
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

Abstract—In this paper, we propose an enhanced hardware

efficient CORDIC-based FFT processor. As the conventional

CORDIC is restricted by the data precision and the times of

iterations, Adaptive Recoding CORDIC (ARC) is adopted in

our design, the precision of which is improved to 14th.

Simultaneously, Conflict-free parallel memory access scheme

and Rom-free twiddle factor generation scheme are both

introduced to improve the performance and reduce the

memories to store the twiddle factors. Compared with some

latest published FFT processors, synthesized results show the

proposed FFT processor reduce the hardware overhead while

improving the Signal-to-Noise Ratio (SNR). When the

operating frequency is 250MHz, the proposed FFT processor

performs radix-4 1024-point FFT every 5.4 us.

Index Terms—Fast Fourier transforms, CORDIC, bit error

precision , signal to noise ratio.

I. INTRODUCTION

FFT processor, known as a specialized hardware, is

indispensable for real-time signal processing and has been

widely used in communication systems, such as WiMax [1]

and 3GPP-LTE [2]. In this paper we focus on the efficient

VLSI architecture with minimal hardware overhead and the

high precision to compute FFT in real-time. Many people

have researched on FFT processor design and

implementation [3]–[6], which can be classified into two

styles, pipelined and memory-based architectures. Due to

speed acceleration, Pipelined architectures are widely used

[3], [4]. Despite the attractiveness, Pipelined architectures

have some drawbacks, such as excessive area and exhausted

power consumption. Memory-based FFT processors are

composed of a kernel processing unit and several memory

blocks, the hardware requirement and power consumption of

which are both lower than pipelined FFT processors [5], [6],

and we adopt the memory-based FFT in our work.

The typical FFT processor is composed of butterfly units,

address generator unit, control unit and memories. Butterfly

units are composed of complex multipliers and adders. And

one complex multiplier needs four real multipliers and two

adders, thus the butterfly units are the speed bottleneck in

FFT processor. An important statement for nowadays

Manuscript received March 28, 2012; accepted August 5, 2012.

This work was partly supported by National Natural Science Foundation

of China (No.60970037) and Doctor Program Foundation of Education

Ministry of China (No.20094307110009).

circuits design and implementation is hardware efficiency,

and the coordinate rotation digital computer (CORDIC)

algorithm perfectly fits this point. And in rotation mode,

CORDIC algorithm can easily implement complex vector

rotation, simply needs shift and addition operations, and it is

feasible to be implemented by a pipelined method [7].

Besides, CORDIC-based FFT processors have been

researched [5], [6], [8], and many of them adopt the

conventional CORDIC, which heavily constraint the

precision of complex multiplication. In this paper, we

present an area-efficient pipeline-balancing CORDIC

architecture, and in 16-bit computer, the Bit Error Position

(BEP) of the proposed architecture has been improved with

no performance penalty. Conflict-free parallel memory

access scheme is adopted and ROM-free twiddle factor

generator is proposed in our paper. The synthesized results

state the proposed FFT processor requires less area and the

Signal-to-Noise Ratio (SNR) is improved.

The following paper is organized as follows. Section II

describes the top design of FFT processor. Adaptive

recoding CORDIC-based butterfly is introduced in section

III. In section IV, we present the simulation results and give

some discussions. Summary of this work and conclusions are

presented in section V.

II. TOP DESIGN OF FFT PROCESSOR

FFT processor can use radix-2 algorithm, radix-4

algorithm, split-radix algorithm and so on. In this paper, we

adopt the radix-4 algorithm. Fig. 1 shows the top 1024-point

architecture of FFT processor, which is composed of control

unit, address generate unit, twiddle factor angle generator,

adaptive recoding CORDIC (ARC) based-butterfly unit,

routing network, multiplexers (Mux) and memory banks.

The control unit controls other FFT processor units.

Through mux1, the input data are selected into mux2~5.

Mux2~5 are used to select the signals passing to memory

banks from the input data and the computed data after

routing network. Address generate unit generates the write

addresses and read addresses of memory banks. As the FFT

processor is ROM-free twiddle factor, the twiddle factor

angle generator controls generating the twiddle factors in

real-time. Routing network is used to issue operands. The

final results are the effective outputs of the mux6~9.

In the design of FFT processor, the conflict-free memory

access is very important. Some scholars have proposed

Enhanced Hardware Efficient FFT Processor

based on Adaptive Recoding CORDIC

Jianfeng Zhang
1
, Hengzhu Liu

1
, Ting Chen

1
, Dongpei Liu

1
, Botao Zhang

1

1
Computer School, National University of Defense Technology,

Changsha, P.R. China

jianfengzhang@nudt.edu.cn

http://dx.doi.org/10.5755/j01.eee.19.4.1422

97

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

effective schemes. As [9] only needs bitwise XOR

operations, we adopt the method and improve it in our radix-

4 1024-point architecture. In our FFT processor, we only

design one butterfly unit, thus four memory banks are

required. Thus, the address of data includes two parts, two-

bit bank address (Ba) and eight-bit depth address (Da). The

signal Address-Num (AN) generated by control unit passes

to the address generate unit. The bank address and depth

address are defined as follows:

a = AN[9:2],

Ba[1] = AN[9]^AN[7]^AN[5]^AN[3]^AN[1],

Ba[0] = AN[8]^AN[6]^AN[4]^AN[2]^AN[0].

D

 (1)

Using the proposed conflict-free memory access scheme,

the four operands of the butterfly unit would be distributed

in different memory banks at the same time, the related

distribution are shown in (2), which is a 4×4 matrix. The

columns of the matrix stand for the related four situations,

the rows are the corresponding number of the memory banks

of the operands

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Dis Matrix

 =

. (2)

1−

1− j−

1−

1−

Fig. 1. Top level 1024-point architecture of FFT processor.

III. ADAPTIVE RECODING CORDIC-BASED BUTTERFLY

UNIT

The conventional Coordinate Rotation Digital Computer

(CORDIC) algorithm was first brought forward to solve the

trigonometric computing problem [7], simply needs shift and

addition operations. However, it has some drawbacks, such

as excessive number of iterations, the scaling factor and poor

precision. Some works tried to enhance CORDIC [10], [11].

However, each of them either doesn’t reduce the times of

iterations or complicate the structure. In this paper, a novel

architecture named adaptive recoding CORDIC (ARC) is

adopted based on SF principle [10], which adopts adaptive

recoding method to reduce the iterations, the complexity and

improves the precision.

In FFT processor, the word length of the machine is

configurable, for sake of clarity, the implementation of a 16-

bit computer is described here as an example, and the

complement of decimal 1 is represented as 16’b0100 0000

0000 0000, of which the most significant bit is the sign of

data. When right shifting a data more than 14 bits, it will

only leave the sign bits, which can be regarded as the

machine zero.

As the convergence angle range of SF CORDIC is

0,
8

π

, where 0.392699
8

π = is represented as 16’b0001

1001 0010 0010, we only need deal with the 13 least

significant bits of the angle. We divide the 13 bits into 2

groups, the first 3 bits belong to the first group, and the rest

belong to the second group, as the lowest bit weight of the

first group is 2
-4

, which is the upper limit of bit weight

suiting for SF CORDIC. The second group is divided into 5

sub-groups, and each sub-group contains two neighbouring

bits. Our aim is to make each sub-group only consists one

effective bit, which means the iterations can be reduced from

2 to 1.

According to the representation of complement, the bit

weights of two neighbouring bits satisfy:

98

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

1 1 1

1 1 1

2 2 2 0 2 (1) 2

2 0 2 2 (1) 2 0 2

i i i i i

i i i i i

− − − − + − − −

− − − − + − − −

 + = + × + − ×

+ × = + − × + ×
 (3)

This means if the neighbouring bits are 11 or 10, they

could be recoded to 01 or 10, the symbols are changed into

01 or 10, while generating a carry bit. Different from SF

CORDIC, which only rotates in anti-clockwise direction, our

scheme allows rotating in clockwise direction, which is

determined by the symbols of the recoded bits. If the symbol

of the bit is 1, it rotates in clockwise direction; otherwise it

would rotate in anti-clockwise direction. Fig. 2(a) shows the

rules of this recoding. The circuit of fundamental recoding

unit is shown in Fig. 2(b). The main components of

fundamental recoding unit are two AND gates and one

inverter. The higher input bit is executed by the operation

AND with the lower bit and its inverse signal to get the

recoded bits, symbol bits and carry bit. Fig. 2(c) illustrates

the whole architecture of adaptive recoding, which consists

of five fundamental recoding units, five adders and five OR

gates. In Fig. 2(b), "Module #i" has 5 bits outputs, while

"Module #2", "Module #3", "Module #4" and "Module #5"

seem to have 3 output signals, because we synthesize the two

bits of recoded data “R_M#i[1:0]” and the two bits of the

symbol of the recoded data “S_M#i[1:0]” in Fig. 2(c), as the

carry bit would pass to the higher level module, but the

recoded data, the symbol and the carry bit of lower level

module need to be operated by the adder to get the final data

out and the final symbol of the data out. And in Fig. 2(c), as

the "Module #1" is the lowest level of module, there is no

carry bit pass to it, but the nearby two bits of recoded data

need to be operated to get the enable signal. Thus, we just

synthesize the symbol of the recoded data. In order to better

realize this and not generate various understandings, we

have marked the bits of the outputs in Fig. 2(c). Firstly, the

five sub-groups pass through the five fundamental recoding

units separately, and then the carry bits are sent to the higher

adders and the last carry bit of the fifth recoding unit passes

to the first group. Finally, the operated signals pass through

OR gates, then we would get the recoded data, symbol bits

and control signals.

Theorem: If each sub-group is recoded according to the

principle of adaptive recoding, that its output only contains

one effective value regardless of the number of sub-groups.

Proof: Set:

#2 #1

{ _ , _ },

_ { _ [2:0]},

_ { , , , , , }.n i

First group Second group

First group F data

Second group M M M M

φ =

=
 = ⋅⋅⋅ ⋅⋅⋅

 (4)

In which
#{ [1: 0]}i iM data= indicates the i

th
 sub-group in

the second group, and the maximum value of first group is

110, which is restricted by the convergence range of SF

theory. According to the circuit shown in Fig. 2.(b), the

detailed expressions can be defined as follows:

#

#

#

#

#

#

#

_ [1] [1]& [0],

_ [0] [0],

_ { _ [1], _ [0]},

_ [1] [1],

_ [0] [1]& [0],

_ { _ [1], _ [0]},

_ [1].

i i i

i i

i i i

i i

i i i

i i i

i i

R M data data

R M data

R M R M R M

S M data

S M data data

S M S M S M

C M data

 =

=
 =

=
 =
 =

=

 (5)

(a)

(b)

(c)

Fig. 2. Principle and architecture of adaptive recoding: (a) – principle of

adaptive recoding; (b) – circuit of the fundamental recoding unit; (c) –

architecture of adaptive recoding.

Thus, adopting the complete induction to prove the

theorem as follows:

a) Assuming that
#1_ { } Second group M= , and

1 # #{ [1], [0]}
i i

M data data= , according to (5):

#1 #1 #1 #1

#1 #1 #1 #1

#1 #1 #1 #1

#1 #1 #1 #1

00 _ 00, _ 00, _ 0,

01 _ 01, _ 00, _ 0,

10 _ 10, _ 10, _ 1,

11 _ 01, _ 01, _ 1.

M R M S M C M

M R M S M C M

M R M S M C M

M R M S M C M

= ⇒ = = =
 = ⇒ = = =

= ⇒ = = =
 = ⇒ = = =

 (6)

99

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

Thus
#1

_ _ { _ [2 : 0] _ }R First group F data C M= + , and

#1
_ _ { _ }R Second group R M= , so the lemma is right.

b) Assuming that
#(1) #2 #1_ { , , , } kSecond group M M M−= ⋅⋅⋅ ,

then
#(1) #2 #1_ _ { '_ , , '_ , _ }kR Second group R M R M R M−= ⋅⋅⋅ ,

#(1)
_ _ { _ [2 : 0] _ }

k
R First group F data C M −= + ,and

#'_ iR M

means the final recoded data accepting the lower level carry

bit, and the lemma is right. Then when

#_ ' { , _ }. kSecond group M Second group= Firstly, we

recode the added module #k
M according to (5):

#

#

#

#

00 _ 00, _ 00, _ 0,

01 _ 01, _ 00, _ 0,

10 _ 10, _ 10, _ 1,

11 _ 01, _ 01, _ 1.

k k k k

k k k k

k k k k

k k k k

M R M S M C M

M R M S M C M

M R M S M C M

M R M S M C M

= ⇒ = = =
 = ⇒ = = =

= ⇒ = = =
 = ⇒ = = =

(7)

Then
#_ _ ' { _ [2 : 0] _ }kR First group F data C M= + ,

considering the carry bit #(1)_ kC M − generated by #(1)k
M − , if

#(1)_ 0kC M − ≠ , then it needs pass to #k
M . And if

#_ 00
k

S M = , #k
M will add the carry bit, whereas #k

M

will subtract it, since the symbol #_
k

S M is negative,

which indicates that the conventional addition will change

into subtraction. Hence:

#

#

#

#

_ 00, _ 00 '_ 01, '_ 00,

_ 01, _ 00 '_ 10, '_ 00,

_ 10, _ 10 '_ 01, '_ 01,

_ 01, _ 01 '_ 00, '_ 00,

k k k k

k k k k

k k k k

k k k k

R M S M R M S M

R M S M R M S M

R M S M R M S M

R M S M R M S M

= = ⇒ = =
 = = ⇒ = =

= = ⇒ = =
 = = ⇒ = =

 (8)

and
#_ _ ' { '_ , _ _ } kR Second group R M R Second group= , as

previous description, each sub-group in the second group

only contains one effective value. Thus, the lemma is right.

c) According to the step a) and b), we can conclude that

no matter how many sub-groups does the second group have,

the lemma works right.

As the bit weight of the first bit in first group is 2
-2

, which

needs repeat the conventional i=4 SF unit four times, and the

second bit needs repeat twice. Eq. (7) gives the matrix of

conventional i=4 SF unit:

9 4

4 9

' 1 2 2

' 2 1 2

x x

y y

− −

− −

 − −
= −

. (9)

Then the execution time of i=4 SF unit lies on one shift

and two additions operations. Whereas, if multiply the

matrix of i=4 twice, it can be easily verified that the

enhanced matrix is:

7 3 12

3 12 7

' 1 2 (2 2)

' 2 2 1 2

x x

y y

− − −

− − −

 − − −
= − −

. (10)

Hence, the execution time of (10) is the same as (9)

except for required more shifters and adders. By the

enhanced matrix (10), the first bit in first group only needs

repeat the matrix process twice, and the second bit needs

once, while the last bit still executes the process (9).

In the proposed scheme, we do some minor modification

based on SF architecture. Since the theory of SF magnifies

the trigonometric value, we scale down the cosine value of

the first enhanced matrix into (2
-3

-2
-11

) as compensation after

self-contained test to improve the precision.

Fig. 3 shows the whole pipeline of adaptive recoding

CORDIC, the hardware block named “Con. i. Unit”

indicates the conventional SF module, and i means the bit

weight of the module is 2
-i
. As above discussion, the bits

whose bit weight less than 2
-4

 are grouped into the second

group, and each sub-group in which would only exist one

effective value after adaptive recoding, while the execution

time of the conventional i=5/6 SF unit still lies on one shift

and two additions. But (i=7/8, i=9/10) and (i=11/12,

i=13/14) modules are integrated into a single stage to

balance the latency of every stage, because the execution

time of the mentioned modules lie on one shift and one

addition operations. In Fig. 3, the pipeline stage registers are

given with different colors. Firstly, the original signals are

sent to the pre-processing and recoding module, the control

signals, recoded angle and other signals will be achieved

after recoding. Secondly, the signals will be handled by the

following modules or bypass according to the enable signals.

At last, the post-processing module completes the

conversion of trigonometric function (from 0,
8

π

 to

[]0,2π).

The expression of complex multiplication can be defined

as follows:

() [() ()] [cos(2) sin(2)]

() cos(2) () sin(2)

 [() sin(2) () cos(2)].

nk

N

nk nk
z k W real z j imag z j

N N

nk nk
real z imag z

N N

nk nk
j real z imag z

N N

π π

π π

π π

⋅ = + ⋅ ⋅ − + ⋅ − =

= ⋅ − − ⋅ − +

+ ⋅ ⋅ − + −

(11)

The primary rotation matrix of the CORDIC can be

described as (considering anti-clockwise rotation):

' cos sin

' sin cos

x x

y y

θ θ
θ θ

−
= ⋅

, (12)

where θ is the target angle of the rotation. Assuming that

2
nk

N
θ π= − ⋅ , ()x imag z= , ()y real z= , then 'x is the

imag result of complex multiplication, and 'y is the real

result of complex multiplication.

Conventional FFT processors need a large ROM to store

the twiddle factors. During the process of butterfly

operations, we need issue more load instructions to fetch the

twiddle factors, which are slow speed, large area and high

power consumption. In our paper, we propose a novel Rom-

free twiddle factor generation scheme, then the proposed

processor needs not to store twiddle factors anymore, which

100

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

would be generated in real-time. During one radix-4

butterfly operation, it needs three twiddle factors, which are

1024

k
W ,

2

1024

k
W ,

3

1024

k
W . If we get know the twiddle factor

1024

k
W , the others are all known.

2
1024

1024

k
j

kW e
π− ⋅

= , the

angle of the twiddle factor is 2
1024

kπθ = . If k is got, it just

needs to be scaled by 2
1024

π to get the angle. The

complement of 2
1024

π is 16’b0000 0000 0110 0100, thus

2 5 6(2 2 2)kθ = ⋅ + + . As the radix-4 1024-point FFT

processor needs 5 butterfly pipeline levels, the value of k

changes with levels, which are shown in Table1. And the 8-

bit signal cycle num (CN), generated by the control unit.

TABLE I. BASIC INDEX OF THE ANGLE OF THE TWIDDLE FACTOR.

level BasicIndex(θ)

0 16’d0

1 {CN[1:0], 2’d0}+{CN[1:0], 5’d0}+{CN[1:0], 6’d0}

2 {CN[3:0], 2’d0}+{CN[3:0], 5’d0}+{CN[3:0], 6’d0}

3 {CN[5:0], 2’d0}+{CN[5:0], 5’d0}+{CN[5:0], 6’d0}

4 {CN, 2’d0}+{CN, 5’d0}+{CN, 6’d0}

θcos

θsin

Fig. 3. The whole pipeline of Adaptive Recoding CORDIC.

Then the proposed Rom-free twiddle angle generation

scheme only needs adders and shifters. Eq. (13) gives the

input angles of the three ARC units:

_ ,

_ { ,1' 0},

_ _ _ .

ARCI

ARCII b

ARCIII ARCI ARCII

θ θ
θ θ
θ θ θ

=

=
 = +

 (13)

101

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

IV. PERFORMANCE EVALUATION AND COMPARISON

The errors in CORDIC algorithm mainly come from

quantization process and truncation process [12]. We

analyze the error of the proposed ARC algorithm by

comparing Bit Error Position (BEP). The expression is

described as

2

log
c r

BEP x x= − − , (14)

where
c

x is the value computed by the proposed algorithm,

and
r

x is the value by looking up table which stores the real

value of the trigonometric function. We generate a

pseudorandom sequence of angles lying within the

convergence range [0,]
8

π . Using these angles as the

inputs, the corresponding errors in terms of the decimal bit

position are shown in Fig. 4.

The error of adaptive recoding CORDIC locates above the

14
th

 decimal bit position for all cases, which is the same as

SFB4C [11], and exceeds conventional SF CORDIC two

bits [10].

The proposed ARC-based FFT is modeled in Verilog

HDL and synthesized with the Synopsis Design Complier

based on Chartered 90nm CMOS technology standard cell

library. Table2 shows the area and speed comparison of the

proposed FFT processor with some latest published ones.

The execution time of FFT is defined as

 ()

 +⋅= L

w

exec D
N

N
f

T
4

log
1

4
 (15)

Fig. 4. Accuracy Cosine errors for the proposed ARC.

TABLE II. COMPARISON OF THE AREA AND SPEED.

 [13] [14] Proposed

Tech. (nm) 130 130 90

Area (mm2) 2.96 3.75 1.09

1024-pt Exec.Time
51.6µs

(250MHz)

21.0µs

(250MHz)

5.4µs

(250MHz)

In which fw is the operation frequency of the FFT

processor, N is the FFT size, and DL is the set up stages of

the whole pipeline. The execution time of the proposed FFT

processor performs 1024-point FFT every 5.4us under 250

MHz frequency. In Table2, it can be seen the proposed FFT

processor reduces hardware overhead and the execution

process is accelerated, owing to the pipelined adaptive

recoding CORDIC based radix-4 FFT structure without

multipliers and Rom-free twiddle generator needless Rom to

store twiddles.

Owing to the finite word-length implementation, the

outputs of FFT processor exist truncation error and

quantization error. In order to evaluate the Signal-to-Noise

Ratio (SNR), we generate a random noise signal as the

inputs of FFT processor by Matlab and get the results DMod

based on Modelsim simulation. Simultaneously, the random

noise signal is utilized by a Matlab script to get the double

FFT results DMat.

And we use the (16) to evaluate the SNR of the proposed

FFT processor. The results show the SNR of the proposed

FFT processor is 42dB, which almost exceeds conventional

CORDIC-based FFT 7dB and the FFT processor proposed

in [15] 5dB with 14 effective bits to avoid the overflow of

radix-4 butterfly

−
⋅=

∑

∑
−

=

−

=
1

0

2

1

0

2

10log10)(
N

i

ModMat

N

i

Mat

DD

D

dBSNR . (16)

V. CONCLUSIONS

This paper proposed an enhanced hardware efficient FFT

processor based on CORDIC. As restricted by the lower

precision of conventional CORDIC, we adopted adaptive

recoding CORDIC, the BEP of which was improved to 14
th

.

In the proposed FFT processor, conflict-free parallel

102

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 4, 2013

memory access scheme is adopted and Rom-free twiddle

factor generation principle is introduced. The proposed FFT

processor had been synthesized using 90nm CMOS

technology with standard cell library, and the results show it

is area efficiency, high SNR and less execution time.

REFERENCES

[1] J. G. Andrews, A. Ghosh, R. Muhamed, Fundamentals of WiMAX:

Understanding Broadband Wireless Networking. Prentice Hall, 2007,

p. 16.

[2] E. Dahlman, 3G Evolution: HSPA and LTE for Mobile Broadband.

Academic press, 2008, p. 18.

[3] M. Garrido, K. K. Parhi, J. Grajal, “A Pipelined FFT Architecture for

Real-Valued Signals”, IEEE Transactions on Circuits and Systems–I:

Regular Papers, IEEE, vol. 12, no. 56, pp. 2634–2643, Dec. 2009.

[4] B. Zhou, Y. Peng, D. Hwang, “Pipeline FFT Architectures Optimized

for FPGAs”, International Journal of Reconfigurable Computing,

Hindawi, pp. 1–9, 2009.

[5] X. Xiao, E. Oruklu, J. Saniie, “Reduced Memory Architecture for

CORDIC–based FFT”, in Proc. of 2010 IEEE International

Symposium on Circuits and Systems, IEEE, 2010, pp. 2690–2693.

[6] E. Oruklu, X. Xiao, J. Saniie, “Reduced Memory and Low Power

Architecture for CORDIC–based FFT Processors”, Journal of Signal

Processing Systems, Springer, vol. 2, no. 66, pp. 129–134, 2011.

[7] J. E. Volder, “The CORDIC trigonometric computing technique”,

IEEE Transactions on Electron. Comput., IEEE, vol. 3, no. 8, pp.

330–334, Sept. 1959.

[8] T. Y. Sung, H. C. Hsin, Y. P. Cheng, “Low–power and High–speed

CORDIC–based Split-radix FFT Processor for OFDM Systems”,

Digital Signal Processing, Elsevier, vol. 2, no. 20, pp. 511–527,

2010. [Online]. Available: http://dx.doi.org/10.1016/j.

dsp.2009.08.008

[9] J. H. Takalala, T. S. Jarvinen, H. T. Sorokin, “Conflict–free Parallel

Memory Access Scheme for FFT Processors”, in Proc. of IEEE

International Symposium on Circuits and Systems, IEEE, 2003, pp.

524–527.

[10] K. Maharatna, S. Banerjee, E. Grass, M. Krstic, “Modified virtually

scaling–free adaptive CORDIC rotator algorithm and architecture”,

IEEE Transactions on Circuits and Systems, IEEE, vol. 11, no. 15,

pp. 1463–1474, 2005.

[11] J. F. Jaime, A. M. Sanchez, “Enhanced Scaling–Free CORDIC”,

IEEE Transactions on Circuits and Systems, IEEE, vol. 7, no. 57, pp.

1654–1662, 2010. [Online]. Available: http://dx.doi.org/10.1109/

TCSI.2009.2037391

[12] Y. H. Hu, “The quantization effects of the CORDIC algorithm”,

IEEE Transactions on Signal Process, IEEE, vol. 4, no. 40, pp. 834–

844, 1992. [Online]. Available: http://dx.doi.org/10.1109/78.127956

[13] Q. Zhang, N. Meng, “A Low Area Pipelined FFT Processor for

OFDM–Based Systems”, in Proc. of International Conference on

Wireless Communications, Networking and Mobile Computing,

IEEE, pp. 1–4, 2009.

[14] T. Pitkanen, J. Takala, “Low–Power Application–Specific Processor

for FFT Computations”, Journal of Signal Processing Systems,

Springer, pp. 165–176, 2011.

[15] A. Cortés, I. Vélez, A. Irizar, “An Approach to Simplify the Design of

IFFT/FFT Cores for OFDM Systems”, IEEE Transactions on

Consumer Electronics, IEEE, vol. 1, no. 52, pp. 26–32, 2006.

[Online]. Available: http://dx.doi.org/10.1109/TCE.2006.1605021

103

