proposed feature

extraction method is effective because the scatterplots between the second and third

principal components are somewhat separable. Second, features cannot be precisely

separated by linear classifiers.
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3.4.3 Comparison of Different Classifiers

To evaluate the performance of commonly used classifiers on smile detection, we com-

pare two different baseline classifiers with ELM. Raw pixel values and Pair-wise Dis-

tance Vector are extracted from facial images as the training and testing inputs of the

classifiers.

Raw pixel values are automatically cropped from the gray level of original images by a

face detector followed by scaling to reach a normalized size 48×48, so the dimension

of the raw-pixel-value feature vector is 2304.

Brief introductions and parameter settings of the three different classifiers are listed

below:

AdaBoost. Adaptive boosting algorithm (AdaBoost) is an iterative algorithm, which

trains different weak classifiers with the various parameters on the same training samples

and builds a strong classifier by computing a weighted sum of all the weak classifiers

[140]. Gentle AdaBoost (with decision trees as the weak classifiers) is adopted in our

experiment (same with AdaBoost used in [10] and [138]) because this boosting method

is more efficient in practical applications [141].

SVM. Support Vector Machine (SVM) is essentially a binary classification model, which

obtains several support vectors by maximizing the geometric margin between negative

and positive samples [142, 143]. In our experiment, the type of kernel function is radial

basis function, and the gamma in kernel function ranges from 10−5 to 105 in the process

of cross-validation.

ELM. ELM (Extreme Learning Machine) has been introduced in Section 3.2. The num-

ber of hidden neurons is set to two times the dimensions of the input features.

Cross-validation is implemented for each classifier to make a valid estimation of perfor-

mance, and we adopt a K-fold (K is set to 4 in our experiment) cross-validation [144].

All the 4000 samples from GENKI-4K database are divided into K groups, and only
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Table 3.1: Comparison of different classifiers.

Accuracy (%) Raw pixel values Proposed features

AdaBoost 79.22±1.12 91.54±0.67

SVM 77.47±1.18 92.70±0.85

ELM 79.30±1.64 93.42±1.46

one group is to be tested while others are used to train the model. So there are K results

of the classification accuracy for each classifier. The mean of all these K results is cal-

culated as the accuracy of each classifier, along with the standard deviation, shown in

Table 3.1. The results suggest that ELM performs better than AdaBoost and SVM both

for raw-pixel-value features and the features proposed in this chapter.

3.4.4 Comparison with Related Methods Based on Facial Landmarks

To show the effectiveness of our proposed features extracted from the facial landmarks,

we compare two related methods which are also based on facial landmarks. The pro-

posed feature extraction method relies on the accurate detection of facial landmarks,

which is also the key preprocessing step of methods developed by Huang et al. [115]

and Kowalik et al. [2]. The smile detection approaches proposed in [115] and [2] have

been explained in the fourth paragraph of Section 3.1 and detail steps of implementation

are introduced as follows:

In [2], x and y coordinates of eight facial landmarks around the mouth (shown in Fig.

3.14, including the left and right mouth corners (P′1 and P′5), three facial landmarks on the

upper lip (P′2∼4) and three facial landmarks on the lower lip (P′6∼8) are used as features.

However, there are 20 facial landmarks (P1∼20, shown in Fig. 3.2) around a mouth in

the implementation of CFAN landmark detector. So, a corresponding mapping between

P′i (i ∈ [1,8]) and Pj ( j ∈ [1,20]) is built as:

• P′1← P1, P′5← P7;

• P′2← the center point of P2, P3, and P14;
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Figure 3.14: Sketch for eight facial landmarks around mouth used in [2].

• P′3← the center point of P4 and P15;

• P′4← the center point of P5, P6, and P16;

• P′6← the center point of P8, P9, and P18;

• P′7← the center point of P10 and P19;

• P′8← the center point of P11, P12, and P20.

We can easily obtain the eight facial landmarks from the existing 20 facial landmarks for

each image. Finally, ELM is applied as the classifier to this coordinate-based features.

The method proposed in [115] is only based on left and right mouth corners, and a smile

is detected if x−direction distance between these two corners is larger than a fixed value

DT . We define the accuracy of this threshold-based method on GENKI-4K as:

Acctb = max
DT

{
1

M

n

∑
i=1

[(Di > DT ) == Li]}, (3.17)

where i∈ [1,M] indicates the ith images in the database. Di denotes the distance between

left and right mouth corners, and Li ∈ [−1,1] denotes the logical value of negative (L =

−1) or positive (L = 1) label.

The comparison between the above two methods and the method proposed in this chap-

ter is shown in Table 3.2:
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Table 3.2: Comparison of different methods based on facial landmarks.

Methods based on facial landmarks Accuracy (%)

Coordinate-based method + ELM 84.57±0.29

Threshold-based method 57.791

Pair-wise Distance Vector + ELM 93.42±1.46
1 This accuracy is a constant according to Equ. 3.17.

The reason why threshold-based method achieves the lowest accuracy among these three

methods based on facial landmarks is that the left and right mouth corners are not stable,

and the distance between them alone is not sufficient enough to indicate the movement

of pixels around the mouth when people show a smile. Our proposed feature extraction

method achieves higher accuracy than the Coordinate-based method when the same

classifier (ELM) is adopted.

3.4.5 Comparison with the State-of-the-Art Smile Detection Meth-

ods

To evaluate the performance of our proposed method, we compare it with some state-

of-the-art smile detection methods in this section. Many algorithms for smile detection

have been proposed in recent years since GENKI-4K database was created by MPLab

and introduced in [10]. Among the state-of-the-art methods, some use individual fea-

ture while others combine these features to increase the detection accuracy further. Our

proposed feature vector is one kind of individual features, so only methods based on

individual features are implemented here to estimate the performance of Pair-wise Dis-

tance Vector in our experiment. There are four approaches that have achieved the state-

of-the-art methods in recent years, which adopt Gabor, LBP, Pixel Comparisons, and

Self-Similarity of Gradients (GSS) as features respectively. The details of parameter

settings are as follows.

Gabor and LBP features. Gabor and LBP are adopted as features and tested on

GENKI-4K in [10], and detailed parameter settings of them are firstly introduced by
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Table 3.3: Comparison of different algorithms of smile detection.

Algorithms
Accuracy (%)

Feature Dimension Classifier

Gabor1 23040 SVM 89.68±0.62

LBP1 944 SVM 87.10±0.76

Pixel Comparisons2 500 AdaBoost 89.70±0.45

GSS3 576 Ada+SVM 91.11±0.47

Pair-wise Distance Vector 190 ELM 93.42±1.46
1 This method is proposed in [10], and the accuracy is from [108].
2 This method is proposed in [108], and the accuracy is also from [108].
3 This method is proposed in [138], and the accuracy is also from [138].

Shan [108]. Each face image is normalized to a 48× 48 patch, which contains 2304

pixels. Bank of Gabor filters are applied to each face patch at eight orientations and five

spatial frequencies, and the length of outputs are reduced to 10 by down-sampling. LBP

features are computed by adopting a 59-label LBP (8,2,u2) to all 16 subblocks divided

from each face path. The dimensions of Gabor feature and LBP feature are 23040 and

944 respectively.

Pixel-Comparison feature. A method using Pixel-Comparison feature is proposed in

[107] and enhanced in [108] by replacing comparison operators with intensity differ-

ence. The dimension of comparison features is (W ×H)× (W ×H − 1)× 10 (W and

H are the width and height of face patch, and there are ten types of pixel comparison

operators), and feature selection is utilized to reduce its length to 500.

GSS feature. GSS feature is developed by Gao et al. [138], and the feature is based

on HOG31 feature map. The dimension for cell-based and block-based HOG feature

maps are m×m× 31 and n× n× 31 respectively, where 31 denotes the dimension of

HOG feature map, m denotes the cell number in a cell-based HOG31, and n indicates

the block number in a block-based HOG31. The length of GSS feature vector is [n2×

(n2− 1)/2]× [⌊(m− n)/k⌋+ 1]2 (here, k is the cell-based stride between two nearest

neighboring blocks).

Table 3.3 shows the performance of methods based on the features introduced above.
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We compare these methods in terms of the accuracy of them and the dimensions of the

features they adopt. From the view of accuracy, our proposed smile detection system

exceeds other state-of-the-art methods by about two to five percent. From the view of

efficiency, we know that Gabor, LBP, Pixel Comparisons, and GSS are global feature

descriptors and they are very time consuming when the resolution of the input image

is high because they perform pixel-level calculations and each pixel in the image is

involved in the operation. Our method is based on the shallow network CFAN and

several simple calculations of Euclidean distances. CFAN can be very efficient by using

some tricks like dropout and max pooling. Moreover, the classifier ELM is usually

much faster than SVM and AdaBoost since ELM doesn’t have iterations and the training

is straightforward [38]. In summary, our method achieves the highest accuracy, the

dimension of the proposed feature vector is the smallest, and our proposed system is

more efficient than others.

3.4.6 Impact of Pose Variation

To evaluate the proposed approach in terms of the accuracy on various head poses,

especially on different roll angles, we test our algorithm on specified samples in this

section. We show some examples of failure and success in Fig. 3.15 and Fig. 3.16. We

can see that our proposed methods work not well on images which have large head poses

of yaw and pitch, and work quite well on images which have little head poses of yaw

and pitch (even for those who may have large roll angles). We have proved the proposed

feature vector has properties of invariance of translation, rotation, and scaling in Section

3.3. Among them, the property of invariance of rotation benefits smile detection results

on the facial images which have roll head poses. We say a facial image has a head pose

of only roll rotation is that the angle of yaw rotation and pitch rotation are both not more

than ten degrees (|α| ≤ 10◦, |β | ≤ 10◦).

Fig. 3.17 shows the relationship between the number of images and the pose upper

limit of yaw and pitch. There are 2038 images (1169 positive images and 869 negative
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Figure 3.15: Examples of failure on smile detection.

Figure 3.16: Examples of success on smile detection.

samples) with the head pose of only roll rotation in total. Among these 2038 images, we

investigate the cumulative distribution based on the pose roll range, shown in Table. 3.4.

For these 2038 images, we test our proposed method again, and the accuracy is 94.01%,

which is higher than the accuracy of our proposed method on the whole database.

Table 3.4: Distribution of the 2038 images based on the roll poses range.

Number of Images Positive Negative Total

[0◦,5◦] 659 582 1241

(5◦,10◦] 312 190 502

(10◦,15◦] 139 71 210

(15◦,20◦] 59 26 85
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Figure 3.17: The relationship between the number of images and the pose upper limit

of yaw and pitch.

3.4.7 Updated GENKI-4K Database

In this section, we update the GENKI-4K database by correcting the false annotations

and removing the duplicates. Besides, we test our method on the updated database.

Correct Annotations. After we have checked all the images in this database, we found

that some of the annotations are not proper. Finally, incorrect annotations of 12 positive

samples and 24 negative samples are found, and they are shown in Fig. 3.18. Incorrect

annotated positive samples are images which should have been labeled as negative (non-

smile) but are labeled as positive (smile), and incorrect annotated negative samples are

images which should be labeled as positive. These wrong annotations affect the results

of smile detection algorithms.

Remove Duplicates. Among these 4000 images from GENKI-4K, there are 14 groups

of duplications (shown in Fig. 3.19). Duplicate samples should be eliminated from the

database because they do not add any new information [145].

After we correct these annotations and remove the duplicate samples, we test our pro-

posed algorithm on the updated database, and find that the accuracy increases 0.81%.
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Figure 3.18: Wrong positive and negative samples. Images above the orange dotted line

show the incorrect annotations of positive samples in the database and images below the

orange dot lines show the incorrect annotations of negative samples.

Figure 3.19: All 14 groups of duplications in GENKI-4K database. Images in Row

2 and Row 4 are the corresponding duplications of the images in Row 1 and Row 3

respectively.
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The confusion matrix of our proposed method is shown in Fig. 3.20. There are 3986

images in total (14 images are removed from the database since there are 14 groups

of duplicates. Among these 14 images, there are eight positive samples and six nega-

tive samples, so there are 2154(=2162-8) positive samples and 1832(=1838-6) negative

samples remained with the original annotations). The false annotations of 12 positive

samples and 24 negative samples are corrected, and there are 2166(=2154-12+24) posi-

tive samples and 1820(=1832+12-24) negative samples finally.
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Figure 3.20: Confusion matrix for the true condition and the predicted condition.

3.5 Summary

In this chapter, we focus on smile detection system-level design and put forward a novel

feature extraction method named Pair-wise Distance Vector, which can adequately re-

flect an object’s shape and has properties of invariance of translation, rotation, and scal-

ing. Facial landmarks are obtained by CFAN in the step of preprocessing, and classifi-

cation is done by adopting ELM. Experimental results indicate that the accuracy of our

approach is higher and the dimension of our proposed feature vector is lower than the
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state-of-the-art methods. Different classifiers are evaluated according to both raw-pixel-

value features and Pair-wise Distance Vector features, and ELM outperforms AdaBoost

and SVM. Further, we explore the impact of pose variation on our proposed method,

and the experiment result verifies the effectiveness of our algorithm on the images which

have the head pose of only roll rotation. Finally, we correct the incorrect annotations of

the GENKI-4K database and remove the duplicate images. We have tested our algorithm

on the updated database and found the accuracy increases further.
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Chapter 4

Fly-ELM: Sparse Binary Extreme

Learning Machine

Chapter 4 begins with the analysis of artificial and biological learning mechanisms of

ELM networks, and the research gap on how to reduce the memory cost when keeping

the accuracy. Then in this chapter, we introduce the sparse binary projection into ELM

networks and propose the sparse binary ELM (also called “Fly-ELM” since this method

is mainly inspired by the results from experiments based on the fly olfactory system).

Furthermore, we have proved that the distances between arbitrary different input sam-

ples can be preserved in the proposed sparse binary ELM. At last, we have shown that

comparing with the regularized ELM, the proposed Fly-ELM achieves comparable ac-

curacy, but costs much less memory and requires less training and testing time in the

benchmark of the optical character image classification database.
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4.1 Introduction

We have introduced our work on the input layer of the ELM network in Chapter 3,

and in this chapter, we concentrate on the distribution of the random weights between

the input layer and the hidden layer. From our previous analysis we know that hidden

nodes in ELM can be some type of super-nodes which are sub-networks consisting of

some hidden nodes [61]. Recent research on ELM has been focusing on its hierarchical

architectures and implementations [34, 146, 35, 99, 147].

The key theory of ELM is that learning can be made without tuning hidden nodes as

long as these hidden nodes are non-piecewise continuous no matter whether they are

artificial neurons, basis functions, or biological neurons. That means:

(1) the properties of hidden nodes (such as biological neurons) can be inherited from

their ancestors;

(2) hidden nodes can be transferred from one system to another;

(3) hidden nodes can be randomly generated independently of training data. A ran-

dom hidden node means all its parameters are randomly generated independently

of applications.

ELM theory has been proved rigorously in theory [29, 38, 61, 62] and more and more its

biological evidences have been observed recently [148, 149, 150, 151, 152]. Although

ELM theories show that hidden node parameters can be randomly generated accordingly

to any continuous distribution, in practice, in most cases, hidden node parameters are

generated based on uniform, normal or Gaussian distribution [39, 40, 66]. It is noted

that it is not easy to understand and visualize hidden node parameters with random

uniform distribution, and it is hard to realize hardware implementation for such kind

hidden nodes due to the precision issue.

The consecutive binary/ternary ELMs are proposed by initializing the weights of the

56



4.1 Introduction

connections between the input layer and the hidden layer with {0, 1} and {-1, 0, 1}

respectively in Heeswijk and Miche [153]. Take the binary ELM for example. Assume

that there are Ni input variables, and the number of hidden neurons is Nh. Then the

total possible amount of the generated binary weight vectors is 2Ni . First, the weights

include all
(

Ni

1

)
subsets of 1 variable, then all

(
Ni

2

)
subsets of 2 variables, until there are

Nh vectors. When Ni increases (e.g., Ni is bigger than 100 with high probability for

computer vision tasks), the total number of possible weight vectors becomes huge, then

the consecutive binary ELM will discard much information which might be very useful.

Huang, et al. [63] proposes ELM with random binary hidden nodes to achieve easier

hardware implementation, which is of full connection. Although Huang [32, 154] an-

alyze that the output connections of ELM networks can be adjusted based on sparse

coding, sparse solution of binary ELM has neither been studied nor found in biological

learning mechanism. Recently, some neurologists experimented with the fruit flies for

odor classification (or similarity retrieval) to explore the theory and biological founda-

tion of the similarity search system [155]. They have shown that the fly olfactory circuit

assigns a “tag” for each odor with three steps, including divisive normalization, sparse

binary random connection (key module), and a winner-take-all (WTA) circuit. The last

two steps play the key role in the fly olfactory circuit, “fly algorithm” is a sparse bi-

nary random winner-take-all (SBR-WTA). This neural-based algorithm works well for

similarity retrieval problems, but still suffers a gap for accurate classification problems

(more details are explained in Section 4.2.2).

Inspired by the findings of the fruit fly olfactory system, combining this “fly algorithm”

and the earlier work on random binary ELM [63] as well as sparse solutions for ELM

[32, 154], this chapter proposes a novel ELM-based image classification method named

sparse binary extreme learning machine (in short, Fly-ELM, in order to highlight its

biological property found in the fruit fly olfactory system). Fly-ELM introduces sparse

binary random matrix into ELM networks, which is different from the consecutive bi-

nary/ternary ELMs and SBR-WTA. The sparse binary projection restricts the number

of non-zero coefficients, which guarantees non-overfitting and low computational cost
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[156]. Meanwhile, the random projection with nonlinearity satisfies the universal ap-

proximating capability theory of ELM [29, 38, 157, 32].

The structure of this chapter is as follows. Section 4.2 introduces the previous related

work, including basic regularized ELM and SBR-WTA. Section 4.3 presents and ana-

lyzes the proposed novel method Fly-ELM in detail and Section 4.4 shows the experi-

ments and the discussion.

4.2 Related Works

4.2.1 Basic Regularized Extreme Learning Machine

ELM is a single-hidden-layer forward neural network, which is proposed to break the

“barriers between conventional artificial learning techniques and biological learning

mechanism” by Huang et al. [154]. There are many ELM variants like basic regularized

extreme learning (regularized ELM [30]), online sequential extreme learning machine

(OS-ELM [73, 74]), extreme learning machine autoencoder(ELM-AE [35, 55]), local

receptive fields based extreme learning machine (ELM-LRF [34]), and so on. In this

chapter, the regularized ELM is adopted and evaluated which has three key techniques:

(1) Hidden layer matrix (e.g., weight and bias matrix between the input layer and the

hidden layer for additive nodes, frequencies and phases matrix for Fourier series,

etc.) are assigned randomly.

(2) Output matrix between the hidden layer and the output layer is calculated directly.

(3) Regularization factor is introduced to balance the separating margin distance and

training error, and it can reduce the risk of overfitting issue.

Assuming there are N samples and each sample xi (i ∈ [1,N]) has NI variables xi j

( j ∈ [1,NI]), then the input layer of the ELM network has NI neurons. The corre-
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sponding label vector of the i-th input sample is yi = [yi1,yi2, · · · ,yiNO
], and NO is the

length of the coding [56] of each label, which decides the number of output neurons.

Given NH hidden neurons, then the weight vector between the input layer and the hid-

den layer w j = [w j1,w j2, · · · ,w jNH
], and the weight vector between the hidden layer

and the output layer βk = [βk1,βk2, · · · ,βkm]. In matrix format, X = [x1;x2; · · · ;xN ],

W = [w1;w2; · · · ;wNI
], β = [β1;β2; · · · ;βNH

], and Y = [y1;y2; · · · ;yN ]. Also, the bias

matrix between the input layer and the hidden layer is represented as B, and the length

of it is NH . More importantly, W and B are randomly generated based on some statistic

distributions like uniform distribution, normal distribution, and so on.

The objective of the regularized ELM is to minimize both the training errors and the

norm of β . We analyze the ELM network layer by layer, then the output of hidden layer

is g(XW+B), and g(·) is an activation function (sigmoid function by default). So the

training errors can be expressed as ‖g(XW+B)β −Y‖2. Finally, the objective function

of the regularized ELM is written as:

argmin
β

1

2
‖β‖2 +

1

2
C‖Hβ −Y‖2, (4.1)

where H = g(XW+B) and C is the regularization factor which can be assigned by

users.

According to ELM theory [30], when N > NI , the solution of Eq. (4.1) is:

β = HT

(
I

C
+HHT

)−1

Y, (4.2)

and when N <= NI , the resolution is:

β =

(
I

C
+HT H

)−1

HT Y. (4.3)

Noted that I is an identity matrix.
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By denoting HHT (or HT H) as Ω (a kernel function), we obtain the solution of the

regularized ELM. The difference between regularized ELM and basic ELM is that the

regularization factor C is introduced into the former, which makes it more powerful to

reduce the risk of overfitting.

4.2.2 Sparse Binary Random Winner-Take-All (SBR-WTA)

Sparse matrices are the matrices which have only a very few non-zero elements, and

sparse binary matrices are one particular case of sparse matrices which only allows

binary values 0 and 1 [158, 159]. Because of the high storage efficiency and low com-

putational cost [160], sparse binary matrices have been successfully applied to many

computer science tasks like structures representation [161], compressed sensing [162].

Recently, Dasgupta et al. [155] proposed a neural algorithm of which neurological

foundation is the fruit fly olfactory circuit and this circuit can be taken as a three-layer

feedforward neural network. These three layers are named PNs (projection neurons)

layer, KCs (Kenyon cells) layer, and APL (anterior paired lateral) layer respectively.

The first layer has NI PNs corresponding to the NI receptor neuron types (for the fruit

fly olfactory circuit, there are 50 odorant receptor neuron types, so NI = 50). Each

receptor neuron performs a mean-centering normalization, which is similar to the com-

mon preprocessing step “divisive normalization” [163]. There are N input samples and

each sample is represented as xi = [xi1,xi2, · · · ,xiNI
] (i ∈ [1,N]). Assume that the second

layer of SBR-WTA neural network has NH KCs, then the size of the projective matrix

W is NI×NH . W is a sparse binary random matrix, and each entry Wjk is set indepen-

dently with probability p.The corresponding output of the KCs is hi = xiW. It has been

deduced in Dasgupta et al. [155] that the squared ℓ2-norm of hi is

E‖hi‖
2 = pNH

(
(1− p)‖xi‖

2 + p(∑xi)
2
)
, (4.4)
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where ∑xi is the sum of all the vector xi’s entries. Then we have

E‖hi−hi′‖
2 = pNH

(
(1− p)‖xi−xi′‖

2 + p
(
∑(xi−xi′)

)2
)
. (4.5)

In Eq. (4.5), xi and xi′ are arbitrary two different input samples, and their correspond-

ing hidden layer outputs are hi and hi′ respectively. We know that after mean-centring

normalization, xi and xi′ have roughly the same distribution, then ∑(xi− xi′) ≈ 0. The

distance between xi and xi′ are preserved by the expectation of the distance between hi

and hi′ . According to [155], the distance between hi and hi′ is concentrated tightly by

its expectation when xi and xi′ are sparse enough. The sparse binary random projection

preserves the distances of input samples.

There are four strategies to process the obtained hi and generate a sparse vector h′i for

the corresponding odor in the fruit fly olfactory circuit from KCs layer to APL layer.

The dimensions of hi and h′i equal to the number of the Kenyon cells (hidden neurons)

NH . Assume there are κ non-zero elements in h′i, then these four strategies are expressed

below:

• Random selection:

h′i j =





hi j, if hi j is one of the κ randomly selected entries of hi.

0, otherwise.

• Top selection (WTA):

h′i j =





hi j, if hi j is one of the κ biggest entries of hi.

0, otherwise.

• Bottom selection:

h′i j =





hi j, if hi j is one of the κ smallest entries of hi.

0, otherwise.

• All selection: h′i = hi.
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With the generated sparse vectors of the odors, an approximate nearest neighbors search

[164] is performed to classify or identify the odors. Euclidean distance is adopted to

measure the similarity of the samples, and compared with the abilities of generaliza-

tion of the ELM, the approximate nearest neighbors search only performs a very rough

classification.

4.3 Sparse Binary Extreme Learning Machine (Fly-ELM)

Motivated by the sparse binary random projection mechanism from the fruit fly olfactory

system and ELM theories on binary hidden neurons, this chapter proposes a method

called sparse binary ELM (Fly-ELM), whose architecture is shown in Fig. 4.1.

H

β 
T

Input layer

X

Hidden nodes

output layer

Sparse Random 

Wiring/Connections

Figure 4.1: The architecture of sparse binary extreme learning machine.

There are five key components in the network of the Fly-ELM. The first component is

the input layer, which is fed with the samples (including the raw data or features of
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4.3 Sparse Binary Extreme Learning Machine (Fly-ELM)

the samples). Following the naming rules of the ELMs, we use xi to represent the i-th

sample data, and X= [x1;x2; ...;xN ] donates all the input samples. Each vector xi’ length

NI is decided by the preprocessing step, and the number of the neurons in the input layer

is also NI . Take image samples as an example.

• If the raw image is used as the input, the dimension is the amount of all the pixels

in the image.

• If some feature extraction or learning methods (like LBP [19], SIFT [165], ELM-

AE [35], CFR-ELM [55], etc.) are adopted to analyze the image, the dimension

is the length of the output features of these methods.

Noted that methods like data normalization might be embedded between the input layer

and the raw data (or extracted features), but these methods usually do not change the

dimension of the input data.

In the theory of the ELMs, the weight matrix W and the bias matrix B between the

input layer and the hidden layer are randomly generated by following the continuous

sampling distributions. The most widely used is the continuous uniform distribution

[70]. The cumulative density function of the uniform distribution on (-1,1) is given by

F(x) =





0, x <−1

(x+1)/2, −1≤ x < 1

1, x≥ 1.

(4.6)

Assume that there are NH hidden neurons in the hidden layer, then the sizes of W and B

are NI×NH and N×NH respectively. All elements in W are generated randomly based

on the uniform distribution, while for B, only the first row is randomly generated and

the rest rows repeat the first row. The output of the hidden layer for input samples is
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4.3 Sparse Binary Extreme Learning Machine (Fly-ELM)

H = g(XW+B), whose size is N×NH , where g(·) represents any nonlinear piecewise

continuous activation functions, and some commonly used of them are listed below:

• Sigmoid function: g(x) = 1
1+e−x .

• Tanh function: g(x) = ex−e−x

ex+e−x .

• Radial basis function: g(x) = g(‖x‖).

• Sinc: g(x) = sin(x)
x

for x 6= 0, and g(x) = 1 for x = 0.

Noted that activation functions are implemented at the single element level, so they do

not change the dimensions of their arguments. For the sake of storage, assume all the

elements of W and B are in double precision. Based on the IEEE double-point standards

[166], each double data occupies 64 bits in computer memory. For the current ELM-

based methods, 64NH(NI +1) bits are required to store the W and B. In addition, when

the input samples are randomly projected from the input layer and the hidden layer,

there are three kinds of representations: compressed representation (NH < NI), equal

dimension representation (NH = NI), and expanded representation (NH > NI). They all

are the results of dense projections, which need many more mathematical operations

(plus and multiply) in computing.

Motivated by the findings from the neurologists on the research of the fly olfactory cir-

cuit, this chapter proposes to adopt the sparse binary random projection rather than the

dense random projection in the ELM network. Since it is ELM theory that shows binary

random hidden neurons can be used in neural networks and the universal approxima-

tion capability can be guaranteed [61], the proposed method is named as sparse binary

extreme learning machine or Fly-ELM. The proposed method keeps the advantages of

random projections because it has been proved that random projections provide better

theoretical guarantees and better bounds [167, 168, 169, 61]. The weight matrix W be-

tween the input layer and the hidden layer is sparse binary randomly generated. Unlike

traditional ELMs, we have abandoned the bias matrix B, then we have H = g(XW).
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4.3 Sparse Binary Extreme Learning Machine (Fly-ELM)

In the network of the Fly-ELM, each neuron in the hidden layer is connected with r

input neurons (see Fig. 4.1). Mathematically, each column of W is a sparse binary

vector with r non-zero elements. The hyperparameter r is called hash length, and it

can be empirically set between 1 and NI , and r is assigned to six in the experiments of

evaluating the fly algorithm [155]. In Section 4.4, different values are assigned to r, and

the corresponding training and test accuracies are evaluated.

Seen from Section 4.2.2, sparse binary random projection preserves the distances be-

tween any different input samples. Eq. (4.5) shows the expected distances between the

outputs of the arbitrary two different input samples. However, as observed from Eq.

(4.4) the realistic distance could be very different when the variance of ‖hi‖ is signifi-

cant.

Theorem. Given the sparse binary weight matrix W, if NH ≥
5

ε2δ

(
2r+

NI‖xi‖
4
4

‖xi‖4

)
, then

with probability at least 1−δ ,

∣∣∣ ‖hi‖
2

E‖hi‖2 −1

∣∣∣≤ ε holds, which is equivalent to that ‖hi‖ is

tightly concentrated around its expected value. Here, δ and ε are arbitrary values range

from 0 to 1.

Proof. Based on Chebyshev’s inequality [170], we have

P
(∣∣‖hi‖

2−E‖hi‖
2
∣∣≥ εE‖hi‖

2
)
≤

σ(‖hi‖
2)

(εE‖hi‖2)2
. (4.7)

Here, σ(·) is the variance symbol, and we know that σ(‖hi‖
2)=NH‖hi1‖

2 since ‖hi‖
2 =

∑
NH
j hi j and all entries follow the uniform distribution. Similarly, we have E‖hi‖

2 =

NHEh2
i j. Then, Eq. (4.7) is simplified as

P
(∣∣‖hi‖

2−E‖hi‖
2
∣∣≥ εE‖hi‖

2
)
≤

σ(h2
i1)

NH(εEh2
i1)

2
. (4.8)
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4.3 Sparse Binary Extreme Learning Machine (Fly-ELM)

Since σ(h2
i1) = Eh4

i1− (Eh2
i1)

2, calculate Eh4
i1 as below:

Eh4
i1 = E(xi1w11 + xi2w21 + · · ·+ xiNI

wNI1)
4

≤ (p+4p2NI)‖xi‖
4 +(3p2 +6p3NI)‖xi‖

4 + p4(∑xi)
4.

(4.9)

Refer to the supplementary materials of [155] for the detailed derivation process of the

Eq. (4.9). After plugging Eq. (4.4) and Eq. (4.9) into Eq. (4.8), one can obtain the

lower limit of the NH . That is, for the sparse binary random projections, the distances

between arbitrary different input samples can always be preserved by exploiting enough

hidden neurons.

For the sake of storage, the weight matrix W between the input layer and the hidden

layer needs only NH ∗ r bits for sparse binary projection, which is much less than that

requested in the dense random projection. In addition, the binary random projection also

performs feature selection of the input data, which can simplify the models and enhance

the generalization ability of the proposed network.

After the hidden layer output matrix is obtained, the next step is to find the output weight

matrix β of the connections between the hidden layer and the output layer. This part is

entirely the same with standard ELM networks. Compute β by optimising the objection

function Eq. (4.1) as given in Eq. (4.2) and Eq. (4.3) in Section 4.2.1.

Compared with the regularized ELM, our proposed Fly-ELM has two main differences.

• The distances under sparse binary random projection have been proved to be pre-

served in the Fly-ELM while the general random projections only preserve the

distances under some specific conditions (refer to [168] for more details).

• Sparse binary entries can be generated and stored more efficiently than dense

random entries.

Even though the proposed Fly-ELM and the binary/ternary ELM both focus on how to
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initialize the weights between the input layer and the hidden layer in the ELM network,

the former is different from the later. The former’s amount of non-zero entries in each

column of W is fixed, and each column is a sparse vector, which has many advantages

as we have explained above. But for the binary/ternary ELM, the amount of non-zero

entries may be dense.

The proposed method is inspired by the SBR-WTA algorithm which has a biological

basis. Here we list two main differences between the Fly-ELM and the SBR-WTA.

• Values of all outputs of the hidden layer are used in the Fly-ELM while the indices

of partial outputs of the hidden layer are adopted in the SBR-WTA.

• Weights are optimized by minimizing the loss of the true labels and predicted

labels in the Fly-ELM [61] while SBR-WTA does not have this constraint.

In the experiments, the performance of the proposed Fly-ELM with the regularized ELM

and the SBR-WTA on the public dataset are compared. The analysis will also be given

based on the results of the experiments. The proposed method has not been compared

with binary/ternary ELM because this work focuses on computer vision tasks, and the

dimensions of the data/feature are usually very high. High dimension input variables

will lead a massive amount of possible weight vectors in the binary/ternary ELM, and

most of which will be abandoned, which means most of the useful information will be

discarded.

4.4 Experimental Results

Three experiments have been conducted in order to evaluate the proposed Fly-ELM.

Since the proposed method is inspired by the regularized ELM, and SBR-WTA, the

Fly-ELM will be compared with these two algorithms in the first experiment. In the

third experiment, the performance of the Fly-ELM under different hash length r will be
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investigated.

All these methods are tested on the widespread public optical character recognition

(OCR) dataset [80]. The OCR dataset was collected by Rob Kassel at MIT Spoken

Language Systems Group for testing the abilities of handwritten letters recognition sys-

tems. It contains 52,152 sample images, and the width and height of each image are 8

and 16 respectively. Some samples from the OCR dataset are shown in Fig. 4.2, from

which it can be seen that the samples of each letter vary a lot on the aspects of slant

degrees, the thickness, and the pressure to the chapter.

a a a a a a a a a a b b b b b b b b b b c c c c c c c c c c

d d d d d d d d d d e e e e e e e e e e f f f f f f f f f f

g g g g g g g g g g h h h h h h h h h h i i i i i i i i i i

j j j j j j j j j j k k k k k k k k k k l l l l l l l l l l

m m m m m m m m m m n n n n n n n n n n o o o o o o o o o o

p p p p p p p p p p q q q q q q q q q q r r r r r r r r r r

s s s s s s s s s s t t t t t t t t t t u u u u u u u u u u

v v v v v v v v v v w w w w w w w w w w x x x x x x x x x x

y y y y y y y y y y z z z z z z z z z z

Figure 4.2: Ten randomly selected images of each letter from the optical character recog-

nition (OCR) dataset. The ground truth of each image is marked in red color at the

bottom of each image.

All these images are grouped into ten folders, nine of which are used for training and

the remaining one is used for testing. All these ten folders are taken by turns for testing,

so ten test accuracies are obtained, and the average of all the accuracies is the final test

accuracy. The experiments are carried out in the regular personal desktop with a 3.60

GHz Intel(R) Core(TM) i7-4790 processor and 32 GB memory running Matlab 2017b.
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4.4.1 Comparison of the Fly-ELM with the regularized ELM

For the Fly-ELM, there are three hyperparameters, the number of non-zero entries in

each sparse binary vector r, the regularization factor C, and the number of hidden neu-

rons NH . While for the regularized ELM, it only has the last two hyperparameters. So

to compare the proposed method with the regularized ELM, the control variable method

is adopted.

When NH is fixed at 2,000, we set C as 2τ , and τ ranges from -10 to 10. Different

values are assigned to r, and the corresponding training accuracy and test accuracy are

achieved. The results are shown in Table 4.1, from which it can be concluded that

the regularized ELM performs a little better than Fly-ELM when the amount of hidden

neurons is fixed. By considering that the proposed weight matrix W takes up only

about one thousandth ((r×NH)/(64×NH × (NI + 1))) of the former, this little bit of

performance degradation is acceptable.

Table 4.1: Comparison of the regularized ELM and Fly-ELM when NH is fixed to 2,000.

Methods Training Accuracy(%) Test Accuracy(%)

Regularized ELM 83.81 80.33

Fly-ELM

r = 2 83.33 79.72

r = 3 83.23 79.58

r = 4 83.07 79.39

r = 6 82.78 79.50

r = 8 82.09 78.98

It is known that ELMs are based on the empirical risk minimization, and they tend

to overfit when the models become complex [75, 171]. For the regularized ELM, the

regularization factor adds the probability of reducing overfitting, but it cannot reduce

this risk to zero when more hidden neurons are added. To have a fair comparison and

avoid the overfitting, the Fly-ELM is compared with basic ELM by constraining the

training accuracy as 95%.

Table 4.2 shows the test accuracies of the regularized ELM and the Fly-ELM (similar to
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Table 4.2: Comparison of the regularized and the Fly-ELM when the training accuracy

is approximately equal to 95%.

Methods NH Test Accuracy(%)

Regularized ELM 7700 86.31

Fly-ELM

r = 2 10400 84.33

r = 3 11000 85.92

r = 4 11700 86.20

r = 6 14700 86.68

r = 8 18600 87.11

the previous one, different values are assigned to r). As observed from the results, when

the training accuracy is about 95%, the test accuracy of Fly-ELM achieves higher accu-

racy than the regularized ELM by setting r = 8. Noted that compared to the regularized

ELM, the Fly-ELM needs more hidden neurons to achieve the same training accuracy.

4.4.2 Comparison of the Fly-ELM with the SBR-WTA

The proposed Fly-ELM is partially motivated by the SBR-WTA method, which has a

neurological foundation. The SBR-WTA algorithm has been proved to have the classi-

fication ability in [155], and it is compared with the Fly-ELM in the OCR dataset.

According to Section 4.2.2, there are three hyperparameters for the SBR-WTA, the prob-

ability p, the number of hidden neurons (KCs) NH , and the amount of non-zero elements

in the output of hidden neurons κ . Noted the relationship between the probability p and

the hash length r: p = r/NI (NI = 128 for the OCR dataset). Following the settings in

[155], assign NH and κ as 2,000 and eight, respectively. For the Fly-ELM, NH is also

elected as 2,000, and other implementation details are the same as the previous experi-

ments. Results of the test accuracy and running time (RT, consists of training time (Ttr)

and testing time (Tte)) are obtained for different values of r, shown in Table 4.3.

We can conclude that the accuracies of our method are much higher than that of the SBR-

WTA from Table 4.3. Moreover, in terms of the running time, the proposed method costs

about a sixth of the latter.
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(f) r = 24

Figure 4.3: Comparison of different hash length r. The training accuracy curves are

drawn in blue color, while the test accuracy curves are in the red.
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Table 4.3: Comparison of the Fly-ELM with the SBR-WTA.

r
SBR-WTA Fly-ELM

Accuracy (%) Ttr (s) Tte(s) RT (s) Accuracy(%) Ttr (s) Tte(s) RT (s)

2 54.10 31.69 4.25 35.94 79.72 5.69 0.81 6.50

3 52.82 31.73 4.33 36.06 79.58 5.14 0.87 6.01

4 53.94 31.81 4.38 36.19 79.39 5.34 0.83 6.17

6 53.84 31.89 4.53 36.42 79.50 5.33 0.84 6.17

8 55.60 31.89 4.52 36.41 78.98 5.21 0.86 6.07

4.4.3 Analysis of the Impact of Different Hash Length

As analyzed beforehand, the hash length r does impact the performance of the Fly-

ELM. The training accuracy and test accuracy under different values of r are further

investigated. The number of hidden neurons in each Fly-ELM network varies from 100

to 18000 with a step of 50. Noted that for r=2, the maximum of NH is 8100 since
(

128
2

)
< 8100+50.

Set different values to r, and the curves of the corresponding training accuracy and test

accuracy are shown in Fig. 4.3, from which two conclusions can be drawn:

• The training and test accuracies increase sharply in the beginning and then in-

crease slowly when the number of the hidden neurons increases and when the

hash length r is fixed.

• The training and test accuracies increase first and then decrease with the increase

of the hash length r.

In summary, three experiments have been conducted to evaluate the performance of our

Fly-ELM in this section. Firstly, the proposed method is compared with the regular-

ized ELM on test accuracy by using the control variable method. Compared with the

regularized ELM, similar or even better results are obtained with far less storage re-

quired. Secondly, compare the Fly-ELM with the SBR-WTA algorithm, it is found that

the proposed method performs much better on the aspects of test accuracy and running
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time. Thirdly, the impact of different values of r on the performance of the Fly-ELM is

analyzed in detail.

4.5 Summary

This chapter proposes a novel neurology-based method named Fly-ELM by embedding

sparse binary random projections into the existing ELM network. The results of exper-

iments on the public OCR dataset show that the Fly-ELM outperforms the regularized

ELM and the SBR-WTA algorithm.

The work in this chapter is a first attempt at combining sparse binary random projections

with the ELM neural network. More effort could be made on applying these projections

to other ELM variants in the future. Also, the Fly-ELM will be implemented in hardware

platforms due to their particularity of limited memories, which will benefit more real-

world applications.
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Chapter 5

Compact Feature Learning by Using

Extreme Learning Machine

Chapter 5 begins with the brief review of deep neural networks on feature learning, and

analysis of a shallow feature learning method PCANet. Then we propose our compact

feature learning algorithm based on ELM network referred to CFR-ELM, and the details

of it are explained step by step, including its overall framework, the key unit, and post-

processing modules. At last, four experiments have been conducted, and the results

have demonstrated that our ELM-based method outperforms the existing state-of-the-

art methods.
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5.1 Introduction

Feature representation/learning is an critical part for many computer vision tasks, such

as object detection [20, 172, 173], object recognition [174, 175], object segmentation

[16, 176] and image classification [177, 178, 179]. With years of research, a lot of

work has been done on how to extract efficient and discriminative features manually or

automatically. But this is still a hot research field because of facing challenges from illu-

mination, occlusion, deformations and so on. Nowadays, neural network-based feature

representation methods have made remarkable achievements, and they can be broadly

categorized as deep and shallow feature learning.

Many deep feature learning algorithms have been proposed for image classification

problems. Ciregan et al. [180] proposed a multi-column deep neural network which is

a wide and deep artificial neural network architecture, which was claimed could match

human performance on tasks like traffic signs image classification. A pyramid convolu-

tional neural network was proposed for face representation by adopting a greedy-filter-

and-down-sample operation in [181]. Ouyang et al. [173] proposed deformable deep

convolutional neural networks to learn features for object detection. Shojaeilangari et al.

[42] used extreme sparse learning to represent facial images for robust facial emotions

recognition and achieved a high accuracy. However deep feature learning algorithms re-

quire a lot of computational resources, a large amount of training time and huge storage

space [36, 41].

In contrast, shallow feature learning algorithms usually don’t have these disadvantages

and for some tasks achieve performance comparable to deep feature learning algorithms.

For example, Coates et al. [182] analyzed the feature learning ability of single-layer

networks and achieved a high performance when the number of hidden nodes and other

parameters are pushed to their limits. A method of unsupervised representation learning

based on ELM is proposed on in [43], in which, ELM-AE was adopted as the learn-

ing unit, and a transferred layer was introduced. Besides, local contrast normalization

(LCD) and whitening were employed as pre-processing steps. Chan et al. [183] pro-
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posed a simple learning architecture named PCA network (PCANet for short, and PCA

is the abbreviated form of ‘Principle Component Analysis’), which is quite intuitive and

can be efficiently estimated. PCANet has attained remarkable results, but computing

PCA costs a lot of time and resources [44].

Our work is partially motivated by the recent results in dimension reduction using ELM

[44] which proved the ELM’s generalization capability of learning local feature with

fast speed. Besides, our work is inspired by PCANet architecture for its astonishing

performance on image classification and pooling method adopted in many deep learning

methods for its compact ability on feature extraction. All of these lead us to come

up with a novel ELM-based shallow framework to learn compact features for image

classification.

In the following sections, we introduce the related work on PCANet and ELM briefly.

Then, we explain the whole compact feature representation method (CFR-ELM) we

proposed, including the details of each feature learning module, max pooling module

and the overall framework for image classification which has a support vector machine

(SVM) as a classifier. The proposed algorithm is tested on four typical image classifica-

tion databases, and conclusions are given finally.

5.2 Related Works

PCANet was introduced as a shallow feature learning algorithm in [183] and can be

used as a simple baseline for deep feature learning algorithms. It contains three different

types of modules: pre-processing, PCA filter convolution, post-processing. In general,

the first two types of modules are combined together to form one feature learning layer.

The overall architecture of PCANet is created by connecting the feature learning layers

and the post-processing, and a two-stage PCANet architecture is shown in Fig. 5.1.

In the pre-processing state, the sliding window with no stride is used to extract patches
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Figure 5.1: A schematic of two-stage PCANet.

and remove the mean as:

x̄k = xk−
∑

n
i=1 xki

n
1, (5.1)

where xk denotes the k-th patch which contains n pixel values, and 1 is an all one vector

whose size is the same with xk. All patches are combined together to form a normalized

matrix X. After that, a PCA filter convolution operation is done. The objective function

of PCANet is to minimize the reconstruction error with a set of filters, which is expressed

as

argmin
V

‖X−VVT X‖2
F, (5.2)

where V is an orthogonal matrix, and ‖ · ‖2
F is the Frobenius norm. The solution of the

objective function is known as the principal eigenvectors of X’s covariance matrix. First,

l principal vectors (called PCA filters) are chosen as a convolution core to extract the

features of the original images.

The second stage is similar to the first stage, and the main difference is that the total

number of patches to be processed is L (the number of filters in the first stage) times

of the first stage. With the increase of stages, the amount of patches to be processed

becomes larger and larger.

From the above analysis, we know that PCA learns a linear transformation, and it is

not enough for representing the complex real-world features. ELM can make up this by

its inherent abilities of linear and nonlinear representation. Extreme learning machines
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(ELM) was proposed along with the interdisciplinary development of effective machine

learning theories and techniques in 2006 [38]. ELM has been attracting the increasing

attention from more and more researchers due to the amazing abilities of classification,

regression, feature learning, sparse coding, and compression [30]. It has successfully

been applied in more and more real industrial applications and usually achieves compa-

rable or better results than many conventional learning algorithms at much fast learning

speed.The basic ELM is expressed as

β = Y(g(WX+B))†. (5.3)

In Equ.5.3, X is a D×N matrix that denotes the input data, where D is the number of

features, and N is the number of samples. W is a Nh×D weight matrix between the

input layer and the hidden layer, and the elements in W is randomly initialized. B is a

Nh×N bias matrix of the hidden neurons, where the first column is randomly initialized,

and other columns are the duplicates of the first column. Y is the target data, and it is

replaced by X for the auto-encoder, that is, Y = X. β is a D×Nh weight matrix between

the output layer and hidden layer. g(·) is an activation function, which can be a Sigmoid

function (default), a Sine function, a Radbas function, etc. The (·)† is a Moore-Penrose

pseudoinverse operator.

Feature learning with ELM auto-encoder (ELM-AE) for big data is introduced in [35].

Recently, dimension reduction with extreme learning machine is analyzed in [44]. In

this chapter, ELM-AE is adopted as the core function of learning the features of input

patches.

Most closely to our work is the hierarchical extreme learning machine (H-ELM) pro-

posed in [43], which also uses ELM-AE to extract local receptive features and the train-

ing patches are randomly selected. In our proposed method, we drop out no patches and

adopt a full connection network, which simplifies the network and need fewer parame-

ters. Besides, we have a max pooling layer for each feature learning state for learning a

compact feature representation, and the network architecture of our method is far sim-
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pler since we have no whitening pre-processing and the connections between the first

layer and last layer.

5.3 Compact Feature Representation Using ELM

5.3.1 Overall Framework

To learning compact features efficiently, we proposed a shallow feature-learning archi-

tecture using ELM and the framework is shown in Fig. 5.2. Each central processing

unit of this framework consists of three parts: patch-based ELM Auto-Encoder (AE),

patch-based ELM decoder, and a max-pooling operation. After the main process, two

post-processing modules are added, and they are binary hashing and block-wise his-

togram respectively.

For image classification, assume the database has N images Ii (i ∈ [1,N], and the resolu-

tion of each image is W×H) and the corresponding labels are Yi. The target of learning a

more efficient representation R(·)of Ii is to minimize the loss function ∑
N
i=1 ‖C(R(Ii)−Yi)‖,

where C(·) denotes a classifier. In our work, the support vector machine (SVM, [184])

is adopted to find the patterns of the learned features.

5.3.2 Unit of CFR-ELM

To remove the influence of illumination, we implement a patch operation of subtracting

the mean. Assume the width and the height of the patch are wp and hp respectively,

then we convert each sliding wp× hp window of the image Ii into a column. All the

columns construct a matrix Xi by subtracting their means one by one. The width of Xi is

(W −wp +1)× (H−hp +1) and the height is wp×hp.

An auto-encoder based on ELM is implemented to learn the features from all the Xi,
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Figure 5.2: The framework of CFR-ELM.
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which are denoted as X. We have introduced the details of ELM in Section 5.2. Three

differences between ELM-AE and the basic ELM are listed below:

• The input weight W and the bias B are both orthogonal matrixes. That is, we have

WT W = I and BT B = I with regard to ELM-AE.

• The output weight β is an orthogonal matrix. That is, β T β = I.

• The output of the ELM-AE network equals to the input.

Here, the number of hidden nodes NFk
corresponds to the number of convolution filters

Fk that we use in the k-th stage of the network. The filters are named as “channels” that

are presented in Fig. 5.2. NFk
can be learned by optimization, and empirically it can be

assigned a number less than 10 due to the limitation of the resources.

With the filters we get from ELM-AE, we can compute the outputs of the patches (over-

all denoted as X) from the raw samples. The outputs are used to represent the patterns

of the raw samples. To keep the information on the edges, we pad each sample with

zeros in its surroundings. In our experiments, we pad w−1 columns and h−1 rows of

zeros before the first element and after the last element along the horizontal and vertical

directions respectively. After that, the same process of mean-removal patch operation is

performed. Finally, we can achieve all the patches X of one sample, whose output O in

the k-th stage of the network is expressed as

O = Fk ∗X , (5.4)

where Fk is the filter banks that we have achieved from the ELM-AE, and X indicates

the input samples that have been processed with zero-padding and mean-removal oper-

ations. The output O have NFk
layers for each X in the k-th stage.

Noted that the size of each channel after the first ELM feature learning module is still

W1×H1 with the cropping operation has been performed to countervail the impact of
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5.3 Compact Feature Representation Using ELM

padding. So, the dimension of the output O of X increases to W1×H1×NFk
, which

requests lots of storage space and a large amount of computation. To learn a compact

feature representation, O is fed to a max pooling layer (shown in Fig. 5.2 which is

highlighted with golden poppy font).

Max pooling (MP) can significantly reduce the dimension of the input representation

with losing limited valid information by the assumption that features are contained in

the subregions. Each non-overlap subregion of O is processed with a max filter, and

the maximum values are retained to represent the corresponding subregions. Assume

the size of the subregion of max pooling is WMP×HMP, then after passing the max

pooling layer, the dimension of O will be ⌊W1/WMP⌋×⌊H1/HMP⌋×NFK
. Performances

on image classification are provided and compared in Section 5.4.

Units of CFR-ELM are connected in sequence, and each unit is similar to the first unit

but can have different parameters. Two units are adopted in our proposed shallow and

compact feature representation architecture (denoted as S).

5.3.3 Post-processing Modules and Classification

CFR-ELM contains two post-processing modules: binary hashing and block wise his-

togram. They play an important role to transfer the output of the central processing units

into a more efficient form. From the explanation of ELM, we can achieve NF output im-

ages for each sample, and all the output images are reshaped into the same size with the

input images. Here, we have NF = ∏
S
k=1 NFk

.

There are NFS−1
outputs Ψ for one raw sample in the stage S− 1, and each ψ♯ ∈ Ψ

(♯ ∈ [1,NFS−1
]) is processed by FS filters in the stage S and generates FS corresponding

outputs Θ. Each θh̄ ∈ Θ (h̄ ∈ [1,FS]) is converted to a binary data matrix θ ′h̄ with a

zero threshold. A hashing processing is performed on all the θ ′, and the operation is

82



5.4 Experimental Results

expressed as

T♯ =
FS

∑
h̄=1

2FS−h̄θ ′h̄. (5.5)

The block-wise histograms are computed for all the blocks we achieved with the sliding

window technique. Assume the size of the block is represented as wb× hb and the

overlap rate of the blocks is denoted as ε , then the stride size of the sliding windows

is 〈(1− ε)wb× (1− ε)hb〉 (〈·〉 is a rounding operator). We go through the entire T♯

with this stride and compute the block-wise histogram for each block and combine them

together to form the final features.

SVM is adopted to make a classification decision based on the obtained compact fea-

tures. It constructs an optimal hyperplane for the independent samples in feature space

to maximize the functional margin and minimizing the misclassification cost (approx-

imately equivalent to the number of misclassification samples) simultaneously. The

advantage of SVM is the sparseness of the solution and good generalization ability even

in a high dimension space.

5.4 Experimental Results

With the development of techniques for feature extraction and image classification, the

accuracy has been very high for many datasets. To better exhibit the effectiveness of our

proposed method, we make the test more difficult by decreasing the number of train-

ing samples significantly and take more samples for testing. In our experiments, we

test our algorithms on four classical image databases: a variant of MNIST (from Mixed

National Institute of Standards and Technology [185]), Coil-20/100 (from Columbia

Object Image Library [77, 78]), ETH-80 (from Eidgenössische Technische Hochschule

Zürich [79]), and CIFAR-10 (from Canadian Institute for Advanced Research [12]). The

first dataset is for digits classification, the second and third datasets are for controlled-
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environment objects classification, and the last one is for real-world objects classifica-

tion.

To have a fair comparison with PCANet, the parameters assigned in our method are the

same with the optimized PCANet (refer to [183] for more details on how to find the

optimized parameters). We adopt two-stage(S = 2) network, and the number of filters

NF1
and NF2

are assigned to eight. The size of patches is 7× 7, and max pooling size

is 2×2. The block size wb and hb are both assigned as seven. Error Rate is adopted to

evaluate the performance of the experiments, and ER equals to
∑

n
i=1 ([Pi 6= Ti])

N
, where

the value of [⋆] 1 when ⋆ is true and 0 if ⋆ is false. So, we know that the smaller ER is,

the better the performance is. We have evaluated all the possible overlap rate ε from 0

to 0.9 by a step of 0.1, so for each dataset, we can obtain ten error rates.

The size of all the samples used in our experiments is consistent with the original res-

olution of these databases. We consider that obtaining higher accuracy by resizing the

original images is unfair and not reasonable due to the curse of dimension. Additionally,

we use less training samples and more test samples for the above three databases for a

better illustration of the effectiveness of our algorithms. Even though our algorithm has

the ability of generalization, some few parameters still should be noted. In the following

subsections, we evaluate the performance of our method and PCANet on these databases

separately. Few of the related state-of-the-art results are also be compared briefly.

5.4.1 Digits Image Classification

We first evaluate our proposed method on a variant of the widely used handwritten digits

(0 - 9) image database MNIST, whose original version includes 60k training samples and

10k samples, and the state-of-the-art error rate is 0.21% [186]. The variant of MNIST

has much less training samples and more test samples, which means that it is much more

challenging. Specifically, 10k, 2k, and 50k samples are used for training, validation, and

test respectively. Classification of Handwritten Digits is not an easy task since thickness

84



5.4 Experimental Results

Figure 5.3: Several sample images from MNIST dataset.

and rotation angles may differ a lot even for the same digit. The resolution of each image

is 28×28, and the amounts of these ten digits have an approximate uniform distribution.

We have shown some samples from MNIST in Fig. 5.3 and the total number of each

digit for training and test in Fig. 5.4.

For a better visualization of the mean-removal process, we have randomly selected ten

samples for each digit from the database and show their mean-removal results in Fig.

5.5.

With the parameters we have introduced above, we have achieved ten error rates corre-

sponding to the ten overlap rates ε . The results of PCANet and our method are indicated

in Table.5.1 (the lower error rate has been set to bold). After the comparison, we know

that our method has got a 0.980% error rate and achieved lower error rates for the nine

out of ten overlap rates and it performs 4.18% (the average of the improvement rates)

better than PCANet.

We have also performed our algorithm on the original version of MNIST dataset and

obtains 0.49% error rate which outperforms PCANet’s 0.62%.
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Figure 5.4: Amounts of the 10 digits in the MNIST variant.

5.4.2 Coil-20 and Coil-100 Databases

Coil-20 is a gray-level black-background image database of 20 objects (shown in Fig.

5.6 (a)). Objects are placed in a 360◦ turntable, and the table rotates 5◦ each time. So

72 images are captured for each object. Each image is cropped with a rectangle along

the boundary of the object, and all images are resized to 128×128 by maintaining the

shape of the objects (shown in Fig. 5.6 (b)). Coil-100 database is collected in the same

controlled environment, but with more objects and all the images are colored. In the

previous, they selected 1/3 or 1/2 of the samples for training. To make the classification

problems more challenging, we split the samples into six groups and randomly select

one of them for training, and the other groups are used for the test.

The parameters setting for our method and PCANet are same with to the parameters

assigned on MNIST except that the max pooling size is 2× 2. Error rates are list in

Table.5.2 and Table.5.3
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Figure 5.5: Results of the mean-removal patch operation. Each 28×28 image after the

7×7 patch mean-removal process.

5.4.3 ETH-80 Database

Even though the images of both ETH-80 database and Coil-100 database are colored

and of the same size, the former is more challenging than the latter due to the following

reasons:

• Color Background. Images of ETH-80 have a non-uniform blue chromakeying

background while images of Coil-100 have a black background. Non-uniform

background increases the useless information and affects the classifier’s perfor-

mance further.

• Subcategories. ETH-80 contains 80 objects (shown in Fig. 5.7) from 8 chosen cat-

egories (or super categories), that is, each category has ten subcategories. Differ-

ent subcategories are adopted for training and test, which requires that the feature

learning algorithms be sufficiently capable to learn the common characteristics of

various objects of same super categories.
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(a)

(b)

Figure 5.6: Several sample images from Coil-20 (a) and Coil-100 datasets (b).
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Table 5.1: Results of PCANet and CFR-ELM with and without max pooling on the

MNIST variant dataset. The best results are obtained when the max pooling size is

assigned as 1×1, which means the max pooling layer here can be ignored and the results

with and without max pooling are the same, so the results only have two columns.

Overlap

Rate (ε)

ER & ER+MP ([1,1]) (%)

PCANet CFR-ELM

0.0 1.150 1.082

0.1 1.118 1.052

0.2 1.118 1.022

0.3 1.066 1.094

0.4 1.072 1.010

0.5 1.072 1.034

0.6 1.020 0.990

0.7 1.050 1.040

0.8 1.058 1.022

0.9 1.058 0.980

In the previous work [79, 187], they use not less than half of the dataset for training.

While in our experiments, eight out of ten subcategories are used as test samples for

each category.

Figure 5.7: Several sample images from ETH-80 dataset.

We have compared our method with PCANet and the error rates are shown in Table.5.4

and the max pooling size is assigned as 2× 2. It is clear that our method outperforms

PCANet under all overlap rate.
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Table 5.2: Results of PCANet and CFR-ELM with and without max pooling on the

Coil-20 dataset.

Overlap

Rate (ε)

ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 9.500 8.000 6.667 5.500

0.1 9.500 8.000 6.417 4.750

0.2 9.500 8.083 6.417 5.167

0.3 9.667 8.167 6.417 5.333

0.4 9.500 7.417 6.500 4.750

0.5 9.500 8.250 6.500 4.500

0.6 9.667 7.417 6.083 4.417

0.7 9.833 7.583 5.833 3.917

0.8 9.750 7.750 6.167 5.000

0.9 9.750 7.833 6.167 4.667

Table 5.3: Results of PCANet and CFR-ELM with and without max pooling on the

Coil-100 dataset.

Overlap

Rate (ε)

ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 11.830 9.050 6.183 5.600

0.1 11.680 10.300 6.083 5.683

0.2 11.680 8.550 6.083 5.267

0.3 11.780 8.920 6.033 5.850

0.4 11.770 10.400 5.967 5.133

0.5 11.770 10.270 5.967 5.533

0.6 11.850 9.150 5.617 5.400

0.7 11.870 10.470 5.700 5.367

5.4.4 CIFAR-10 Database

The CIFAR-10 dataset is more challenging than all the above databases. It contains 60k

32×32 color images in 10 classes, and each class has the same amount. All the images

are collected from the real-world scene, and the images are cropped without removing

the various background. Besides, objects are difficult to identify due to the different

conditions of illumination, occlusion, and non-alignment. Some samples are randomly

selected from CIFAR-10 database and shown in Fig. 5.8.

In our experiment, the experimental setup here is similar to [12, 188, 183]. However,
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Table 5.4: Results of PCANet and CFR-ELM with and without max pooling on the

ETH-80 dataset.

Overlap

Rate (ε)

ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 20.351 19.512 18.052 16.374

0.1 20.236 21.113 16.054 15.815

0.2 20.236 19.817 17.744 15.815

0.3 20.122 19.970 17.687 15.100

0.4 20.160 18.674 16.924 15.772

0.5 20.160 18.483 17.565 15.772

0.6 19.817 19.627 16.128 16.301

0.7 19.588 19.855 16.859 16.872

0.8 19.360 18.293 17.219 16.638

0.9 19.360 20.922 17.500 16.638

Figure 5.8: Several sample images from CIFAR-10 dataset.
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due to the limited memories, we are 30k samples in the training set, and the remains are

used for the test. And we only go through the overlap rate from 0 to 0.7 by the step of

0.1. For the experiments with max pooling layers, WMP and HMP are both set to 4. The

results of our proposed method on CIFAR-10 are given in Table.5.5.

From the results we can see, our method outperforms PCANet in the majority of cases

with or without map-pooling operation.

Table 5.5: Results of PCANet and CFR-ELM with and without max pooling on the

CIFAR-10 dataset.

Overlap

Rate (ε)

ER (%) ER + MP (%)

PCANet CFR-ELM PCANet CFR-ELM

0.0 27.606 26.697 26.130 24.447

0.1 27.720 25.865 24.698 24.954

0.2 27.710 26.290 25.909 24.324

0.3 27.447 26.121 26.094 25.267

0.4 26.440 25.951 25.260 23.760

0.5 26.194 26.689 24.520 25.157

0.6 26.110 26.376 24.930 24.117

0.7 26.550 26.136 26.058 24.854

5.5 Summary

In this chapter, we propose a novel compact feature representation method named CFR-

ELM, which has a shallow network architecture. A detailed introduction is given to its

framework, which contains critical units based on ELM, post-processing modules, and

the classification using SVM. We have explained the reason why CFR-ELM can learn

efficient and compact features by adopting ELM Auto-Encoder and the max pooling

operation. The experiments on four typical diverse databases prove the effectiveness of

our proposed method since CFR-ELM achieves impressive results by learning a better

compact representation of the input data. Different overlap rates have been analyzed,

and experiments with and without max pooling layers have been implemented and com-

pared. The error rate of CFR-ELM is generally lower than PCANet.
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Chapter 6

Target Coding for Extreme Learning

Machine

Chapter 6 begins with the introduction of the definition of target coding and the most

popular target coding method one-of-k coding. Then in this chapter, we have introduced

Hadamard coding to ELM networks and explained how it works in details. Furthermore,

we have analyzed and compared linearly independent coding methods and linearly de-

pendent coding methods. At last, we have implemented all these target coding methods

on the OCR letter dataset, and the results show that different target coding methods will

indeed affect the performance of the same classifier.
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6.1 Introduction

Feature extraction/learning and Target coding are two essential parts for supervised

learning, especially for classification problems. Target coding (or labels encoding) is

an indispensable part of the supervised learning algorithms. With years of research,

there are lots of work have been done on how to extract effective features using ELMs

[42, 43, 44, 45]. However, little work has been done on target coding for ELM. By

far, most people adopt one-of-k target coding methods instantly when they use ELM

classifiers, while others adopt the numeric coding methods to simplify the computation.

One-of-k (one-hot) coding comes from electronics, and there is only one ”hot” value in

the coding list. It is introduced into the modern data science by [46], and the one ”hot”

value is replaced by ‘1’ for simplicity reasons. One-of-k coding is the most frequently

used target coding method for machine-learning based classification applications in re-

cent years [33, 47, 48]. The assumptions of one-hot coding are that each target is inde-

pendent and the similarities of any two targets is a constant value of zero.

However, this is not reasonable since similar targets should have a bigger similarity than

dissimilar targets. This assumption is limited due to the complex relationship between

targets. For example, C is a combination of A and B, then A’s target code can be ‘10x’,

B’s code can be ‘01y’ and C’s code can be ‘11z’ (here, ‘x’, ‘y’ and ‘z’ indicate other

properties of A, B, and C respectively). Sanjoy et al. have proved that the fly olfactory

circuit assigns more similar ‘tags’ to the more similar pairs of odors [155]. Jiang et

al. proposed an asymmetric hashing method to encode the training data and test data

separately, and deep supervised learning is adopted to learning the features and update

the hashing codes [189].

In this chapter, we have explored the effects of one-of-k coding methods on ELM clas-

sifiers. Besides, motivated by the properties of orthogonality and equal weight (each

coding has the same number of non-zero elements) of Hadamard coding [49, 50, 51],

we have compared its effects with one-of-k coding. Two simple coding methods ordinal
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coding and binary coding have also been compared to show the effective of one-of-k

coding and Hadamard coding. To the best of our knowledge, this is the first discussion

on target coding for ELM.

The structure of this chapter is as follows. We give a brief introduction on ELM-C

and target coding in Section 6.2. Detailed analysis of target coding methods for ELM

classifiers are explained in Section 6.3 and results are presented in Section 6.4. Finally,

Section 6.5 summarizes our contribution and the future work.

6.2 Related Works

We have reviewed the basic ELM in Section 2.1, here we reintroduce ELM networks

for classification with the training part and test part. The definition and an example of

target coding are presented after ELM.

Extreme Learning Machine for Classification. ELM is a single (hidden) layer forward

neural network which has been proposed in [38]. The weights (W) and bias (B) between

the input layer and the hidden layer are randomly assigned, while only the weights

(β ) between the hidden layer and the output layer need to be computed by solving a

linear equation. This network has been proved to have good generalization performance

with high training and test speed with remarkable classification and regression ability

[29, 67, 30, 64].

Assume there are N1 training samples X1, and the feature dimension of each sample

is NI . We use Y1 to denote the label matrix which consists of coding vectors of the

training target, and the length of each coding vector is NO. The number of hidden nodes

is NH , then the dimension of W and B is NI×NH and N1×NH respectively. Noted that

each row in B is a duplicate of the first row. Now, with the full-connected single-layer
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forward network, the output of hidden nodes is

H1 = g(X1W+B), (6.1)

where g(∗) is an activation function.

Training this network is equivalent to solving a linear system

Y1 = H1β , (6.2)

and the minimum norm least squares solution is

β = H
†
1Y1. (6.3)

Here † is the Moore-Penrose inverse operator, and the dimension of β is NH×NO.

For the N2 testing samples X2, similar steps are performed, and the output of hidden

nodes are

H2 = g(X2W+B), (6.4)

and the predicted labels are

Ŷ2 = H2β . (6.5)

Here, Ŷ2 is the predicted output of the test samples. To evaluate the classification accu-

racy, Ŷ2 should be compared with Y2, and more details will be discussed on performance

evaluation in the following sections.

To avoid the singularity of the matrix H, a unified learning network of ELM is proposed

in [30] which minimizes the training error, and the norm of the output weight matrix by

introducing a regularization factor C. The target is to minimize 1
2
‖β‖2 + 1

2
C ∑

N
i=1 |ξi|

2.
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Here, ξi is the i-th training error. The solution of this function is

β =





HT
(

I
C
+H1HT

1

)−1
Y1,N1 < NH .

(
I
C
+H1HT

1

)−1
HT Y1,N1 ≥ NH .

(6.6)

Target Coding. Coding techniques have been developing for many years in the field of

information science [190, 191], and various methods have been proposed for different

propose like data compression, forward error correction, and encryption. Recently, cod-

ing for targets has gained a growing attraction from the machine learning community,

especially supervised learning like classification [192, 193]. The detailed definition of

target coding is given in [51], and here we restate it briefly as follows.

A target coding (code) T is defined as a matrix whose dimension is n× l, where n is the

number of unique categories and l is the length of a vector whose elements come from

an integer set S (alphabet set). Each item in S is called a symbol, so every element in

T is a symbol.

For example, we have a dataset which contains three instances. These three instances

are divided into two groups, and their categories are ‘dog’, ‘cat’, ‘dog’ in turn. Assume

S = {0,1}, and l = 4. Then one possible assignment of target coding is

T =




0,1,0,1

1,0,1,0

0,1,0,1


 , (6.7)

so the coding of ‘dog’ is [0,1,0,1], and ‘cat’ is [1,0,1,0].
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6.3 Target Codings for Extreme Learning Machine

From Equ.6.3 and Equ.6.5, we have

Ŷ2 = H2H
†
1Y1. (6.8)

Substitute Equ.6.1 and Equ.6.4 into Equ.6.8, we can obtain

Ŷ2 = [g(X2W+B)] [g(X1W+B)]† Y1. (6.9)

Assume M = [g(X2W+B)] [g(X1W+B)]†, then M is determined by the training sam-

ples X1, test samples X2, weight matrix W and bias matrix B. For ELM, W and B are

randomly generated. So M will be a determined matrix once we know the training and

test samples.

Ŷ2 = MY1. (6.10)

For the classification problem of a test set, one sample is a true sample when its predicted

label is equal to its true label. Otherwise, it is a false sample. The accuracy of the

classifier is

Accuracy =
#T S

#T S+#FS
, (6.11)

where #T S and #FS represent the number of true samples and false samples respectively.

For ELM classification, the true label matrix and predicted label matrix of a test set are

denoted as Y2 and Ŷ2. According to Equ.6.11, we can derive that the test accuracy of

an ELM classifier is

Accuracy =
∑

N
i=1B(y2i

,S(Y2, ŷ2i
))

N2
, (6.12)
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where B is a logical function and S is a nearest-neighbor search function. Their ana-

lytical formulas are

B(v1,v2) =





1,v1 = v2

0,v1 6= v2

(6.13)

and

argmin
y′2

S(Y2, ŷ2i
) = {y′2 ∈ Y2 | D(y′2, ŷ2i

) = min
y′′2

D(y′′2, ŷ2i
)}, (6.14)

where v1 and v2 are arbitrary equal-length vectors, and D(·) is a distance matrix.

Currently, researchers usually set the final output of an ELM classifier as the index of

the maximum element in the output vector of the last layer. This operation is compatible

with the evaluation protocol we introduced above. The proof is as follows:

Assume the i-th element ti is the biggest of an n-length output vector and other elements

are represented as t j ( j ∈ [1,n], and j 6= i). The i-th element of the target vector is 1,

and other elements are all 0. According to nearest neighbors definition. Di = (ti−1)2+

∑ j t j
2 = ∑k∈[1,n] tk

2 +1−2ti. Since ti is the biggest element, so Di achieves the smallest

distance between the target coding vector and the output coding vector.

We know that ELM has universal approximation capability, that is, ELM can approx-

imate any continuous target functions. Here, we only consider the linear situation. A

group of fix-length coding vectors have two situations: linearly dependent and linearly

independent. The definition of linearly dependent of a set of vectors V = {−→v1 ,
−→v2 , ...,

−→vn}

is: there exists a group of not all-zero scalars {a1,a2, ...,an}, such that ∑i∈[1,n] ai
−→vi =

−→
0 .

While for linearly independent, there doesn’t exist such not all-zero scalars. So for Y1

and Y2, they can be derived (or selected) from linearly dependent coding vectors or

linearly independent coding vectors.

There are many kinds of linearly dependent coding. Actually, a group of vectors must
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be linearly dependent if the dimension of the vector LC is smaller than the number of

vectors NC. The most popular linearly dependent coding are ordinal coding and binary

coding.

Ordinal coding. Ordinal coding means each class of target is represented as an ordinal

integer, shown in Table 6.1. This is the simplest way to encode targets, and ordinal

coding can not only be used for classification but also for regression.

Table 6.1: Ordinal coding for different classes.

Classes Ordinal coding

#1 1

#2 2

#3 3

#· · · · · ·
#N n

Binary coding. Binary coding indicates that each class of target is represented as a

binary number. An example is shown in Table.6.2, where the dimension of each bi-

nary coding is two, and the amount is four. Binary coding can be used for single-label

classification and multi-label classification.

Table 6.2: Two-bit binary coding for different classes.

Classes Two-bit binary coding

#1 0 0

#2 0 1

#3 1 0

#4 1 1

There are also many methods for linearly independent coding, and the two most widely

adopted coding are one-of-k coding and Hadamard coding.

One-of-k coding. Assume the dimension of one target code vector is K, then one-of-k

coding means the k-th element of the vector of the k-th class is one and other elements

are all zero. An simple example is shown in Table 6.3.

Hadamard coding. The Hadamard code (shown in Table.6.4) is one of the popular
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Table 6.3: One-of-k coding for different classes.

Classes one-of-k coding

#1 1 0 0 0 · · · 0

#2 0 1 0 0 · · · 0

#· · · · · ·
#N 0 0 0 0 · · · 1

Table 6.4: Hadamard coding for different classes.

Classes Hadamard coding

#1 1 1 1 1

#2 1 0 1 0

#3 1 1 0 0

#4 1 0 0 1

error-correcting codes which are usually adopted in communication systems. Hadamard

code is generated by using the Hadamard matrix H , and the dimension (denoted as n)

of H should be not less than the amount (denoted as m) of code we need. Each element

of a Hadamard matrix is either −1 or +1, and H HT = nI, where T is a transpose

operator and I is a unit matrix. One way to produce a new Hadamard matrix is to embed

an old Hadamard matrix into a specified template which is,

Hnew =


Hold Hold

Hold −Hold


 .

After we have the relationship of Hnew and Hold , we also need some initialization ker-

nels. Here here we only list three cases: n ∈ {p ∗ 2q,n ≥ 2|p ∈ [1,12,20],q ∈ N}, and

the three kernels are

H2 =


+ +

+ −


 ,
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H12 =




++++++++++++

+−+−+++−−−+−

+−−+−+++−−−+

++−−+−+++−−−

+−+−−+−+++−−

+−−+−−+−+++−

+−−−+−−+−+++

++−−−+−−+−++

+++−−−+−−+−+

++++−−−+−−+−

+−+++−−−+−−+

++−+++−−−+−−




,
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and

H20 =




++++++++++++++++++++

+−−++−−−−+−+−++++−−+

+−++−−−−+−+−++++−−+−

+++−−−−+−+−++++−−+−−

++−−−−+−+−++++−−+−−+

+−−−−+−+−++++−−+−−++

+−−−+−+−++++−−+−−++−

+−−+−+−++++−−+−−++−−

+−+−+−++++−−+−−++−−−

++−+−++++−−+−−++−−−−

+−+−++++−−+−−++−−−−+

++−++++−−+−−++−−−−+−

+−++++−−+−−++−−−−+−+

+++++−−+−−++−−−−+−+−

++++−−+−−++−−−−+−+−+

+++−−+−−++−−−−+−+−++

++−−+−−++−−−−+−+−+++

+−−+−−++−−−−+−+−++++

+−+−−++−−−−+−+−++++−

++−−++−−−−+−+−++++−−




.

So, for p = 1, H4 = [H2,H2;H2,−H2], H8 = [H4,H4;H4,−H4], ...

For p = 12, H24 = [H12,H12;H12,−H12], H48 = [H24,H24;H24,−H24], ...

For p = 20, H40 = [H20,H20;H20,−H20], H80 = [H40,H40;H40,−H40], ...

In order to be consistent with the above target coding method, we map ‘+1’ and ‘-1’

in the Hadamard matrix we produced to ‘0’ and ‘1’ respectively. Besides, we delete
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the elements in the first column and the first row because they are all the same. So the

dimension of each Hadamard code is n−1. A greedy search method introduced in [51]

is implemented in our experiments.
T
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Figure 6.1: Training accuracy and test accuracy with ordinal target coding on OCR

dataset using ELM.

6.4 Experimental Results

We adopt an OCR letter dataset to show the effects of the four above-mentioned target

coding methods on ELM classification. We have implemented the proposed method in

Chapter 4 on the OCR letter database, and here we will review it briefly. OCR letter

database is collected by Rob Kassel [194], and it contains 52152 samples of 26 letters

(a-z). Each letter in this database is normalized and stored as a 16× 8 binary image.

Some examples from the OCR database are shown in Fig. 4.2), from which we can see

that letters are difficult to recognize due to the large and varied deformation (e.g., partial

occlusion and rotation).

In the experiments, we feed the same feature data (raw pixel values) into the classifi-
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Figure 6.2: Training accuracy and test accuracy with binary target coding on OCR letter

dataset using ELM.
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Figure 6.3: Training accuracy and test accuracy with one-of-k target coding on OCR

letter dataset using ELM.

cation network, and all the parameters in the ELM classifier are kept consistently, in-

cluding activation function, the number of hidden nodes and regularization factor. The

activation function is uniformly set to the Sigmoid function, which is defined as

Sig(x) =
1

1+ e−x
. (6.15)

The number of hidden nodes ranges from 100 to 2000 with a step of 100, and the regu-

larization factor is set to 2i where i goes from -10 to 10 by a unit step.

We follow the default 10-fold cross-validation protocol to train and test the four target

coding methods we have introduced in Section.6.3.

Ordinal target coding is an intuitive one-to-one mapping. 26 positive integers are re-

quired by the OCR letter database since it has 26 different letters (classes). According

to the above parameters setting, the results of ordinal target coding shown in Fig. 6.1.

We can see that the classification accuracy is getting higher with the number of hidden
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Figure 6.4: Training accuracy and test accuracy with Hadamard target coding on OCR

letter dataset using ELM.
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nodes increase.

We use n to indicate the length of a binary coding vector. Then, we have tested six

different values of n, and they take the value from 5 to 15 by a step of 2 (n cannot

be smaller than 5. Otherwise, this coding method cannot provide 26 different coding

vectors). So here we have six corresponding results for binary target coding, and they

are shown in Fig. 6.2. We can see that the performance becomes better as n increases.

Previously, we have introduced that each vector from one-of-k target coding only has

one non-zero element. So for the OCR letter database, the one-of-k target coding cor-

responds to a 26-dimension identity matrix, and each row vector stands for a different

letter respectively. The results of one-of-k target coding are shown in Fig. 6.3, and the

accuracy increases as the number of hidden nodes rises.

Similar to the operation on binary target coding, we also selected six values for Hadamard

target coding. After we obtained the corresponding Hadamard code, we randomly se-

lected 26 coding vectors and assigned them to the 26 letters. The classification results

with Hadamard target coding by using ELM on the OCR letter database are shown in

Fig. 6.4.

We summarized the best results of the above experiments in Table.6.5, from which we

can see that

• Also as linearly dependent coding, the binary method performs better than the

ordinal method.

• For linearly independent coding, one-of-k target coding and Hadamard target cod-

ing are evenly matched.

• Linearly independent coding methods are better than linearly dependent coding

methods in these experiments.
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Table 6.5: Training and test accuracies of different target coding methods.

Target Coding Method Training Accuracy Test Accuracy

ordinal 0.1187 0.1172

one-of-k 0.8381 0.8033

Hadamard

n = 31 0.8378 0.8045

n = 39 0.8380 0.8043

n = 47 0.8382 0.8047

n = 63 0.8381 0.8043

n = 79 0.8375 0.8038

n = 127 0.8376 0.8040

Binary

n = 5 0.6421 0.6088

n = 7 0.6967 0.6697

n = 9 0.7072 0.6705

n = 11 0.7594 0.7250

n = 13 0.7666 0.7331

n = 15 0.7821 0.7484

6.5 Summary

In this chapter, we have explored the effectiveness of target coding on ELM classi-

fiers. In particular, we have analyzed two linearly dependent coding (ordinal coding and

binary coding) and two linearly independent coding (one-of-k coding and Hadamard

coding). Experiments have been implemented on the OCR letter database to show the

different effects of different target coding, and discussion is given based on the results.

We have shown that different target coding methods indeed affect the performance of

ELM classifiers.
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Chapter 7

Conclusions and Future Works

Chapter 7 summarizes the four contributions in this thesis, and some recommendations

for further research are given.
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7.1 Conclusions

In this thesis, we have presented four enhanced aspects of ELMs. These contributions

are individual but are all closely associated with the ELM networks. From the input

end to the output end, we have proposed and explained the novel handcraft features

pairwise distance vector and fed them into the input layer, introduced sparse binary

random projection to concretize the weights between the input layer and the hidden

layer, extended the architecture of the ELM network, and explored the performance of

different target coding methods.

In our first work, we have proposed an ELM-based smiling and non-smiling images

classification system by using a novel feature extraction method and the ELM. We fo-

cus on smile images classification system-level design and put forward a novel feature

extraction method named Pair-wise Distance Vector, which can adequately reflect an

object’s shape and has properties of invariance of translation, rotation, and scaling. We

have compared our algorithm with the existing state-of-the-art methods on the public

smile detection dataset, and the results have shown that the accuracy of our ELM-based

approach is higher and the dimension of our proposed feature vector is lower than the

state-of-the-art methods.

In our second work, we focus on the optimization of the weights between the input

layer and the hidden layer. We have introduced the sparse binary projection into ELM

networks and proposed a novel ELM method named Fly-ELM, which is inspired by

fruit flies’ olfactory systems. The relationship between Gaussian random projections

and sparse random binary projections is analyzed, and the results of the proposed Fly-

ELM implemented on public OCR image classification dataset have shown that our

algorithm achieves comparable accuracy but costs much less memory.

In our third work, we have concentrated on extending the depth of ELM networks and

designed a novel compact feature learning method named CFR-ELM. CFR-ELM has a

multi-layer architecture, and each module in it performs three operations: 1) patch-based
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mean removal; 2) ELM auto-encoder (ELM-AE) to learn features; 3) Max pooling to

make the features more compact. We have tested our proposed method on four repre-

sentative image classification datasets, and the results of these experiments have shown

the effectiveness of our proposed method.

In our last work, we have explored the effectiveness of different target coding methods

on ELM classifiers. The Hadamard coding is firstly introduced into ELM networks, and

ordinal coding, binary coding, one-of-k coding, and Hadamard coding are all analyzed.

We have also used the OCR dataset to verify the different effects of different target

coding methods and obtained the conclusion that different target coding methods indeed

affect the performance of ELM classifiers.

Noted that in this thesis, we have chosen different public datasets to test our proposed

methods, since we focus on different aspects to enhance the ELM networks. As we have

introduced, these four aspects include the extracted features fed into the input layer, the

random binary projections between the input layer and the hidden layer, the deep archi-

tecture of the hidden layers, and the target coding methods for the output layer. In the

first work, we choose smile images dataset, and smile detection is a typical specific ap-

plication of image classification techniques. In the second and fourth work, we choose

the simple OCR dataset because we focus on the comparison of our enhanced ELM

with the basic/kernel ELM. Our third work focuses on feature learning for image classi-

fication, and we have tested our algorithm on four famous general image classification

datasets to show that our proposed method outperforms other relevant state-of-the-art

methods.

7.2 Future Works

Even though we have explored and enhanced four different aspects of ELM networks,

we have realized that there are still many areas that can be explored, and many gaps can

be filled in the future.
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As we have introduced, we have proposed a novel and snappy feature descriptor in our

first work, and this descriptor should be suitable for many other fields which have al-

ready obtained the landmarks. For example, after we get the locations of body key

points, we could apply our algorithm to head pose estimation and action recognition

effortlessly. The performance and generalization of our approach should be further ex-

amined when applied to other tasks.

There are still many directions to improve our last three work. For example, our sec-

ond work shows the efficient of the sparse binary mapping between the input layer and

the hidden layer, and it may be integrated with the sparse ELM, which constrains the

sparsity of the output layer. Our third work is mainly motivated by PCANet, and we

have achieved excellent results by embedding ELM-AE into the inspired architecture.

Similarity, there are plenty of ELM variants and other shallow (or deep) neural net-

works have been proposed these years, the combinations and integration of them should

develop more interesting outcomes. For our fourth work, since we have shown that dif-

ferent target coding methods indeed affect the performance ELM classifiers, this could

be dug into further to find the optimal target coding methods in the future.

We have presented our four contributions on enhancing four aspects of ELM networks

for image classification individually, and each component has been analyzed and ex-

plained clearly. However, we have not associated some or all of them into one system

since there are so many combinations. The potential interaction between them and how

to adjust them to optimize the whole system deserve further study.
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