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Enhanced future changes in wet and dry extremes
over Africa at convection-permitting scale
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African society is particularly vulnerable to climate change. The representation of convection

in climate models has so far restricted our ability to accurately simulate African weather

extremes, limiting climate change predictions. Here we show results from climate change

experiments with a convection-permitting (4.5 km grid-spacing) model, for the first time over

an Africa-wide domain (CP4A). The model realistically captures hourly rainfall character-

istics, unlike coarser resolution models. CP4A shows greater future increases in extreme 3-

hourly precipitation compared to a convection-parameterised 25 km model (R25). CP4A also

shows future increases in dry spell length during the wet season over western and central

Africa, weaker or not apparent in R25. These differences relate to the more realistic repre-

sentation of convection in CP4A, and its response to increasing atmospheric moisture and

stability. We conclude that, with the more accurate representation of convection, projected

changes in both wet and dry extremes over Africa may be more severe.
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U
ntil now, future climate projections across Africa have
been provided by relatively coarse resolution (order
10–100 -km grid spacing) climate models1,2. These mod-

els rely on a parameterisation scheme to represent the average
effects of convection; this simplification is a known source of
model error, especially in the tropics where convection is integral
to circulation and extremes. Convection parameterisation
schemes often produce very intermittent rainfall at the model
time step3, rainfall too early in the day4, and fail to capture
organised propagating systems, instead simulating unrealistically
widespread light daily total and insufficient heavy rain5. Such
deficiencies can have a significant impact on the regional scale
circulation and water cycle over Africa6,7 and the response of
storms to their environment8. For Africa, in common with much
of the tropics, there is currently significant uncertainty in climate-
change projections, with disparity in the sign of rainfall change in
some regions1,2,9–12. This uncertainty makes it difficult to predict
the impacts of climate change and develop adaptation strategies.

Models with order 1 -km grid spacing can represent convection
explicitly without the need for parameterisation. Such models are
termed ‘convection-permitting’ because larger storms and
mesoscale convective organisation are permitted, even if smaller
storms are not well resolved. Convection-permitting models
(CPMs) are able to better simulate the diurnal cycle of tropical
convection7, the vertical cloud structure and the coupling
between moist convection and convergence13,14 and soil
moisture-convection feedbacks in the Sahel15. The benefits of
CPMs have also been demonstrated in other regions, including a
more realistic representation of the precipitation structure and
extremes16. The improved realism of CPMs is a key indicator of
their skill in representing the underlying processes, and hence our
confidence in their projections of future change. CPMs therefore
present a crucial opportunity for Africa, providing insight into
potential biases that exist across global model projections due to
the necessary use of parameterised convection.

CPMs are used routinely for weather forecasting17,18, but their
use in climate studies has largely been limited to small domains or
single seasons due to high computational cost. Long convection-
permitting climate change runs have almost entirely been
focussed over developed mid-latitude regions16, with no such
runs for Africa.

Here, for the first time we analyse multi-year climate-change
projections for an Africa-wide domain at convection-permitting
(4.5 km) resolution (CP4A). This builds on an earlier study19 that
described the CP4A experimental design and provided the results
from the first 5 years of the present-day simulation. We compare
future changes in 3-hourly rainfall across Africa in CP4A with the
results from a 25 -km regional climate model (R25). Both models
are run for 10-year present-day (1997–2007) and 10-year future
(~ 2100, under Intergovernmental Panel on Climate Change
RCP8.5 scenario) periods, driven by a 25 -km global model. R25
has similar model physics to CP4A (except that convection is
parameterised, and it uses a different cloud and boundary layer
scheme) and it was run to isolate the impact of convection
parameterisation and resolution on African climate variability
and change. Present-day rainfall has been compared with
satellite-derived 3-hourly rainfall available from TRMM20 and
bias-corrected CMORPH21 for 1998–2008. We focus on the
wettest season, as the 3-month period with the highest mean
precipitation at each location.

We find that CP4A shows greater future increases in extreme
3-hourly precipitation compared with R25. The scaling of these
changes with increased atmospheric moisture is higher in the
convection-permitting model, which may be explained by local
dynamical feedbacks within storms amplifying increases in
rainfall extremes on hourly timescales. CP4A also shows future

increases in dry spell length during the wet season over western
and central Africa, weaker or not apparent in R25. These dry spell
changes appear to be related to the more realistic triggering and
propagation of convection in CP4A and their response to future
increases in stability. We conclude that changes in extreme
rainfall and dry spells over Africa may be underestimated in all
models where convection is parameterised.

Results
Representation of wet season precipitation. The wettest 3-
month period varies across tropical and sub-tropical Africa: from
boreal summer in the north to boreal winter in the south, with the
equatorial regions dominated by one or other of the periods when
the Intertropical Convergence Zone (ITCZ) crosses the equator
(Fig. 1). R25, CP4A and CMORPH all show a similar spatial
variation in the wet season to TRMM, although there are dis-
crepancies over northern Africa and neither model captures the
variation between March–April–May (MAM) and
October–November–December (OND) across East Africa. CP4A
better captures the wet season over the West African monsoon
region (1 month too early in R25). Some future changes in wet
season are seen in both models: over West Africa, the wet season
is typically shifted 1-month later, consistent with previous stu-
dies11; over southern Africa, it is shifted 1-month earlier and over
the Horn of East Africa, there is a shift from MAM to OND as
being the wettest period in the future, shown to relate to a slower
retreat of the ITCZ southwards22. For consistency, in all following
analysis, we use the present-day wet season in TRMM as a
common definition for all datasets, but note this could lead to an
underestimation of future increases in heavy precipitation.

CP4A gives a better representation of 3-hourly precipitation in
the wet season across Africa than R25 (Figs. 2–6). Rainfall in R25
(almost entirely from the convection scheme) is too frequent and
too light, with heavy precipitation being considerably too low.
Although CP4A has similar biases in the mean, over land it gives
a much better representation of rainfall occurrence, intensity and
extremes. In CP4A, wet season rainfall is less frequent but more
intense over most of tropical Africa, confirming previous RCM
studies that showed a similar result on increasing resolution9.
CP4A tends to overestimate rainfall over ocean along the ITCZ,
which may be caused by the uncoupled ocean23, and both R25
and CP4A have a tendency to overestimate rainfall over
mountains and lakes, although this is more pronounced in CP4A.

Future change in extreme precipitation. In the future, both
models show increases in mean and extreme precipitation across
much of Africa (Figs. 2, 6). Decreases in mean precipitation are
seen in some west and south–west regions, with decreases in
rainfall occurrence; in these regions, there is still a tendency for
rainfall intensity and extremes to increase. These results, in terms
of the pattern of change and increases in the ratio of extreme to
mean rainfall, agree qualitatively with previous studies10,24,25.
Compared with R25, CP4A shows slightly smaller increases in
mean precipitation; but importantly, CP4A shows much larger
decreases in rainfall occurrence (18% compared with 1.5% in
R25) and larger increases in precipitation intensity (39% com-
pared with 22%) and extremes (Figs. 3–6). CP4A’s smaller
increase in mean precipitation over the Congo, corresponds to its
greater reduction in rainfall frequency there. These differences
between CP4A and R25 show how changing convection affects
much larger scales. In terms of extremes, exceedance of the
present-day 99.9th-percentile occurs almost three times more
frequently in the future compared with the present-day across
Africa in CP4A (Fig. 6).
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To explore future changes in the intensity distribution, we
consider the fractional contribution of different 3-hourly intensity
bins to the total precipitation, for sub-regions (Fig. 6) sampling
different climates across Africa. This demonstrates the improved
performance of CP4A for the present-day (shown for Sahel and
E-Africa in Fig. 7 and for other regions in Supplementary Figs. 1,
2). TRMM tends to miss low-intensity events and have more
high-intensity events compared with CMORPH; this difference is
more pronounced with the new bias-corrected CMORPH as
opposed to the original CMORPH-v1. However, CP4A gives
better agreement with either observational dataset than R25
(except perhaps compared with CMORPH for the Gulf-of-Guinea
and S-Africa, but note there is an odd feature in CMORPH near
Guinea, see the Methods section). In the future, CP4A
consistently shows greater increases in the fractional contribution
from high rain rates compared with R25, mainly because of more
high rain rates in absolute terms (greater increases are also seen
for an equivalent high percentile, Fig. 6). In CP4A, exceeding 60 -
mm accumulation in 3 h, at the 25 -km scale, is 7–8 times more
frequent in future compared with the present-day for the Sahel
and E-Africa (and 4–6 times more frequent in other regions). In
these regions, such an event shifts from occurring typically once

in every 30 years at each grid point in the present-climate to once
every 3–4 years in the future. In R25, such exceedances are rarer
and typically increase less in future; over East Africa, the future
increase (of 9×) is similar, but such events are 8× rarer than those
in CP4A. These relatively rare events may be flood-inducing. The
highest ever recorded event in Dakar in August 2012, with 144
mm in 1 h (161 mm in 6 h) at the local station scale, led to
widespread flooding with 287,000 people displaced and 18
deaths26. At the 25 -km scale, the rainfall total is expected to be
much less than at the point scale (an areal reduction factor of 0.82
is estimated between point and 25 -km rainfall data in the Sahel27,
but the factor is likely to be lower for localised extreme events).
Overall, 60 mm in 3 h is lower than the Dakar flood-producing
event, but such a high accumulation over the 25- km scale may
lead to local flash flooding in some cases28, and is chosen as a
user-relevant threshold for which we can estimate more robust
statistics of future change.

Future change in dry spells. We see notable differences in future
changes in the length of dry spells between CP4A and R25
(Fig. 8). For a 1 mm day−1 threshold, R25 underestimates the

djf jfm fma mam

TRMM, wet_season_indexa b c

f

R25, wet_season_index CP4A, wet_season_index

CMORPH, wet_season_index R25FUT, wet_season_index CP4FUT, wet_season_index

amj mjj jja jas aso son ond ndj

djf jfm fma mam amj mjj jja jas aso son ond ndj djf jfm fma mam amj mjj jja jas aso son ond ndj

djf jfm fma mam amj mjj jja jas aso son ond ndj djf jfm fma mam amj mjj jja jas aso son ond ndj

djf jfm fma mam amj mjj jja jas aso son ond ndj

d e

Fig. 1 Wet season index. Three-month period with the highest mean precipitation in a, d TRMM, CMORPH and b, e R25 model, for present day and future,

and c, f CP4A, for present day and future. The black lines indicate the 500 -, 1000-, 2000-, 3000- and 4000 -m height contours. For Figs. 2–6, 10 and

Supplementary Figures 11–16, wet season as observed in TRMM is used as a common definition for all datasets
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length of dry spells in two of the five regions during their
respective wet seasons, and overestimates them in Central Africa
(Supplementary Figs. 3, 4). In each case, CP4A reduces this bias.
In the future, CP4A shows a significant lengthening of dry spells
during the wet season over the Sahel, Gulf-of-Guinea and Central
Africa; over the Gulf-of-Guinea, dry spells exceeding 10 days are
almost twice as frequent in the future compared with the present-
day. This lengthening of dry spells is not seen (or much smaller)
in R25, and over the Sahel R25 shows the reverse effect. Using a
present-day percentile of the daily distribution to define dry spells
gives very similar results in terms of future changes, although in
this case R25 tends to overestimate the length of dry spells
(Supplementary Fig. 5). Thus the model differences in dry spell
changes are not simply a reflection of the different number of dry
days in the present-day.

Hovmöller plots for the latitude band 5–15°N across central/
western Africa show that CP4A gives a much more realistic
representation of westward propagating features and the diurnal
cycle than R25 (Fig. 9). In R25, the diurnal cycle is too strong and

there are some anomalous eastward moving features19. There are
some eastward moving features in TRMM, but these are less
prominent than in R25. In future, longer periods of no rain are
clearly visible in CP4A (Fig. 9). These appear to result from much
less diurnal triggering of rainfall (disappearance of evening
storms) and also the dying out of westward propagating features,
especially west of 10°E. These changes are consistent with a future
increase in convective inhibition, with a decrease in the number
of profiles able to support convection from the surface layer
during the day (Supplementary Figs. 6, 7). Similar results are seen
in CPM simulations over the United States29. R25 shows a weaker
effect: the diurnal cycle remains strong in the future, along with
propagating features west of 10°E (Supplementary Figs. 8–10).
Thus the difference in dry spell changes between the models
appears to be due to the improved representation of diurnal
convection and propagating systems in CP4A, and their response
to increasing stability. We note, runoff does not increase more in
CP4A (Supplementary Fig. 11), so a reduction in local moisture
recycling due to high future intensities (proposed by previous
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Fig. 2 Wet season mean precipitation. a TRMM observations, differences with respect to TRMM for b the R25 model, c CP4A model and d CMORPH

observations, and percentage differences between 2100 and present day for e the R25 model and f CP4A model. The median of future percentage changes

across Africa (land points only) is indicated in e, f. Dataset differences and future changes are masked in white, where differences are not significant at the

5% level compared with year-to-year variability. The wet season is the 3-month period with the highest mean precipitation in TRMM, defined on a grid-

point basis. The black lines indicate the 500 -, 1000 -, 2000-, 3000 - and 4000 -m height contours
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studies of 50 -km RCMs over Africa9 and convection-permitting
simulations of the Indian monsoon30) does not explain the model
differences in dry spell changes here.

Scaling of extreme precipitation change. Finally, we explore how
future increases in extreme precipitation intensity relate to
increased atmospheric moisture with warming across Africa, and
whether this differs at convection-permitting scale. Saturated
water vapour pressure increases with temperature at 6–7%K−1,
following the Clausius–Clapeyron (CC) relation. However,
changes in moisture availability may be much less than this
temperature-dependent maximum, and so here we consider
changes in near-surface dew point temperature, which is a
measure of specific humidity translated to temperature using the
CC relationship31. We find that increases in extreme 3-hourly
precipitation intensity during the wet season are typically higher
than CC scaling (7.8%K.) in CP4A, but lower (5.1%K−1) in R25
(Fig. 10; Supplementary Fig. 12 for daily extremes). In both

models, the scaling rate increases for higher percentiles of the
precipitation distribution (Supplementary Fig. 13), consistent
with previous studies32, with the scaling rate consistently higher
in CP4A than R25. Using a present-day percentile to define wet
values, or a metric of all values, shows that the higher scaling in
CP4A is not simply due to differences in the number of dry values
(<0.1 mm h−1) in the present-day (Supplementary Figs. 14, 15).
When using a percentile of all values, the scaling difference
between the models is smaller. A future reduction in the occur-
rence of low-intensity events alone (e.g., due to increasing con-
vective inhibition) could lead to higher apparent scaling for wet-
value percentiles. However, Supplementary Fig. 15 shows that the
higher scaling in CP4A is not simply due to the greater increase in
dry spells. Since it is the intensity and less clearly the frequency of
precipitation that is directly related to increased atmospheric
moisture with warming33, we focus on extreme precipitation
intensity for the scaling analysis.

We see large departures from CC-scaling locally, with evidence
of ‘super-CC scaling’ occurring more widely across Africa in
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Fig. 3 Wet season 3-hourly precipitation occurrence. a TRMM observations, differences with respect to TRMM for b the R25 model, c CP4A model and

d CMORPH observations, and percentage differences between 2100 and present day for e the R25 model and f CP4A model. Precipitation occurrence is

defined as the frequency of wet values (>0.1 mm h−1). The median of future percentage changes across Africa (land points only) is indicated in e, f. Dataset

differences and future changes are masked in white, where differences are not significant at the 5% level compared with year-to-year variability. The wet

season is the 3-month period with the highest mean precipitation in TRMM, defined on a grid-point basis. The black lines indicate the 500 -, 1000 -, 2000-,

3000 - and 4000 -m height contours
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CP4A (Fig. 10; Supplementary Fig. 13). In particular, 11% of 25 -
km grid points show scaling coefficients >2xCC in CP4A
compared with 4% in R25. Both models also sample negative
scaling rates, with 5% of grid points showing negative scaling in
CP4A and 13% in R25. Locally varying negative to strongly
positive scaling rates typically happen due to displacements of
extreme convective storms in future, and may be symptomatic of
an undersampling of extreme storms in the 10-year model
simulations. The fact that super-CC scaling is more prevalent
than negative scaling in CP4A (but not R25) shows that this is not
simply explained by displacements of extreme storms. We note
that over much of central Africa where super-CC scaling is
observed in CP4A, future changes in extreme precipitation
intensity (Fig. 5) are significantly higher in CP4A than in R25
taking into account year-to-year variability. These results suggest
that higher scaling rates at convection-permitting scale for Africa
as a whole are robust, but given the results are based on single 10-
year model realisations, there is uncertainty in the actual scaling
values at the 25 -km grid point scale.

On using surface temperature (instead of dew point) as the
scaling variable (Supplementary Fig. 16), we see a downturn in
scaling at a high-temperature change explained by moisture
availability not increasing as fast as temperature, with a decrease
in relative humidity. We see some consistency between models in
regions showing sub-CC scaling; in particular, both models show
a large area of sub-CC scaling with surface temperature change in
SW Africa, consistent with regional drying. However, in general,
variation in the scaling coefficient across grid points in CP4A is
not strongly related to that in R25, with a correlation of 0.4 or
less. At high temperature change (>8 K), scaling coefficients in the
two models are uncorrelated, suggesting a different response in
dry environments where future warming is likely largest.

Discussion
The results here show that increases in sub-daily (and to a
lesser extent daily) precipitation extremes are more severe in
CP4A compared with a coarser resolution model, and this relates
to higher scaling rates with atmospheric moisture in the
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Fig. 4Wet season mean 3-hourly precipitation intensity. a TRMM observations, differences with respect to TRMM for b the R25 model, c CP4A model and

d CMORPH observations, and percentage differences between 2100 and present day for e the R25 model and f CP4A model. Mean precipitation intensity

is defined as the mean of wet values (>0.1 mm h−1). The median of future percentage changes across Africa (land points only) is indicated in e, f. Dataset

differences and future changes are masked in white, where differences are not significant at the 5% level compared to year-to-year variability. The wet

season is the 3-month period with the highest mean precipitation in TRMM, defined on a grid-point basis. The black lines indicate the 500 -, 1000 -, 2000-,

3000 - and 4000 -m height contours
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convection-permitting model. Departures from CC scaling with
the dew point temperature may be due to a number of possible
explanations. Firstly, changes in the dew point temperature at
higher levels may be more representative of the changes in
moisture feeding into storms (rather than changes at the 1.5 -m
level used here). Secondly, the dew point temperature change for
the air actually feeding into storms may be different from the
mean wet season dew point temperature change used here.
Thirdly, there may be changes in storm vertical velocities.
Fourthly, there may be local dynamical feedbacks within storms
that change moisture inflow and overall precipitation efficiency.
Finally, there may be changes in the atmospheric environment, in
which storms develop impacting precipitation efficiency and the
scale and organisation of convection (for example, increased wind
shear favours the mesoscale organisation of convection and this
has led to a recent intensification of extreme Sahel storms8). We
expect both CP4A and R25 models to be similarly affected by the
first two points above. Local dynamics and feedbacks within
storms and the organisation of convection (which relate to the

last three points) are not well captured by coarse resolution
models, and the better representation of these processes in CP4A
may explain the higher scaling in this model compared with R25.
We note, local dynamical feedbacks within storms linked to latent
heat release are expected to amplify increases in rainfall extremes
on hourly timescales, and so may explain higher scaling for 3-
hourly compared with daily precipitation extremes in CP4A (c.f.
fig. 10 compared with Supplementary Fig. 12).

Recent studies assessing historic changes in observed pre-
cipitation have shown that natural variability plays a major role in
parts of Africa34; although recent increases in rainfall over the
Sahel have been linked to increased greenhouse gases35. The
results here are based on single 10-year model realisations of
climate change, nevertheless, we are able to detect clear changes
in extreme precipitation at the end of the century above year-to-
year natural variability. This is due to the fact that the signal of
change is much larger by 2100, with changes in extreme pre-
cipitation largely explicable in terms of increasing atmospheric
moisture with warming. There is no influence of oceanic decadal
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Fig. 5 Wet season extreme precipitation intensity. a TRMM observations, differences with respect to TRMM for b the R25 model, c CP4A model and

d CMORPH observations, and percentage differences between 2100 and present day for e the R25 model and f CP4A model. Extreme precipitation

intensity is defined as the 99th percentile of wet values (>0.1 mm h−1), for 3-hourly precipitation. The median of future percentage changes across Africa

(land points only) is indicated in e, f. Dataset differences and future changes are masked in white, where differences are not significant at the 5% level

compared with year-to-year variability. The wet season is the 3-month period with the highest mean precipitation in TRMM, defined on a grid-point basis.

The black lines indicate the 500 -, 1000 -, 2000-, 3000 - and 4000 -m height contours
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variability on the results due to our adopted treatment of sea-
surface temperatures (see the Methods section). The relatively
short simulations here, however, do limit our sampling of
extreme events and hence our ability to robustly characterise
changes in the extreme tail of the precipitation distribution at the
local scale.

This study indicates the importance of the representation of
local convective processes for predicting future changes in pre-
cipitation extremes across Africa. This is the case not only for wet
extremes where local dynamics and feedbacks within storms,
which may explain departures from CC scaling and are not
captured by coarse resolution models, may be important in
explaining enhanced increases in CP4A compared with R25, but
also for dry extremes. In particular, we see a greater tendency for
increases in dry spell length in the CPM, related to the more

realistic triggering and propagation of convection. These results
are for a single model, and so it is not possible to estimate
modelling uncertainty. However, consistency with CPM climate
projections for other regions, in particular with regard to the
greater intensification of hourly rainfall with warming compared
with conventional climate models36,37, gives us greater confidence
in these results. The lack of a strong relationship between
temperature-precipitation scalings in CP4A and R25 suggests that
enhanced (‘super-CC’) increases in extreme precipitation in the
CPM cannot easily be diagnosed from parameterised models, and
thus more CPM simulations for Africa are needed to account for
uncertainty. As these become available, it is hoped they may offer
a more consistent picture of future change, reducing uncertainty
in the impacts of climate change across a uniquely vulnerable
region.
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Fig. 6 Present-day extreme precipitation and the frequency of exceedance in future, for the wet season. Present-day extreme precipitation threshold in

a TRMM observations, differences with respect to TRMM for b the R25 model, c CP4A model and d CMORPH observations and the ratio of the future

compared with the present-day frequency of exceedance of this threshold for e the R25 model and f CP4A model. Extreme precipitation threshold is

defined as the 99.9th percentile of 3-hourly precipitation in the wet season in the present-day. The median of future/present exceedance ratio across

Africa (land points only) is indicated in e and f. Differences and future changes are masked in white, where differences are not significant at the 5% level

compared with year-to-year variability. For all datasets, the wet season is the 3-month period with the highest mean precipitation in TRMM, defined on a

grid-point basis. The black lines indicate the 500 -, 1000 -, 2000-, 3000 - and 4000 -m height contours. Definition of Africa sub-regions for subsequent

analysis is shown in a
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Methods
Models. The models used here are all configurations of the Met Office Unified
Model (UM). The 4.5 -km CP4A model spans the African continent, and is driven
by a N512 resolution global climate model (GCM). It is based on the UKV Met
Office regional model that has been in use for operational numerical weather
prediction since 2012. The model physics and dynamics used in CP4A have been
described previously19. The 25 -km regional model (R25) and global model, both
have the same physics configuration: a prototype version of the UM Global
Atmosphere 7.0 (GA7) configuration38 (GA7 is the atmospheric component of the
Global Coupled Model 3.0 which is the UK’s submission to CMIP639). R25 has the
same domain, land surface and aerosol forcing as CP4A and is similarly forced by
the N512 GCM at its lateral boundaries. The key physics differences between the
CP4A and R25 models are that in CP4A the convective parameterisation scheme is
switched off, a different cloud scheme and a blended boundary layer scheme are
used, and moisture conservation is applied19.

Soil moisture evolves freely using the JULES land surface scheme38. CP4A and
R25 use the same land-surface properties, and in particular the soil properties are
defined to be spatially uniform (and those of sand) across the whole domain. This
differs from the driving GCM that uses the Harmonized World Soil Database,
which is considered to contain unrealistic small-scale variability across Africa40. In
both CP4A and R25, the soil moisture fields were initialised with data derived from
an off-line JULES simulation19.

In the present-day simulations, all models are forced with sea surface
temperatures (SSTs) from the Reynolds daily observations41. Lakes are treated
differently in the two regional models compared with the N512 global model. In
the global model, only Lake Victoria is modelled as a ‘sea point’ in the land sea
mask; all other lakes are land points and treated as inland water by JULES, which

models them using an adaptation of the vegetation canopy code. The regional
models treat lakes as sea points, and hence it is necessary to provide them with a
surface temperature. For the 89 inland lakes that are included in the ARC-Lake v3
dataset42, a climatology of monthly night-time lake surface temperatures (LSTs)
from this dataset is used in both the CP4A and R25 models. For other inland lakes
(typically those with a surface area of less the 50 km2), a surface temperature value
from the model’s nearest sea point is assumed. For ozone, a monthly climatology
from the SPARC-II dataset43 is used, whilst monthly climatological aerosols are
derived from a GA6 simulation with interactive aerosols44. Greenhouse gas mass
mixing ratios are varied annually, with carbon dioxide varying from 5.51679 × 10−4

kg kg−1 for 1997 to 5.81488 × 10−4 kg kg−1 for 2006. The present-day simulations
span a 10-year period March 1997–February 2007; the first 2 months
(January–February 1997) were discarded to allow for model spin up.

The future simulations correspond to a 10-year period around 2100, for the
IPCC Representative Concentration Pathway (RCP) 8.5 climate-change scenario.
Future forcings are specified following a similar approach to that of the UPSCALE
project45. Namely, the SSTs are the sum of the SSTs used in the present-day
simulations and the climatological average SST change between 1975–2005 and
2085–2115 in a HadGEM2-ES RCP8.5 run46,47. These SST changes were calculated
for each calendar month, interpolated in both space and time, and added to the
daily varying Reynolds forcing data on the various model grids. The increase in SST
forcing equates to a global mean SST increase of just under 4 K45, giving a global
mean 1.5 m air temperature change of 5.2 K for the period of the CP4A
simulations. For the N512 GCM, consideration also needed to be given to changes
in sea ice. Greenhouse gas values were taken from the RCP8.5 climate-change
scenario for the year 2100. The same ozone and aerosol climatologies are used in
both the future and present-day simulations.
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Fig. 7 Fractional contribution of 3-hourly precipitation intensity bins to the total precipitation. a, b Fractional contribution (%) for present day for TRMM

and CMORPH observations and R25 and CP4A models; c, d difference in fractional contribution between 2100 and present day for R25 and CP4A models

for Sahel July–August–September (JAS) and E-Africa March–April–May (MAM). For CMORPH, the original version 1 of the data (CMORPH-v1, grey

dashed) is shown as well as the bias-corrected data (CMORPH, grey solid). Regions are as shown in Fig. 6. All 3-hourly data in the given season, in the

10-year period, from all land points in the sub-region are used to calculate the fractional contribution. Stars indicate where future changes are significant at

the 1% level compared with year-to-year variability, assessed using bootstrap resampling
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Lake surface forcing for the future CP4A simulation is computed as the sum of
the ARC-Lake observations and a seasonally varying change in LST specified from
the N512 GCM 1997–2007 and the corresponding time period in the future
simulation monthly climatologies. All African lakes in N512 GCM, except for Lake
Victoria, are land points. We therefore choose to model the change in LST as the
sum of the N512 GCM change in local land surface temperature (75% weighting,
using all GCM grid boxes at least partly overlapping the lake) and an inertia from
the continental coastal land–sea temperature contrast (25% weighting). The inertial
term is given low weight due to recent evidence that many lakes may be currently
warming as fast as neighbouring land48, although this is yet to be substantiated by
other studies. To avoid double counting of lake effects by accidentally including
them in the local land surface temperature changes, all grid boxes containing
inland water and lake Victoria were masked in the N512 GCM simulation, and
replaced with temperature values specified as the average of a five grid box ring of
100% land boxes surrounding each lake (a lake being connected masked grid
boxes). The inertial term is computed as the ratio of coastal ocean-to-land
warming, using a band of five N512 GCM grid boxes either side of the coastline
surrounding Africa from latitudes 15°S–15°N. The change in LST is computed
separately for each lake and for each month, with 3-month smoothing applied to its
annual cycle. Only Lake Victoria is present in the N512 GCM, where its change in
LST is founded on HadGEM2-ES N96 data using the same weighted-sum approach
as above (but with the band of grid boxes used to calculate the coastal land–sea
temperature contrast being just one grid box thick). Finally, for all R25 lakes, each
month’s change in LST is the area-weighted average of all CP4A lakes within the
R25 lake.

Observations. We use two satellite-derived products: the Tropical Rainfall Mea-
suring Mission 3B42 product, version 7 (TRMM20) and the bias-corrected version

of the the CPC MORPHing technique data (CMORPH21). TRMM and CMORPH
are available at 3-hourly time resolution and a maximum horizontal resolution of
0.25°. Both products are derived from a combination of infrared and microwave
sounders and calibrated against gauge data. CMORPH uses the same set of passive
microwave instruments as TRMM. However, it is different in that it propagates
these precipitation estimates using motion vectors, which are obtained from
infrared data from geostationary satellites. In CMORPH, bias correction over land
is done by matching probability density functions against daily NCEP CPC gauge
analysis using optimal interpolation with orographic correction, whilst in TRMM,
each 3-hourly field is scaled to sum to the corresponding monthly GPCC gauge
field. This bias-corrected CMORPH data give quite different rainfall estimates
compared with the original version 1 of the data (CMORPH-v149).

Previous studies evaluating satellite-based precipitation estimates over Africa
have shown that TRMM 3B42 and CMORPH both perform well in capturing
ground-based observations of rainfall on seasonal and annual timescales50. On
shorter timescales, TRMM rainfall is somewhat more intermittent than CMORPH.
Over Africa, TRMM and CMORPH-v1 have been found to have quite different
characteristics in terms of day-to-day variability3. These differences are likely
related to the different satellite data sources, algorithms and bias correction
techniques used in each case. It is known that both datasets tend to underestimate
smaller daily rainfall totals and can overestimate larger ones51. The bias-corrected
CMORPH gives a better representation of precipitation in terms of spatial patterns
and daily variability compared with raw CMORPH data over a global domain; and
globally, it is found to be better than TRMM in representing 3 hourly and daily
variability in warm season precipitation, but shows a worse bias during cold
seasons21. For mesosites in Africa (Mali, Niger and Benin), CMORPH gives very
good agreement with AMMA–CATCH that is better than TRMM. However, near
Guinea, there is a region of anomalous low precipitation in the bias-corrected
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CMORPH (visible in Fig. 2) not seen in other datasets (TRMM, GPCC or GPCP52)
thus raising questions about the reliability of this feature, which originates from the
bias-correction step (this feature is not seen in CMORPH-v1).

Overall, previous studies indicate that both TRMM and CMORPH give a valid
representation of rainfall over Africa, although with differences especially on
shorter timescales. There is some suggestion that the bias-corrected CMORPH may
be more reliable in some regions, but there are some anomalous features and this is
a relatively new product with limited evaluation to date. In particular, CMORPH-
v1 may be more reliable than CMORPH for the Gulf-of-Guinea region.

In this study, we compare model precipitation with both TRMM and CMORPH
(and also CMORPH-v1 for the sub-region analyses, as this may be more reliable for
the Gulf-of-Guinea region) to get an indication of observational uncertainty.
Consistent with previous studies, we find that it rains less frequently in TRMM
than CMORPH, although the observational uncertainty is considerably smaller
than the R25-CP4A model differences (Fig. 3). Rainfall intensity is higher in
TRMM than CMORPH; and the R25 negative bias in rainfall intensity is reduced
compared with CMORPH, but is still present (Fig. 4). Thus the improvement in the
representation of rainfall intensity, occurrence and extremes in CP4A compared
with R25 is robust to the choice of observational dataset.

Analysis methods and signficance testing. All analysis here is carried out at the
25 -km scale, with the 3-hourly precipitation fields from both models being
aggregated onto the 0.25° observational grid using area-weighted regridding.

The bootstrap resampling53 is used to estimate uncertainties in model biases or
future changes due to natural variability. The resampling is done in yearly blocks,
to account for temporal correlation in the precipitation data, so that we only
assume independence in hourly rainfall for a given season between years. For the
map plots, where resampling was done at each grid point, a total of n= 100
bootstrap samples were produced by selecting 10 years from the full dataset (either
the observations, the present-day or future model simulation) with replacement.
For the regional analyses, a larger bootstrap of n= 1000 could be afforded. These
bootstraps are used to produce n estimates of the difference between the model and
the observations, or between the future and present-day runs, allowing a
confidence interval for the difference to be calculated.

Probability values (p-values) can be estimated from the bootstrap, which allow
the significance of the difference to be computed. In particular, the p-value is the
probability of finding the given difference when the null hypothesis (of zero
difference) is true. A small p-value is strong evidence to reject the null hypothesis.
For the map plots, p-values were estimated at each grid-point as follows. Firstly, the
metric of interest (i.e., the test statistic which is the model bias or future change in a
given precipitation metric) was calculated n times from the bootstrap. The mean of
the bootstrapped metric was then computed, and subtracted from each n bootstrap
estimate; this creates a n number of zero-centred metrics and gives us an estimate
of the probability distribution of the test statistic under the null hypothesis. Finally,
the original metric is then compared with this null distribution, and the p-value is
estimated based on which quantile the original metric corresponds to relative to the
null distribution. For instance, if the original metric is below 2% or above 98% of
the values in the simulated null distribution, the uncorrected p-value would be 0.02.

Note the above assumes that the probability distribution of the metric is
independent of its mean and can be translationally moved. The smallest p-value
that the above can yield is 1

n when the actual metric lies outside the range of the

bootstrapped null distribution; for n= 100 this corresponds to 1% and is sufficient
for significance testing at the 5% level used here for map plots. For maps showing
the ratio of future/present-day frequency of exceeding a present-day extreme
threshold, the test statistic is the difference between the present-day and future
frequency (not their ratio).

When carrying out field significance tests for map plots, one would expect some
significant results to occur by chance54,55. The problem is further complicated by
the natural spatial correlation of geophysical data, which leads to incorrect
identification of significant results. To address this problem, we apply a correction
to the p-value55, thereby controlling the false discovery rates in multi-hypothesis
testing56. The corrected p-values are then compared with a revised global
significance level which is 2× the level for non-field significance tests55. As the tests
here are two-tailed, the non-field significance level has to be halved, which cancels
the 2× multiplier. The p-value corrections are implemented in various open-source
numerical analysis software: p.adjust in the R package stats and stats.multitest in
the Python package statsmodels.

The above bootstrap resampling estimates uncertainty due year-to-year
variability. We note that the influence of multi-decadal variability on the results is
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small due to our adopted treatment of SSTs. In particular, as outlined above, the
future SSTs are configured as a time-invariant delta (given by the 30 year mean SST
change for each month) applied to the present-day time-varying SSTs, and human
induced warming is expected to dwarf any influence of natural climate variability
on the 30-year mean change.

Clausius–Clapeyron scaling. The thermodynamic Clausius–Clapeyron (CC)
relation is given by:

∂es
∂T

¼
Lv

RvT
2
es ð1Þ

where T, es, Lv and Rv are temperature, saturation vapour pressure of water,
vaporisation enthalpy of water vapour and the water vapour gas constant. In
general, Lv is temperature-dependent, but the temperature dependency is small for
typical lower tropospheric temperatures.

Assuming temperature changes (ΔT) are small relative to its absolute value
ΔT
T
� 0:1

� �

, the climate change relationship between temperature and precipitation

is:

ΔP

P
�
Δes
es

�
Lv

Rv
�T2
ΔT ¼ γΔT ð2Þ
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in which γ the (CC scaling factor) is:

γ ¼
Lv

Rv
�T2

ð3Þ

γ is about 6.2%K−1 for typical surface air temperatures (23 °C) over Africa. Under
the assumption of constant relative humidity, and providing storm dynamics do
not change, changes in extreme precipitation intensity are expected to increase at
this rate of 6.2% per degree of warming33. However, changes in moisture
availability may be much less than this temperature-dependent maximum i.e.,
relative humidity may decrease. To account for this, we use near-surface dew point
temperature as the scaling variable. Dew point temperature (Td) is the temperature
to which an air parcel must be cooled to reach saturation, and is a measure of
specific humidity translated to temperature using the CC relationship:

e ¼ e0 exp
Lv
Rv

1

T0

�
1

Td

� �� �

ð4Þ

where e is water vapour pressure, e0 is 0.611kPa and T0 is 273 K. Given the
definition of relative humidity RH (in %) and es:

RH ¼ 100
e

es
ð5Þ

es ¼ e0 exp
Lv
Rv

1

T0

�
1

T

� �� �

ð6Þ

it is possible to calculate Td:

1

Td

¼
1

T
þ
Rv

Lv
ln

100

RH

� �

ð7Þ

Data availability
The CP4A and R25 datasets generated under the FCFA IMPALA project, and analysed in

the current study, will be publicly available from July 2019 from the Centre for

Environmental Data Analysis (CEDA) archive (http://archive.ceda.ac.uk/). Until then,

these data are available on request from Cath Senior (Chair of the IMPALA CP4A

Working Group), but restrictions apply to the use of these data, which are used under

license and must respect the work plans of the FCFA regional consortia.

Code availability
Data processing scripts are available from the corresponding author upon request.
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