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Abstract

When cryptographical problems are treated in SAT solvers, they often contain large
set of XOR constraints. Treating these XOR constraints through on-the-fly Gaussian
elimination during solving has been shown to be a viable approach by Soos et al. We
describe various enhancements to this scheme which increase the performance and mostly
eliminate the need for manual tuning of parameters. With these enhancements, we were
able achieve speedups of up to 29% on the Bivium and up to 45% on the Trivium ciphers,
contrary to the 1-5% speedup achieved by the original scheme.

1 Introduction

SAT solvers have recently been enjoying a boom in the application front: more and more
applications can and do make use of SAT solvers to accomplish tasks ranging from the fairly
trivial to the very complex. In the particular use-case of cryptography, SAT solvers have become
an important tool to analyse and break encryption mechanisms [3]. In the case of cryptographical
application, SAT solvers are often faced with problems that encode relatively large amount of
XOR constraints. The presence of these XOR constraints were exploited by Soos et al. [16]
using on-the-fly Gaussian elimination, gaining a reported 1-5% speedup.

In this paper we extend CryptoMiniSat [14], a SAT solver based on MiniSat [5], with a
much-improved Gaussian elimination, following the footsteps outlined in [16]. We tested the
efficiency of the algorithm given four independent optimisations we added relative to [16] on
stream cipher-based problems generated using the Grain-of-Salt tool [15]. The Bivium [12],
Trivium [1] and HiTag2 [11] ciphers were used as benchmarks, and the improved Gaussian
elimination routine speeded up solving Bivium by up to 29%, Trivium by up to 45% and HiTag2
by up to 5%, in contrast to the relatively minor speedups reported in the original paper.

During the SAT-Race of 2010 a newer version of CryptoMiniSat was running, v2.5.0. This
version mainly differed from v2.4.2, described in this paper, by having less problems with
clause-subsumption and having an improved binary clause reasoning engine. Even though
CryptoMiniSat 2.5.0 was capable of using Gaussian Elimination, this feature was turned off for
the duration of the Race.

Contributions

The rest of this paper is structured as follows. We give some background on DPLL-based SAT
solvers, XOR constraint handling and Gaussian elimination in Sect. 2. We describe our method
to remove columns and rows from the matrixes without affecting the power of the algorithm in
Sect. 3. Then, we describe our improvements to the basic Gaussian elimination routine in the
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context of SAT solvers in Sect. 4. We describe our data structures in Sect. 5 and in Sect. 6 we
present how to reduce the workload on the elimination routine by using multiple independent
matrixes. In Sect. 7 we present the heuristic we used to turn on and off Gaussian elimination
during search. Finally, in Sect. 8 we present our results, and in Sect. 9 we conclude this paper.

2 Background

In this section we give a short description of DPLL-based SAT solvers, describe how XOR
constraints have been handled and preprocessed in SAT solvers, and describe how Gaussian
elimination has been integrated into the DPLL procedure.

2.1 SAT solvers

Satisfiability solvers are complex mathematical algorithms used to decide whether a set of
constraints have a solution or not. This paper only discusses the well-known conjunctive
normal form (CNF) constraint type. The CNF formula ϕ on n binary variables x1, . . . , xn, is
a conjunction (and-ing) of m clauses ω1, . . . , ωm each of which is the disjunction (or-ing) of
literals, where a literal is the occurrence of a variable e.g. x1 or its complement, ¬x1.

In this paper, we focus on solvers that use the DPLL algorithm. The DPLL procedure is a
backtracking, depth-first search algorithm that tries to find a variable assignment that satisfies
a system of clauses. The algorithm branches on a variable by assigning it to true or false and
examining whether the value of other variables depend on this branching. If they do, the affected
variables are assigned to the indicated value and the search continues until no more assignments
can be made. During this period, called propagation, a clause may become unsatisfiable, as all
of its literals have been assigned to false. If such a conflict is encountered, a learnt clause is
generated that captures the wrong variable assignments leading to the conflict. The topmost
branching allowed by the learnt clause is reversed and the algorithm starts again. The learnt
clauses trim the search tree, reducing the overall time to finish the search. Eventually, either a
satisfiable assignment is found or the search tree is exhausted without a solution being found
and the problem is determined to be unsatisfiable.

2.2 XOR constraints in SAT solvers

The XOR constraint, which can be described as
⊕

i xi = true/false is quite common in
multiple areas where SAT solvers are used. For instance, it is used extensively in software
verification for bit-vector arithmetic and for binary function description in cryptography.

XOR constraints can be found with relative simplicity in any problem described in the CNF
format. Heule [7, Sect. 6.2.1] describes an algorithm that sorts the clauses according to the
variables they contain, and counts the number of negations for each specific variable set. If 2n−1

different negation combinations occur for a given variable set of size n, then the 2n−1 clauses
are converted to a single XOR constraint. For example:

x1 ∨ x2 ∨ ¬x3 = true

x1 ∨ ¬x2 ∨ x3 = true

¬x1 ∨ x2 ∨ x3 = true

¬x1 ∨ ¬x2 ∨ ¬x3 = true

⇔ x1 ⊕ x2 ⊕ x3 = false

3



Enhanced Gaussian Elimination in DPLL-based SAT Solvers Mate Soos

Executing such an algorithm is relatively fast. From a practical point of view, using a computer
with an Intel Core i7 processor, searching for XOR constraints takes on the order of a couple of
seconds at most for the majority of application-domain problems of the 2009 SAT Competition.

Previous research [8, 16] has also extended DPLL-based SAT solvers to natively work with
XOR constraints. The two-watch literal scheme of Chaff [10] has been extended to work on
XOR constraints as a 2-variable watch scheme by Soos et al. in [16].

Preprocessing of XOR constraints has been, however, an active topic only in the context of
solvers tuned to solve crafted DIMACS problems. Accordingly, the published literature on this
topic have mostly improved the march family of solvers. The papers by Warner and van Maaren
[17], Heule and van Maaren [8] and the thesis of Heule [7] present algorithms such as local
substitution, global substitution and dependent variable removal to preprocess XOR constraints.
The algorithms local- and global substitution shorten XOR constraints by selectively XOR-ing
them together, and dependent variable removal removes XOR constraints in which variables
appear that appear nowhere else.

2.3 Gaussian elimination in SAT solvers

Many application-domain problems contain sub-problems that are known to be very difficult
to solve with the DPLL procedure, whilst being efficiently solvable with Gaussian elimination.
Previous work focused on the DIMACS 32-bit parity problem set par32, one of ten difficult
propositional reasoning challenges suggested by AT&T researchers in 1997 [13]. The work by Li
[9] extracted 2- and 3-long XOR constraints from the parity problems and at each depth of the
search tree, took two 3-long XOR constraints, XOR-ed them together to obtain binary XOR
constraints during the search, which they used to replace variables with one another. This can be
thought of as a simplified form of on-the-fly Gaussian elimination. A more successful approach
was that by Chen [2], which extracted the 2- and 3-long XOR constraints, and in a preprocessing
step, XOR-ed them together as long as they contained common variables. Once the longest
possible XOR constraints have been found, they were subjected to Gaussian elimination, to
extract as much information as possible. Finally, the remaining part of the problem was solved
with the SAT solver WalkSAT.

Tightly integrating Gaussian elimination into DPLL-based SAT solvers was shown to be
efficient in cryptographic scenarios by Soos et al. in [16]. The close integration of these radically
different solving mechanisms was achieved by calling Gaussian elimination before every point the
DPLL procedure branches on a variable. If the Gaussian elimination finds any truths (be them
propagation(s) or a conflict), these truths are taken into account by the DPLL procedure, and
the correct action is taken: either further propagations are carried out, or the conflict analysis
routine is used to analyse the conflict returned by the Gaussian elimination procedure. In spite
of this tight integration, the technique only lead to a 1-5% speedup on solving stream ciphers
Bivium and Trivium.

Soos et al. [16] build the matrix on which to carry out Gaussian elimination by including
every XOR chain in the problem as a row in the matrix. The matrix has exactly one more
columns than the number of variables in all XOR-s: the last column is a special extra column
called the augmented column, storing the invertedness of the XOR, i.e. if the XOR represented
by the row should evaluate to true or false. The resulting matrix is duplicated into two
independent, but closely tied matrixes. The first matrix is an assigned matrix, A-matrix and the
second is a non-assigned matrix, N-matrix. The A-matrix is always updated with the current
assignment of variables, and is kept upper-triangular, while the N-matrix is never updated with
variable assignments, but follows the row ordering and row XOR-ing of the A-matrix. This is
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A-matrix
with x3 assigned to true

x1 x2 x3 x4 x5 aug
1 1 − 1 1 0
0 1 − 0 0 0
0 0 − 1 1 1
0 0 − 0 1 0
0 0 − 0 0 0



N-matrix

x1 x2 x3 x4 x5 aug
1 1 0 1 1 0
0 1 1 0 0 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 0 0 1


Figure 1: An example A- and N-matrix pair. The A-matrix indicates propagation of x2 =
false and x5 = false. The XOR constraint causing these propagations are in the N-matrix:
x2 ⊕ x3 = true and x3 + x5 = true, respectively. The A-matrix is kept upper triangular, while
the N-matrix is kept in a state that any XOR constraint in it is a combination of the original
problem’s XOR constraints.

advantageous, since from the A-matrix any new assignments and/or conflicts can be read easily,
while the same row in the N-matrix stores the combination of the original XOR-s that, when
evaluated with the current assignments, lead to the propagation or conflict. An example setup
is present in Fig. 1.

3 Row and column elimination by XOR

Warners and van Maaren [17] describe a technique to search and eliminate variables called
dependent by the authors. Such variables are present in only one XOR constraint, and are
not present in any clause. For instance, if variable x1 is only present in the XOR constraint
x1 ⊕ x2 ⊕ x3 = true, then this XOR constraint can be removed from the solver, along with the
variable x1. When the solving has finished, and the solution is SAT, the value of x1 is calculated
such as to satisfy the removed XOR constraint.

The removal of such dependent variables and their associated XOR constraints is a very
useful preprocessing step for Gaussian elimination, as it removes a row and a column without
lowering the deductive power of the procedure. We extended the technique of dependent variable
removal to work on two XOR constraints. For example, if variable x1 is not present in any
constraints other than

x1 ⊕ x10 ⊕ x11 = true (1)

x1 ⊕ x20 ⊕ x21 = true (2)

then by XOR-ing these XOR constraints together, we obtain

(1)⊕ (2) = x10 ⊕ x11 ⊕ x20 ⊕ x21 = false

which no longer contains x1. The original constraints can then be removed, and the new XOR
constraint inserted into the working set. Therefore the number of active XOR constraints is
lowered by one, lowering the number of rows in the matrix used by the Gaussian elimination
routine, and also removing a column (associated with the eliminated variable) from the matrix.
When solving has finished and the solution is SAT, the value of the eliminated variable (x1 in
the example) is calculated using one of the original XOR constraints.
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Even though this technique leads to an increase in the size of the resulting XOR constraints,
this is not of concern. Firstly, modern processors pull in cache lines of 64 bytes at once, which
should be sufficient to pull in the larger XOR constraints, as according to our experience, the
original XOR constraints rarely contain more than 5 variables. Secondly, if the original XOR
constraints were ever to cause a conflict or a propagation, the dependent variable had to be
assigned and propagated: without it, both original XOR constraints would have an unassigned
variable. By XOR-ing these two XOR constraints together, we can avoid this otherwise necessary
assignment and propagation.

Allowing the final XOR constraint to be larger than any of its constituents differentiates this
technique from global substitution, described in [7, Sect 6.2.3]. There, the author required the
size of the resulting XOR constraint to be smaller than at least one of its constituents, which is
not a requirement in our case.

The above detailed technique, which we call Row and column elimination by XOR (or RCX
for short) is applied once as a preprocessor at the beginning of solving. The algorithm works
in a similar fashion as the iterative variable elimination procedure of SatELite [4]. Variable
occurrence list for all xor clauses is calculated, and an array is stored to indicate if a variable is
present in any regular clause. Initially, all variables that don’t appear in any regular clause are
in a list touched. All variables in the touched list are checked whether their occurrence size is
one or two. If it is one, the variable is dependent and is removed along with the xor clause. If
the occurrence size is two, the XOR of the two xor clauses is added as a new xor clause, the
original two xor clauses are removed, along with the variable. The removed xor clauses’ variables
are always touched if they don’t appear in any regular clause. The algorithm finishes when the
touched list is empty. An illustration of this algorithm is present in Function Conglomerate.

4 Reducing the size of the working set

There is extensive literature on Gaussian elimination, as it is one of the cornerstones of
mathematics, and thus features as the base element of many complex algorithms. Although
there is much to be learnt from these Gaussian elimination algorithms, they are unfortunately
not directly applicable to SAT solving. There are mainly two reasons for this. Firstly, none of
these algorithms are made to work on two matrixes simultaneously. However, if only one matrix
(the A-matrix) is used, the reasons for the propagation of a literal or of a conflict will not be
available to the solver, and thus conflict analysis will be seriously hindered. More importantly,
these algorithms cannot deal with small changes (deltas) made to a matrix that has already been
Gaussian eliminated. Exploiting these small deltas is an important way to speed up Gaussian
elimination in the context of SAT solving, as we will see in this section.

By restricting Gaussian elimination to the part of the matrix where assignments have taken
place, the complexity of the algorithm can be substantially lowered. Essentially, the Gaussian
algorithm only has to update the matrix starting from the leftmost column that has been
changed (i.e. its variable assigned) since the last time Gaussian elimination has been called, see
Fig. 2(a). This means it is advantageous to order the columns in a way that the leftmost column
is updated at the top of the search tree, and as the search progresses, the columns updated are
progressively on the right of each other. Unfortunately, perfect ordering cannot be achieved, as
it is very difficult to decide which variable will be propagated by which setting of variables. We
used the approximate (and quite fragile) ordering given by the order heap heap structure in
CryptoMiniSat. If the variable activities don’t change much during restart (which is typical
of cryptographic instances, as the problem-type decider in CryptoMiniSat demonstrates), the
variables with higher activity are most likely to be branched upon first, so we put them in the
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Function Conglomerate(ϕ,ψ, numVars) This function removes dependent variables as
well as XOR-s two xor clauses that contain a common variable that appears only in those
two xor clauses. The function removeXorClause not only removes and saves the xor clause
for later calculation, it also updates the occurrence lists, and touches all variables in it for
which inRegularClause[Var] is false. Similarly, addXorClause not only adds the clause, but
also updates the occurrence lists, and touches all variables in it for which inRegularClause[Var]
is false.
Input: clauses ϕ, xor clauses ψ, variables numVars

1 inRegularClause.resize (numVars, false);
2 foreach var in ϕ do inRegularClause[var]← true;
3 populateOccurList (occur, ψ);
4 touched.resize (numVars, false);
5 for var ← 1 to numVars do
6 if inRegularClause[var] = false then
7 touched[var]← true;
8 touchedList.push (var);
9 end

10 end
11 foreach var in touchedList do
12 if size(occur[var]) = 1 then
13 removeXorClause (occur[var][1]);
14 removeVar (var);
15 end
16 if size(occur[var]) = 2 then
17 addXorClause (occur[var][1]⊕ occur[var][2]);
18 removeXorClause (occur[var][1]);
19 removeXorClause (occur[var][2]);
20 removeVar (var);
21 end

22 end

leftmost column, and the rest of the variables (resp. columns) were put progressively on the
right of each other.

Another optimisation we applied relies on the observation that all rows above the row that
contains the bottommost “1” in the leftmost updated column can also be mostly disregarded by
the Gaussian elimination routine, see Fig. 2(b). None of these rows need to be XOR-ed with any
other rows, since their leading “1” has been left unchanged, as this leading “1” is the bottommost
“1” in that column. Since these rows can only change in that some of their (non-leading) “1”-s
could have been zeroed out (due to assignments of columns), they can only cause propagations.
To quickly calculate the range of rows that need to be checked for propagations, we keep an
array that stores the row having the bottommost “1” in each column. This array is very cheap
to keep updated during the Gaussian elimination procedure, and so poses almost no overhead,
but saves significant time.

The combination of these two optimisations leads to a progressively smaller matrix as the
search gets deeper in the search tree. The figures (a) and (b) in Fig. 2 illustrate this. This
property is very advantageous as the majority of the time the DPLL algorithm is deep in the
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(a) In the figure, variable x1 was as-
signed first and so the entirety of the ma-
trix, marked with “A”, is treated. Later
in the search, the leftmost assigned col-
umn was x10, reducing the active part
of the matrix to “B”. Finally, very deep
in the search tree, the leftmost assigned
column was x20, with the active part of
the matrix shrunk to “C”.

(b) In the figure, the variable (resp. column)
marked with a star is the leftmost column that
has been assigned. The part of the matrix marked
with “A” is all zeros. The part of the matrix marked
with “B” could have had some of its “1”-s zeroed,
and needs to be checked if any of its rows contain
all zeros — if so, that row only contains the leading
“1”, and causes a propagation. Gaussian elimination
only needs to treat the part of the matrix marked
with “C”.

Figure 2: Illustration of the continual shrinking of the active part of the matrix as the search
gets progressively deeper into the search tree.

search tree, and that is where the active part of the matrix is expected to be the smallest, and
consequently the Gaussian elimination to be the fastest.

5 Using a dense matrix representation

A well-known optimisation for matrixes which are sparse, a quality that holds for our matrixes,
is to store them in a special data structure to minimise overhead [6]. However, according
to our experience, if Gaussian elimination is to bring any benefits, the matrixes must also
be very small, otherwise using them does not bring an overall speedup. Since sparse matrix
representation usually only brings benefits if the matrix is relatively large, we rejected it after
some negative experiments. Using a sparse matrix representation would also necessitate the
switching between a sparse and dense matrix representation every time a certain limit of density
is reached, which is a non-trivial problem, as the N-matrix usually becomes dense much faster
than the A-matrix (note that it is impossible to find a pivot that is optimal for both), and using
two different data structures and algorithms for the two different matrixes poses problems in
terms of programmability, instruction cache misses, etc.

For the reasons presented above, we store both A- and N-matrixes in a dense, bit-packed
format except for the augmented column, which is stored in a non-packed format. There are
three advantages of this data structure. Firstly, it becomes easy to check the augmented column’s
value, which is checked often. Secondly, XOR-ing rows can be done 32, 64 or even more bits at
a time, depending on the available instruction set of the processor (32/64-bit, MMX, SSE, etc.).
Thirdly, the bit-packed format means rows need less memory space to store, which is important
for speed of storage and retrieval of matrixes. Fast storage and retrieval allows to store the
matrix more often, thus saving time by avoiding to re-do eliminations already carried out at
higher decision levels.
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A N

Start

End

Figure 3: Illustration of the interlaced memory representation of A- and N-matrix’s contents.
Essentially, the two matrixes are represented in the memory as one bigger matrix, where the
A-matrix is on the left, and the N-matrix is on the right.

5.1 Pairing the dense memory layout of the A- and N-matrixes

We tuned the memory layout of the two matrixes such as to minimise dataflow interruptions.
We store A- and N-matrixes’ rows in an interlaced fashion in a memory array, where the rows
follow each other in the memory: A[0], N [0], . . . A[n− 1], N [n− 1], where A[0] is the first row
of the A-matrix, N [0] is the first row of the N-matrix, and n is the number of rows of both
matrixes. A visual representation of this storage structure is present in Fig. 3.

This storage structure is advantageous, since when the two rows need to be swapped or
XOR-ed, they need to be swapped/XOR-ed in both matrixes, and the memory swap/XOR
operation can work on two 2m-long memory areas instead of working on four m-long memory
areas. For example, if two m-long rows x and y need to be swapped, they originally had to be
swapped as

A[x][0] . . . A[x][m]↔A[y][0] . . . A[y][m]

N [x][0] . . . N [x][m]↔N [y][0] . . . N [y][m]

whereas now the memory areas

A[x][0] . . . A[x][m] and N [x][0] . . . N [x][m]

A[y][0] . . . A[y][m] and N [y][0] . . . N [y][m]

are next to each other, and can be read and written in one go. Since row swapping and
XOR-ing accounts for 1/3rd of the total time spent in Gaussian elimination, this is an important
optimisation.

6 Multiple A- and N-matrix sets

We do not necessarily put all XOR constraints into one A- and N-matrix pair. Instead, we build
a graph from the XOR constraints where each variable is represented by a vertex and there is an
edge between two vertexes when both variables are present in at least one XOR constraint. We
then search for connected components in the resulting graph, and each connected component is
treated as a separate A- and N-matrix pair.

This method does not reduce the algorithmic power of Gaussian elimination: if these matrixes
were in one larger matrix, and the columns and rows of the matrix were suitably ordered such as
to obtain a matrix that resembles the left-hand side of Fig. 4, then running Gaussian elimination
on such a matrix would lead to exactly the same result as that on running Gaussian elimination
on two separate matrixes, as illustrated on the right-hand side of the same figure.
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Figure 4: A matrix with two separate components. On the left-hand side, the columns (resp.
variables) have been sorted such that variables that appear in the same component are preferably
next to each other. Our implementation of the Gaussian elimination does not permutate columns,
so it is easy to visually verify that the parts indicated with “0”-s would stay zero for every
iteration of the Gaussian elimination. Therefore, if the two components are separated into
different matrixes as it is present on the right-hand side, the output of the Gaussian elimination
will not change. However, since the difficulty of Gaussian elimination is polynomial in the size
of the matrix treated, it is preferable to isolate the sub-matrixes and treat them separately.

The advantage of having separate matrixes is the resulting reduced complexity of performing
Gaussian elimination. The algorithmic complexity of performing Gaussian elimination on
an n ×m matrix is roughly O(nm2). If for instance two equally-sized separate matrixes are
discovered and separated, the complexity is reduced from cnm2 (where c is a suitable constant)
to 2c(n/2)(m/2)2 = cnm2/4, i.e. to the quarter of the original complexity. Most practical
problems have many separate matrixes, representing different parts of the problem. For instance,
stream ciphers typically have at least 2 independent shift registers (e.g. Grain), and all instances
of the DIMACS 32-bit parity problem set contain two independent matrixes.

7 Auto turn-off heuristics

Though Gaussian elimination can be very powerful, it does not always perform very well for
every restart of the solver. This is because some restarts explore a part of the search space that
is not closely connected to the XOR constraints. In this case, Gaussian elimination cannot help
much, and it is best to turn it off, such that it does not slow down the solver.

To achieve this turn-off, we implemented the following heuristics. Firstly, Gaussian elim-
ination is used only if the problem is determined to be of cryptographic nature — this
is automatic for CryptoMiniSat 2.4.2, and depends on the stability of variable activities
between restarts, and the percentage of xor clauses of the instance. Secondly, for each
restart (carried out by CryptoMiniSat in a geometrical sequence in case of cryptographic
problems), the number of propagations and conflicts caused by the Gaussian elimination is
measured during the first 100 conflicts. We then calculate the heuristic cut-off cutoff =
2numGaussConfl + numGaussProp− 0.05numGaussCalled where numGaussCalled is
the number of times Gaussian elim. was called, numGaussConfl is the number of times
Gaussian elim. caused a conflict, and numGaussProp is the number of times Gaussian elim.
caused a propagation. If cutoff < 0, we decide that it is best to turn off Gaussian elimination
for the duration of the restart, otherwise, we carry on with Gaussian elimination during the
whole restart. The heuristic cut-off was derived experimentally, though since we did not have
the necessary computing resources to experiment with all combinations, it remains an educated
guess.
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Table 1: Time to solve the non-compressed parity learning problem set par32 by EqSatz,
XORSAT, and CryptoMiniSat with Gaussian elimination. The auto turn-off had to be deactivated
for these problems, as it prematurely turned off Gaussian elimination. All times are scaled to a
Pentium 4@2.66MHz computer speed.

Instance #var #clause EqSatz XORSAT CryptoMS Matrixes found
with Gauss

par32-1 3176 10277 181.5 s 0.094 s 50.2 s 615 × 647, 61 × 123
par32-2 3176 10253 44.0 s 0.422 s 2.6 s 593 × 625, 61 × 123
par32-3 3176 10279 2062.9 s 3.235 s 18.1 s 614 × 646, 61 × 123
par32-4 3176 10313 170.6 s 0.219 s 9.9 s 615 × 647, 61 × 123
par32-5 3176 10325 2844.6 s 2.922 s 10.0 s 628 × 660, 61 × 123

8 Results

To test the effectiveness of our improved Gaussian elimination routine, including all the new
enhancements detailed in Sections 3–7, we used CryptoMiniSat 2.4.2 [14] and problems generated
by the Grain-of-Salt tool [15] for ciphers Bivium, HiTag2, Trivium and Grain. The timing
results for all ciphers with Gaussian elimination enabled and disabled are are present in Table 2.
The table shows that Gaussian elimination lead to a significant, up to 45% speedup for Trivium,
up to 29% speedup for Bivium, and up to 5.5% speedup for HiTag2. The solving of Grain was
slowed down by by up to 23% through the usage of Gaussian elimination, but it seemed to
perform better as the problem difficulty increased.

During the many thousands of problems solved to generate Table 2, Gaussian elimination
only provided a handful of unitary xor clauses. From this we can conclude that essentially all
speedups were achieved through the on-the-fly nature of the algorithm, rather than its possible
use as a preprocessor to find unitary xor clauses.

We have also tested how RCX and Gaussian elimination performed in all on/off combinations
with the Bivium cipher. The results are present in Table 3. The slowest solving was without
RCX or Gauss, the next fastest was RCX without Gauss, then Gauss without RCX, and finally,
the fastest was RCX and Gauss combined. RCX alone helped around 5-15%, and in combination
with Gauss, it helped an extra 3-8%.

For comparison, we also tested our Gaussian elimination routine on the non-compressed
parity learning problem set par321 that EqSatz [9] and XORSAT [2] aimed to solve. The solving
times for our and these solvers are in Table 1. Our method performed better than EqSatz, but
XORSAT left it behind in speed. This difference can be attributed to the fact that XORSAT
used WalkSAT to solve the non-XOR part of the problem, which was better adapted to this
task than the DPLL solving backbone used by CryptoMiniSat.

In the original article by Soos et al. [16], stopping the Gaussian elimination at a precise
search depth was deemed necessary, but in our case, we could mostly do away with this burden.
We set the maximum depth to 100 in the case of Bivium and Trivium ciphers, and 30 in case of
HiTag2 and Grain ciphers. Both of these values were very crude approximations, and we believe
that a more fine-tuned value would probably have lead to better results.

On problems that didn’t benefit from Gaussian elimination, we have found that the slowdown
caused by Gaussian elimination is problem-dependent. If while solving Gaussian elimination

1Problems that identify a 32-bit parity function given (potentially noisy) I/O samples of the function.
Generator by Rob Schapire and Haym Hirsh
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Table 2: Table showing the average time (in seconds) for solving different stream ciphers, each
ran 100 times with random key and IV, given a number of randomly selected state bits (as help
bits) each set randomly to true or false.

Bivium
no. help bits 56 55 54 53 52 51 50 49 48 47 46 45

RCX 0.35 0.65 0.89 1.30 2.36 5.76 8.87 14.75 35.68 79.83 104.90 193.98
Gauss+RCX0.31 0.52 0.69 0.90 1.85 3.81 6.20 9.55 20.86 35.25 75.68 137.44

Trivium
no. help bits 157 156 155 154 153

RCX 66.57 86.42 146.17 261.75 472.27
Gauss+RCX 40.57 68.16 84.13 146.35 259.07

HiTag2
no. help bits 15 14 13 12 11 10 9

RCX 4.78 11.73 30.70 76.44 233.61 719.86 1666.99
Gauss+RCX 4.76 11.64 29.03 77.19 220.64 701.46 1636.77

Grain
no. help bits 109 108 107 106

RCX 168.51 291.29 540.14 1123.08
Gauss+RCX 193.09 359.58 608.47 1133.75

Table 3: Time to solve (in seconds) for the state of different random Bivium problem instances
(random IV and key), given randomly set state bits (help bits), similarly to what is present in
Table 2. This table shows different combinations of the RCX preprocessing algorithms and the
on-the-fly Gaussian elimination turned on and off.

Bivium
no. help bits 56 55 54 53 52 51 50

no RCX + no Gauss 0.40 0.69 1.26 1.38 2.19 6.25 10.40
RCX + no Gauss 0.35 0.65 0.89 1.30 2.36 5.76 8.87
no RCX + Gauss 0.34 0.55 0.91 1.06 1.89 3.87 7.76
RCX + Gauss 0.31 0.52 0.69 0.90 1.85 3.81 6.20

Num vars removed on avg.
by Function Conglomerate 36.42 36.27 36.42 37.30 37.07 38.32 37.94

regularly finds new truths, but the matrix is too large, the slowdown can be on the order of 20%
— an example for this is the Grain cipher. However, if the matrix is small, the auto turn-off
heuristic acts quickly enough, and the slowdown is on the order of 1%.

12
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9 Conclusions

We have described a multitude of ways to improve on-the-fly Gaussian elimination in the context
of SAT solvers, originally put forward by Soos et al. [16]. Without these advancements, the
speed increase of Gaussian elimination was only 1-5%, but with our enhancements, the speedups
were up to 45% for the Trivium, up to 29% for the Bivium, and up to 5% for the HiTag2 ciphers.

We believe that in the long term, a successful mix of SAT solvers and higher-level algorithms
such as Gaussian elimination could potentially be the best way to solve complex challenges
arising from a multitude of different problem domains. Also, future research on the effect of
Gaussian elimination could further enhance the heuristics controlling its activation, including
auto turn-off heuristics and cut-off depth, possibly leading to even more speedups.
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