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Abstract 

A calibrated model of enhanced strain-gradient crystal plasticity is proposed, which is 

shown to characterize adequately deformation behaviour of b.c.c. single crystals of a β-

Ti alloy (Ti-15-3-3-3). In this model, in addition to strain gradients evolving in the 

course of deformation, incipient strain gradients, related to a component’s surface-to-

volume ratio, is accounted for. Predictive capabilities of the model in characterizing a 

size effect in an initial yield and a work-hardening rate in small-scale components is 

demonstrated. The characteristic length-scale, i.e. the component’s dimensions below 

which the size effect is observed, was found to depend on densities of polar and 

statistical dislocations and interaction between them. 

Keywords: Strain gradient plasticity; Size effect; Single crystal; Titanium alloy; 

Micropillar compression 

1. Introduction and motivation  

There is a vast body of experimental evidence that demonstrate that the deformation 

mechanisms at the micron or sub-micron scales are dramatically different than that of 

macro-scale [1-5]. In several of these pioneering studies, the size-effect of the 
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mechanical properties has been attributed to non-uniform straining during the 

deformation process [1-6]. Thus, size effect was not expected under imposed 

homogeneous strain field, such as in micropillar compression tests. However, it has 

been reported consistently by several studies that a strong inverse relationship existed 

between yield stress and a diameter of the pillar [4,5,7,8].  

To interpret the size effect in micron or sub-micron pillars, different mechanisms 

including dislocation starvation-dislocation nucleation [9], multiplication via a single-

arm source operation [10,11], source truncation [10] and source exhaustion [12] as well 

as weakest-link theories [13] were proposed. The study of Norfleet et al. [12] 

demonstrated that the combination of other models such as lattice friction, source-

truncation hardening and forest hardening was inadequate to explain large flow 

strengths in experiments, suggesting that other mechanisms might also affect the size 

effect. The presence of defects induced by focused ion beam (FIB) has led several 

researchers to infer that the fabrication process may play a significant role in the 

observed size effects [14,15]. However, the study of Jennings et al. [16] demonstrated 

that the observed size effects in small-size pillars were a function of microstructure 

rather than the fabrication technique.  

The influence of microstructure on the size-effect was also studied. The experimental 

study of Maass and co-workers [17-19] demonstrated that a significant amount of 

geometrically necessary dislocations (GNDs) were generated in compression giving a 

rise to strain gradients. Numerical studies in [20-23] showed that macroscopically 

homogenous deformation was microscopically heterogeneous, i.e. the GND density 

vanished macroscopically but not locally. Maass et al. [24] studied the initial 

microstructure of undeformed Au, Ni, Cu and NiTi micropillars using white-beam Laue 
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micro-diffraction. The study revealed that strain gradients existed even in the initial 

microstructure of pillars, and the results suggested that a higher surface-to-volume ratio 

in small-size pillars raised the occurrence of pre-existing strain gradients. Recently, Fan 

et al. [25] and Hurtado and Ortiz [26] demonstrated the influence of free surfaces on the 

size effect using discrete-dislocation dynamics and a non-local continuum model, 

respectively. From a modelling standpoint, continuum modelling approaches based on 

the elastic theory of continuously distributed dislocations (ECDD) [27,28] has shown 

much promise in predicting several key mechanisms of small scale plasticity [29,30].  

Here, an important note should be made with regard to terminology used in the text. A 

concept of polar dislocations (PDs) is introduced as a spatially averaged dislocation 

density that can be measured or characterised. This can be considered as a numerical 

dislocation density homogenised over a spatially finite (and small) volume along the 

lines of a volume-averaged Nye’s tensor [31]. Naturally, spatial averaging cancels an 

effect of dislocations of opposite signs within the chosen volume. Such dislocations of 

opposing signs are referred to as statistically distributed dislocations (SDs) with a 

respective density. Thus, the difference between a true microscopic dislocation density 

(in the local sense) and the spatially averaged density of PDs is equal to the density of 

SDs. Thus, in essence, if the spatial window is small enough to resolve individual 

dislocations (the scale of discrete-dislocation mechanics), then all dislocations are 

referred to as PDs. We note that PDs can include aspects of GNDs linked with lattice 

incompatibility, but not exclusively. In our study, PDs are associated with the 

generation of long-range internal stresses [32]. Consequently, SDs are assumed to be 

arranged so as to render a net zero macroscopic stress field but with inter-dislocation 

interactions resulting in hardening. In conventional plasticity theories, only SDs are 
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considered. In our study, both species (PDs and SDs) contribute to plastic flow. The 

evolution processes of PDs and SDs are coupled, since spatial gradients in the plastic 

distortion field may generate PDs [33,34].  

An enhanced model of strain-gradient crystal-plasticity (EMSGCP) is proposed, in 

which the initial microstructure of micro-pillars determines the value of critical resolved 

shear stress (CRSS) of slip systems as described in terms of PDs and SDs. The incipient 

strain gradients are correlated with the sample’s surface-to-volume (S/V) ratio. The 

model is calibrated to capture the deformation charecteristics of B.C.C. single crystals 

of a β-Ti alloy, namely, Ti-15-3-3-3. 

This paper is organized as follows. In Section 2 details of micro-pillar-compression 

experiments are presented. Section 3 introduces the theory of the enhanced modelling of 

strain-gradient crystal plasticity and Section 4 describes the steps followed to develop 

the FE model of the micro-pillar-compression test. In Section 5 we demonstrate the 

calibration of EMSGCP parameters followed by the numerical predictions for the size 

effect in micro-pillar-compression experiments with their associated discussions in 

Section 6. A parametric study on the underlying length-scale of the proposed model is 

presented in Section 7. The paper ends with some concluding remarks in Section 8. 

2. Micro-pillar-compression experiments 

Micro-pillar compression experiments were performed at Swiss Federal Laboratories 

for Materials Science and Technology (EMPA). Cylindrical micro-pillars with a 

diameter of ∼1 μm and ones with square cross sections with an edge length of 0.9 μm to 

2 μm were fabricated in single grains of a polycrystalline sample by using a dual beam 

FIB / SEM Tescan FIB Lyra instrument. The exact orientation of the grains along the 

compression axis of the micro-pillars were (0.538 0.532 0.652) for the cylindrical pillar 
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and (0.489 0.443 0.751) for the others. To find a compromise between a fabrication 

time and accuracy of the process, pillars were produced using different energies in 

consecutive fabrication steps. First a current of ~ 4 nA was used, followed by 0.15 nA 

and 0.79 nA to obtain the final shape for micro-pillars with an edge length of 1 µm and 

2 µm respectively. The voltage was kept constant at 30 kV throughout. 

All the compression tests were carried out inside a Zeiss DSM 962 scanning electron 

microscope (SEM), using a micro-indenter designed at EMPA in cooperation with the 

Institute of Materials Science, Swiss Federal Institute of Technology Lausanne [35,36], 

which allows a precise pillar-punch positioning and in situ characterization of 

deformation events. A flat punch tip was used to compress the pillars to achieve a 

homogenous uniaxial state of stress (this assumption is violated due to a taper in the 

pillars and misalignment between the punch and pillar as described in Section 5). All 

the pillars were compressed in a displacement-control mode at a strain-rate of ~ 10-4 s-1. 

A Hitachi S4800 high-resolution SEM system was used for imaging the pillars before 

and after compression.  

Active slip system was identified by comparing SEM pictures of the compressed pillar 

and pole-figures of the EBSD scan (Fig. 1). The slip direction was assigned by the 

projected direction of the motion of the top part of the pillar as indicated by the red 

arrow in Fig. 1a, b. This direction was identified to correspond exactly to the projection 

of the {111} direction, represented by an intersection point in the pole figure. The 

direction [1 1 1] was therefore found to be the active slip direction. Orientation of the 

active slip plane was indentified by the position of the line of intersection between the 

slip plane and the pillar surface, highlighted in Fig. 1b (green line). The intersection line 

was found by analysing deformation lines created when the top part of the pillar was 

https://doi.org/10.1088/1361-651X/aa5ce3


https://doi.org/10.1088/1361-651X/aa5ce3 
 

Page 6 of 36 
 

deformed, resulting in a large slip step visible in Fig. 1b. While several deformation 

lines were observed to the right of the intersection line parallel to the slip direction, no 

such deformation marks were observed to the left of the green line, indicating that the 

original pillar surface was still present in this area. However, as pole figures depict only 

crystallographic directions and no planes, the active slip plane was determined using a 

direction of its corresponding normal, as shown in Fig. 1c. As before, exactly one 

matching plane was found, and no compliance was achieved for other possible families 

of slip planes, namely {011} and {123}. Hence, the slip-plane normal was identified to 

be (121). The measured angle between the top face and slipped surface (Fig. 1d) of 30° 

is in excellent agreement with the theoretically calculated value of 29.7° between the 

surface orientation of the compressed crystal (0.489 0.443 0.751) and the active slip 

plane (121). A careful analysis was conducted for all pillars, and it was observed that, 

irrespective of the pillar size, deformation took place by single slip on the slip system 

(121)[1 1 1]. This particular system exhibits a Schmid factor of 0.4, the highest of all 

possible slip systems of the {112} <111> type.  

Fig. 1 

Size-effect studies were conducted on nominally square pillars with varying cross-

sectional area (Table 1). The effect of the surface-to-volume (S/V) ratio on average yield 

strength for all samples tested is summarized in the logarithmic plot shown in Fig. 2. 

Here, average yield stress ( ) and strain ( ) are defined as |∑RF2|/Ap and –ln(Lp/L0), 

respectively, where |∑RF2| represents the reaction force in the y-direction corresponding 

to the applied displacement, Ap is the mid-height instantenous cross-sectional area of the 

pillar, and Lp and L0 are the current and initial heights of the pillar, respectively. Here, 

we note that the definitions of average stress and strain are somewhat different from 
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those of true stress and strain. This is due to underlying inhomogeneity of the imposed 

stress field emanating from misalignment between the indenter tip and the pillar surface, 

geometrical parameters of the pillar, i.e. the pillar’s taper and boundary conditions 

imposed on the bottom surface of the pillar to account for the influence of the substrate. 

It should be emphasized that only the pillar upper and side surfaces were considered in 

calculating the overall surface area to determine the S/V ratio since the bottom surface 

was attached to a substrate, i.e. not a free surface. Yield stress was observed to increase 

with the increasing S/V ratio and with the decreasing edge length, with a best fit line of 

Y ∝(S/V)0.684 and Y ∝(deff)
-0.705, respectively (Fig. 2). The effective diameter, deff, was 

calculated by matching the cross-sectional area of the square pillar to that of a circular 

one: deff = π/2l  [37]. The observed dependence is consistent with the one for Ni 

pillars, where Y ∝(deff)
-0.69) [38], but it is stronger than that for gold micropillars, 

Y ∝(deff)
-0.60  [39].  

Fig. 2  

3. Enhanced model of strain-gradient crystal-plasticity theory  

The following notations are used: a gradient operator is indicated by ∇ and incremental 

changes in variables due to temporal evolution of these by a Δ symbol. A bold symbol 

denotes a vector or a tensor and a dot superposed on a symbol indicates a time 

derivative. The operation × is a vector product. The summation convention is implied 

throughout. Subscripts P and S indicate PDs and SDs, respectively. 

The proposed theory is an enhanced version of a strain-gradient crystal-plasticity theory 

(SGCP), and we review some of the fundamentals which motivate our approach. It 

should be emphasized that the SGCP theory considered here is the lower-order 
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mechanism-based strain-gradient crystal-plasticity theory (MBSGCP), originally 

proposed by Han et al. [40].  

For completeness, constitutive relations of the MBSGCP theory are summarized below. 

In this elasto-visco-plastic crystal plasticity-based constitutive law, the stress rate ij is 

related to the elastic strain rate e
kl  as 

),( p

klklijkl

e

klijklij CC     (1) 

where C is the fourth-order elasticity tensor, ij is the total strain rate and p
kl  is the 

plastic strain rate, calculated by  

.
1

p 



N

ijij



   
(2) 

In Eq. (2) N is the total number of slip sytems, ij  is the Schmid factor and  is the 

shear strain rate in a slip system α. The viscoplastic power-law expression proposed by 

Hutchinson [41] was used to describe  in the following form: 

,)sgn(
T

0

n

g



     

,  ijij  

(3) 

where  0
 is the reference strain rate, n is the rate sensitivity of the material, sgn(■) is 

the signum function of ■ and 
Tg is the strength of the slip system α at the current time. 

In gradient plasticity, 
Tg  is linked to strain gradients and expressed as 

,)()(| 2
P

2
S0TT


gggg t    

(a) (4) 
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In the MBSGCP theory, 
Tg equals to the sum of values of critical resolved shear stress 

(CRSS= 0T | tg
 ) determining initial shearing of the slip systems and the evolution of slip 

resistance during loading as a resultant of incremental hardening due to both SDs ( 
Sg ) 

and PDs ( 
Pg ) on the slip system α as described in Eq. (4a). In Eq. (4b) h , T , S , b 

and 
Pn correspond to the hardening matrix, the Taylor coefficient, the shear modulus, 

the Burgers vector and the effective density of PDs at the current time, respectively. 

Here 
Pn  has the dimension of [1/Length] deviating slightly from a more common 

definition of dislocation density - the total length of dislocation line per unit volume - 

with a dimension of [1/Length2]. This difference arises from the fact that in this theory 

the definition of dislocation density is directly related to the strain gradient [40]. In the 

evaluation of the hardening moduli h in Eq. (4c) [42], 0h is the initial hardening 

parameter, satT |
g  is the saturation stress of the slip system α at the current time, q is the 

latent hardening ratio and   is the cumulative shear strain for all slip systems; on the 

other hand, in the evaluation of 
Pn  in Eq. (4d), 

m is the slip plane normal, 
s is the 

slip direction with .
ss


s and   is the gradient of shear strain in each slip 

system. 


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The performed micro-pillar compression experiments demonstrate that the yield 

strength of a pillar is inversely proportional to its edge length (or S/V ratio). In the 

MBSGCP theory, CRSS is solely dependent on the SDs, i.e. 0S0T ||   tt gg
 , and it is a 

well known fact that the density of SDs is independent of the component’s size; thus, it 

is unlikely to explain the size effect using this theory. In this paper an enhanced model 

of the MBSGCP theory is proposed, where the contribution of PDs is considered 

alongside that of SDs while determining the CRSS value of slip system based on 

experimental results. For instance, Maass et al. [24] investigated the initial 

microstructure of undeformed Au, Ni, Cu and NiTi micropillars using a white-beam 

Laue micro-diffraction technique and observed that GNDs/PDs existed in the initial 

microstructure of pillars. 

 

An important question arised regarding the way to address the interaction of SDs and 

PDs in determination of the CRSS value. Columbus and Grujicic [43] proposed a 

functional form to describe the overall shear flow stress ( f ) as a coupling between SDs 

and GNDs,   /1
GSf ])()([  , where S  and G  correspond to shear flow stresses 

linked to SDs and GNDs, respectively, and β denotes the coefficient of coupling. In this 

study, we use a similar functional form to characterize the interaction between SDs and 

PDs in the calculation of CRSS as,  

,])|()|([| /1
0P0S0T


  ttt ggg  (5) 
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where 0S | tg
  and 0P | tg

  denote the contributions of SDs and PDs to the CRSS, 

respectively. These two terms are described in terms of the density of dislocations using 

an equation, similar to the Taylor’s hardening law [44], as in the following: 

,|| 0S0S   tt Kg   
(6) 

,|||

2

00P0P 







 

V

S
KKg ttt   

 

where K is a constant, 0S | t  and 0P | t  are the densities of SDs and PDs, respectively 

and 0t|   is a reference density value used in the definition of PDs density. In Eq. (6) 

0P | t  is correlated with the ratio of pillar’s normalized surface ( S ) to normalized 

volume (V ), where S  and V  correspond to the ratio of pillar’s surface and volume to 

that of the largest pillar (pillar C), respectively. The normalization qualified this ratio to 

be dimensionless. Such a formulation complies with an experimental observation of 

Maass et al. [24], where a higher surface-to-volume ratio in micropillars was found to 

increase the occurrence of pre-existing GNDs (hence, PDs). This can be explained in 

the following way. During the manufacture of pillars (for instance, with a FIB 

technique) they become work-hardened; hence, finite stresses evolve in their body. 

Traction-free sides of pillars imply that certain stress components vanish on their 

surface. This inevitably leads to generation of sub-surface stress gradients, and, 

consequently, strain gradients, in the body. Considering different dimensions of pillars, 

in a smaller pillar, traction-free surfaces are situated closer to its axis; thus, strain 

gradients become more pronounced (numerically) in comparison to those in larger 

pillars. Thus, smaller pillars would generate higher PD densities demonstrating a 
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stronger response to deformation. Here we note that choosing a different pillar as the 

reference pillar would entail assuming a different value of 0t|    to ensure a constant 

0P | t . This does not affect the predictive capability of the proposed model. 

Different β values were discussed in the literature [45]. For instance, β=1 corresponds to 

superposition of strengths due to SDs and PDs, i.e. 0P0S0T |||   ttt ggg
 . Such a 

coupling was studied by Columbus and Grujicic [43]. On the other hand, β=2 

corresponds to superposition of the density terms: 0P0S0T |||   ttt  . This 

approach was studied by several authors [3,46,47]. Here, β=2 was considered, thus 

strength of the slip system α at the current time is expressed as  

,| T0TT


ggg t    

,||)|()|(| 0P0S
2

0P
2

0S0T   ttttt KggCRSSg   

.)()( 2
P

2
ST


ggg   

 

(7) 

Note that the EMSGCP theory is reduced to MBSGCP when 0P | tg
  vanishes and to the 

conventional crystal-plasticity (CP) theory when both 0P | tg
  and 

Pg  are zero. The 

constitutive formulation of EMSGCP explained above was implemented in the implicit 

finite-element code ABAQUS/Standard using a user-defined subroutine. An important 

step in implementation was the determination of shear strain gradient   in Eq. (4d). 

To compute this, first the shear strain values ( ))((
n

i ) for each slip system, α, at each 

node within an element were obtained using the Abaqus user subroutine URDFIL, 

which reads the results file. Next, this data was transferred to the UMAT subroutine, 
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where the shear strain gradients at each integration point ( ))((
g

i ) are computed using 

the following equation [48] 

  ,)(
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



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 ΨΨ
Ψ
x

J NY
i  
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is the Jacobian matrix, i
Y  is the position of the integration points, Ψ  is the vector of 

isoparametric coordinates of the Gauss integration point, Ψ is the nabla operator 

relative to the isoparametric coordinate system, i
N  is the shape function and 

ΨΨ )(i
N corresponds to the spatial derivative of shape functions. The relevant details 

can be found in [48-51]. 

4. Finite-element modelling of micro-pillar-compression experiments  

A three-dimensional FE model of micropillar-compression experiment was developed 

to investigate the size effect in a single-crystal Ti-based alloy. Based on the experiments 

performed, a model accounting for the exact pillar’s dimensions including the pillar’s 

taper of 2.5° was developed. A schematic of the pillar geometry, finite-element 

discretization (of type C3D8 [52]) and the imposed boundary conditions are shown in 

Fig. 3. The dimensions of micro-pillars are given in Table 1. The aspect ratio (i.e. a ratio 

of height to the edge length) was kept between 2 and 2.4. The indenter was assumed to 

be a rigid body since the elastic modulus and yield strength of the diamond indenter is 

at least an order of magnitude higher than those for the Ti alloy under investigation. A 

relative movement of the indenter was imposed in the negative y-direction (Fig. 3). 

Kinematic boundary conditions were imposed on the bottom face of the pillars by 
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constraining displacements in all directions since the micro-pillars was tightly bonded to 

the underlying substrate. The validity of such a simplification was checked by 

comparing numerical results obtained from a pillar with a finite-size substrate (made of 

the same material). The results indicate minor variation in the stress distribution, 

confirming the overall accuracy of assuming a rigid substrate to reduce computational 

cost [53]. As the experimental study suggested, the (121)[1 1 1] was the dominant slip 

system in deformation [54]; only the set {112} <111>, where N = 12, was enabled 

amongst the potential three systems in B.C.C. materials.  

Fig. 3 

Table 1  

Elastic properties of the single-crystal Ti alloy were presented in Voigt notation, 11c , 12c , 

44c . Determination of elastic parameters is a non-trivial process. Two sets of parameter 

values were obtained for two different temperature regimes (Table 2). The first set of 

elastic parameters was obtained from ab-initio simulations performed at 0 K for b.c.c. 

Ti alloys [55]. The second set was obtained from experimental results for the b.c.c. 

single-crystal titanium performed at high temperature (1273 K) using resonant-

ultrasound spectroscopy experiment [56]. The shear modulus S  was calculated using 

the relation, 2/).( 441211S ccc  , proposed by Paufler [57]. The Burgers vector b in 

Eq. (4b) for b.c.c. metals equals to a/2 <111>, where a (=3.235 × 10-7 mm [55]) is the 

lattice parameter. Thus, b = 2.802 × 10-7 mm. A dependence of elastic constants on 

temperature was studied for different metals by Varshni [58]. This study demonstrated 

that elastic constants decreased linearly with an increase in temperature except at very 

low temperatures (0-50 K) where an exponential change occured. As a first estimate, 

elastic parameter values at room temperature (300 K) were obtained via linear 
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interpolation. Calibrating the FE model for pillar experimental studies presented several 

challenges. Primarily, the presence of misalignments between the indenter and the pillar 

can severely affect the perceived value of elastic material properties [59]. Thus, the 

validity of linear interpolation in obtaining elastic parameter at room temperature was 

tested through numerical studies of nano-indentation experiments reported elsewhere 

[60]. Studies of nano-indentation demonstrated an excellent match between experiments 

and simulations for loading and unloading curves (F-d curves) [60,61]. 

Table 2 

A mesh-sensitivity analysis was performed for pillar A using the EMSGCP theory. 

Average element size of 210 nm × 210 nm × 210 nm was sufficient in obtaining 

convergence in the macroscopic load-displacement response. However, the distribution 

of PDs was found to be mesh-size dependent. Similar observation was also reported by 

Cheong et al. [49] and Roy and Acharya [62]. The mesh element sizes were kept 

constant for all numerical experiments carried out in this study. 

 

Coulomb’s friction law was used to model the frictional interaction between the 

indenter tip and the pillar in the experiments. It is well known that the contact 

characteristics can significantly affect the deformation behaviour of components. In our 

study we consider three idealized friction conditions, with μ = 0 representing a well 

lubricated indenter-workpiece interface followed by two dry (non-lubricated interface) 

contact conditions (μ = 0.05 and 0.1). The value μ = 0.05 was selected since a range of 

0.03 ≤ μ ≤ 0.06 are often used to represent contact conditions at diamond-metal 

interface in the literature [59,63]. Additionally, μ = 0.1 was considered to represent a 

dry contact condition. The pillar’s lateral displacements at 10% nominal strain were 

compared for different contact conditions. It was observed in numerical simulations that 
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pillars with μ = 0 and μ = 0.05 buckled in compression, whereas the pillar with μ = 0.1 

deformed with no visible slippage as observed in Raabe et al. [64]. In-situ videos 

recorded during the compression experiments indicate that lateral slip of the pillar 

occured during the deformation process (Fig. 1). Thus, we choose μ = 0.05 for the 

contact condition in simulations as μ = 0 is physically unrealistic [59].  

5. Calibration of parameters of EMSGCP model  

In the proposed EMSGCP model, the incipient strain gradients contribute to the overall 

CRSS in the component, i.e. 0T | tg
  is a function of 0S | t  and 0P | t . It is, however, 

difficult to characterize their individual contributions through the micro-pillar 

compression experiment. The proposed theory indicates that the influence of 0P | tg
  on 

the CRSS vanishes with 0VS  (Eq. (6)). In a nano-indentation experiment, where 

the indented workpiece material is of sufficiently large volumes in comparison to the 

exposed surface area, the effect of 0P | tg
  on the CRSS may be assumed to be negligible. 

Hence, 0S | t  can be determined from the experiment. Thus, nano-indentation 

experiments were performed for different crystallographic orientations of the material 

resulting in 150| 0S tg MPa and 7
0S 10464.1| t mm-2. Details of the models 

developed are available elsewhere [60,66]. It should be noted that the inelastic 

parameters T and 0h  were also identified using nano-indentation experiments (Table 3).  

Next, micro-pillar compression experiments were used to callibrate 0P | t  for different 

pillar sizes. Through multiple trials, an agreement between the experimental and 

calculated average stress-strain curves was, with 7
0 10510.1| t  mm-2. Using Eq. (6), 

0P | tg
  can be calculated for different geometries. The  -  plot for pillars A, B and C 

show a significant deviation from the experiments (Fig. 4a). This was believed to be due 
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to a misalignment between the indenter tip and the pillar’s top surface as it is difficult to 

ensure a perfect alignment in the experiment [59]. By introducing a misalignment of 6° 

(tilt about the z-axis) in the numerical experiments, an excellent match is obtained for 

the pillars studied (Fig. 4b-d).  

 Table 3 

Fig. 4 

Fig. 5 

Next, a case study was performed, where a cylindrical pillar with diameter of 0.955 μm 

and height of 2.73 μm, made of the same material and oriented in the same direction 

was compressed to examine, (1) accuracy of the proposed EMSGCP theory and, (2) 

universality of the theory for different pillar geometries. As demonstrated in Fig. 5, a 

noticeable deviation from experiments is observed for the FE simulation assuming ideal 

geometrical configuration of the pillar. However, by introducting a misalignment of 

2.5° an excellent match was obtained between the experiment and the simulation until 

about 2.2% strain. Beyond this, the flow curves start to diverge, i.e. geometrical 

softening observed in the experiment was not captured in the simulation. It is to be 

noted that geometrical softening observed in the experiments and simulations are not 

similar to each other. In the experiment, the upper surface of the pillar starts to slip w.r.t. 

the indenter’s tip, and at some instance, a part of the pillar begins to shear off at a 

certain plane (Fig. 1d). This leads to a loss of reaction force imposed on the indenter as 

well as change in the geometric cross-sectional area. Consequently, in the simulations, 

there is no mechanism to capture material tearing, which leads to the deviation. In 

summary, we observe that presence of misalignment, however small, in pillar 

compression tests has a significant effect on the perceived deformation response. Here, 
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the misalingnment is modelled as a calibration constant using the technique 

demonstrated.  

6. Numerical predictions of size effect in pillars and discussions 

In this section, size effect in single-crystal Ti alloy is studied in idealised geometric 

configurations, i.e. neglecting pillar taper and misalignment. Pillars with a square cross-

section with an edge length of 1, 2, 4, 8, 16 and 32 μm were modelled. The height-to-

edge length aspect ratio was fixed at 2.1:1 in all the models. Consistent with the mesh-

sensitivity analysis performed in Section 4, the mesh size of 210 nm × 210 nm × 210 

nm was used to discretize the pillars. The crystal orients with the micro-pillar axis 

coinciding with the (010) direction.   

Table 4 

The numerically obtained stress-strain curves for Ti micropillars D, E, F, G and H are 

compared in Fig. 6a. Consistent with the CRSS values in Table 4, the yield strength of 

the micropillars is observed to increase with a decreasing pillar size, providing evidence 

of a strong size effect. It may be noted that the phenomenon is more pronounced for 

pillars of smaller sizes compared to those of larger ones. This Fig. also suggests that 

there is minimal ‘size effect’ for pillars G and H since their flow curves are almost 

identical, implying that the effect of initial microstructure for both pillars is similar. The 

flow curve of pillar H is a lower bound for all the flow curves since the CRSS value of 

151.44 MPa is close to the corresponding value of 150 MPa, obtained from the nano-

indentation experiments [60], where the influence of incipient strain gradients was 

negligibly small. Our results demonstrate that below an edge length of 8 μm the 

“smaller is stronger” phenomena is observed. This edge length is therefore considered 
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as the critical edge length, lc, above which the relative change in the corresponding 

stress value is less than 5%. 

In cylindrical pillars, the value of critical resolved shear stress can be scaled with 

respect to the diameter d of the micro-pillar using the following power-law form 

,
s

M

b

d
A

CRSS









 

(9) 

 

where S  is the shear modulus and A and M are constants. Dou and Derby [39] 

obtained these constants, A=0.71 and M=-0.66, by using a least-squares fit to the 

experimental data for f.c.c. metal pillars. Here we consider d=deff. The corresponding 

curve for Ti alloy is shown in Fig. 6b. From the logarithmic plot, the constants were 

determined to be A =0.72 and M =-0.41. 

The proposed theory accounts for PDs evolving during the deformation process. To 

demonstrate the contribution of evolution of PDs to local hardening of the material in 

EMSGCP, an enhanced model of crystal-plasticity (EMCP) was introduced that 

accounts for the density of PDs in the experimental samples but not PDs evolving in the 

course of deformation. This model is derived from the proposed EMSGCP theory by 

setting 
Pg = 0 in Eq (7). A comparison with the EMSGCP theory elucidates the level 

of strain gradients evolving during the deformation process (Fig. 6a, pillars D and E). 

As expected, in the EMSGCP theory the strain-hardening rate is higher due to evolution 

of strain gradients during deformation. To quantify this effect as a function of pillar size, 

the work-hardening rate (WHR), defined as a slope of the curve between strains of 15% 

and 20%, for pillars D, E, F and G was determined. The respective values are 981 MPa 

(Pillar D), 659 MPa (Pillar E), 480 MPa (Pillar F) and 229 MPa (Pillar G). Interestingly, 
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a significant increase in WHR is observed with a decreasing pillar size, with WHR ∝ 

(deff)
-0.675. These results demonstrate that with a decreasing pillar size, higher strain 

gradients evolve during deformation.   

Fig. 6  

The distributions of evolving strain gradients for different pillar sizes were also 

investigated. Instantaneous plastic strain in the loading directions ( 22 ) at the mid-plane 

of pillars D, E and F at the end of the loading step (nominal strain of ~ 27%) was 

compared; Fig. 7a demonstrates the similarity of the strain distribution in a normalised 

scale. The distributions of the sum of the magnitudes for the effective PD density for all 

the slip systems ( )(
P


n ) are shown in Fig. 7b. They indicate that PDs were significant 

in pillar D, modest in pillar E and lowest in pillar F. It was found that PDs tended to 

accumulate between the middle and the lower end of the pillars’ mid-plane since 

variations in total shear-strain values were more pronounced in these regions. Since the 

primary deformation occurred in the loading direction (with respect to the flat indenter), 

the total shear strain from all the slip systems was essentially indentical to the 

distribution of accumulated plastic strain in the loading direction, 22 . Therefore, the 

variation in  22 (i.e. strain gradients) can be correlated with effective density of PDs in 

all slip systems ( )(
P


n ).  It should be emphasized that although the strain distributions 

in pillars of different sizes were similar, their gradients, i.e. their variation through the 

dimensions, are different. These results demonstrate that in smaller pillars higher strain 

gradients evolve during deformation.  

Fig. 7 

In micro-pillar-compression experiments, although the deformation is applied uniaxially, 

heterogeneity evolves in the course of loading due to imposed boundary conditions. To 

demonstrate this, the bottom surface of Pillar D was constrained in the loading direction 

(i.e. 02 u ). Rigid body modes were eliminated by constraining the centre node of the 
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pillar’s bottom surface in all directions. This resulted in homogenous, uniform 

distributions of uniaxial strain and stress in the body, which, in turn, generates no 

gradients of plastic strain (Fig. 8a). The respective distribution for the model with the 

bottom surface fixed in all directions (shown in Fig. 8b) demonstrate that the 

heterogeneous deformation develops in the component as a result of the imposed 

boundary conditions leads to evolution of strain gradients.  

 

Fig. 8 

7. Case study: Sensitivity of lc  

In this section sensitivity of the length-scale parameter, lc, to material parameters, i.e. 

CRSS, K and β, is studied. Since CRSS (or 0T | tg
 ) is a function of the incipient densities 

of SDs ( 0S | t ) and PDs ( 0P | t ) (see Eq. (7)), different cases were considered for 

varying relative magnitudes of S  and P . In addition to already determined values of 

densities presented in Table 3, two cases with different density levels were also 

analysed for independent variations of these two parameters. In the first case 

0S | t =7.0×106 mm-2 while r |
t=0=1.510×107 mm-2 (as before) and in the second case 

r |
t=0=5.0×106 mm-2 while 0S | t =1.464×107 mm-2 (as before). The change in the CRSS 

value with the edge length of pillars is shown in Fig. 9a. Here ‘Present’ refers to the 

dislocation densities as per Table 3. The results indicate that the critical edge length 

depends on the initial dislocation density of the material. This suggests that a decrease 

in 0S | t  and/or an increase in 0P | t  lead to an increase in lc; as a result, the size effect 

is observed for a larger range of pillar sizes. 

Fig. 9  
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The sensitivity of lc to other material properties, namely, K and β, was also studied. The 

initial strength of slip system to the incipient density of dislocations was correlated via 

K, while β represents the sensitivity of coupling between 0S | t  and 0P | t . In addition 

to K = 0.04 MPa mm, K = 0.02 MPa mm and 0.08 MPa mm were considered. The CRSS 

values for pillars D to I as a function of their edge length in a logarithmic scale are 

shown in Fig. 9b. This plot indicates that lc is 8 μm for all K values, implying that lc is 

not sensitive to parameter K for the range studied.  

 

Next β = 1 and 2 were considered with K = 0.04 MPa.mm. Fig. 9c demonstrates the 

corresponding CRSS value for pillars D to I as a function of their edge length. The plot 

suggests that lc =64 μm for β = 1. It should be noted that the CRSS value of the pillar 

with dimensions of 64 μm × 64 μm × 134.4 μm was also checked. It demonstrated a 

difference of less than 5% in the CRSS value compared to corresponding value of pillar 

I, thus justifying that lc =64 μm for β = 1. This analysis suggests that an increase in the β 

value leads to a decrease in lc. Some prior studies (Abu Al-Rub and Voyiadjis, 2004) 

demonstrated that a smaller interaction coefficient β implied increased interaction 

between SDs and GNDs. Based on this, it can be concluded that the stronger interaction 

of incipient SDs and incipient PDs leads to a larger range of pillar sizes demonstrating 

the size effect. 

8. Concluding remarks 

In this paper, we propose an enhanced model of strain-gradient crystal plasticity, with 

the incipient strain gradients correlated with the sample’s surface-to-volume ratio, based 

on experimental evidence. Predictive capabilities of the model in characterizing the size 

effect in the initial yield and the work-hardening rate (including distributions of 
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evolving strain gradients) in small-scale components with different geometries are 

demonstrated. The proposed model has two additional parameters compared to standard 

strain-gradient crystal plasticity theories. One of these parameters (K) represents the 

effect of the Taylor factor and the other (β) couples the instantaneous densities of polar 

dislocations and statistical dislocations to the material’s strength. In the micro-pillar 

compression studies, heterogeneity evolves in the pillar due to the imposed boundary 

conditions. The strain variation in smaller pillars is higher compared to that in larger 

pillars, resulting in a harder response. 

By way of calibrating the model, indentation and micropillar compression tests were 

carried out. Based on the calibrated model, uniaxial compression tests in pillars of 

square and circular cross-sections were simulated. The influence of minor 

misalignments on the overall stress-strain response was noted. It was also demonstrated 

that the critical edge length, below which size effect was observed, was sensitive to the 

densities of PDs and SDs and the coupling co-efficient (β).  

The proposed model may be employed to study a variety of boundary-value problems in 

the small scale. For example, deformation in thin films can be attempted. In this case, 

the S/V ratio is inversely proportional to the film thickness. This implies that with 

decreasing film thickness we expect to see a harder response (which is experimentally 

observed). 

Through this paper, we demonstrate a practical way of justifying the observation from 

experiments in the small length-scales. Though the proposed continuum model is 

phenomenological, we make a conscious effort to demonstrate the physical justification 

of our model by taking inspiration from experimental studies. 
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Fig. 1: Determination of active slip system by comparing EBSD pole Fig.s for {111} (a) 

and {112} directions (c) with SEM images for pillar C (see Table 1) taken after 
compression from top (b) and under 45° tilt (d, dimensions corrected for tilt). The active 

slip system was found to be (121)[1 1 1]. 
 

 
Fig. 2: Logarithmic plot of yield strength vs. inverse surface-to-volume ratio for pillars 

A, B and C. The solid line represents the best-fit power-law function. 
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Fig. 3: (a) Dimensions of micropillars (in µm); (b) 3D model of micro-pillar-

compression experiment 
 
 
 

 
Fig. 4: Average stress-strain curves obtained from experiments and FE simulations of 

pillars A, B, C using EMSGCP theory 
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Fig. 5: Average stress-strain curves obtained from experiments and FE simulations of 
cylindrical pillar using EMSGCP theory 
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Fig. 6: (a) True stress-strain curves obtained with FE simulations using EMSGCP 
theory for pillars D, E, F, G and H and CP theory for pillars D and E. (b) Logarithmic 

plot of CRSS (normalized with μs) vs. deff (normalized with b) for pillars D, E, F and G 
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Fig. 7: Distribution of accumulated plastic strain in loading direction (a) and effective 
density of PDs in all slip systems (b) at full loading obtained with FE simulations for 

mid-plane of pillars D, E and F (consider different length scales) 
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Fig. 8: Distribution of effective density of PDs in all slip systems ( )(
P


n ) for pillar D 

when the bottom surface is fixed only in loading direction (a) and in all directions (b) 
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Fig. 9: Logarithmic plots of resolved shear stress vs. edge length of pillar for different 
cases (a), K values (b) and β values (c) 
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