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Brief Definit ive Report

Broadly neutralizing antibodies (bNAbs) target-

ing HIV-1 are of special interest because of their 

ability to prevent and treat HIV-1 and SHIV 

infection in humanized mice and nonhuman 

primates (NHPs), respectively (Klein et al., 2012; 

Moldt et al., 2012; Barouch et al., 2013; Klein  

et al., 2013; Shingai et al., 2013). Although there 

was excellent agreement between humanized 

mice and macaques in passive protection exper-

iments (Balazs et al., 2012; Pietzsch et al., 2012; 

Shingai et al., 2013), immunotherapy of estab-

lished infection was far more e�ective in ma-

caques infected with SHIVAD8 or SHIVSF162P3 

than in humanized mice infected with HIV-1YU2. 

Humanized mice treated with single mAbs 

showed only a transient drop in viremia with 

rapid escape caused by selection of antibody-

resistant mutants (Klein et al., 2012; Horwitz  

et al., 2013). In contrast, passive transfer experi-

ments of single bNAbs in macaques produced  

a profound decrease in viremia (Barouch et al., 

2013; Shingai et al., 2013), and prolonged con-

trol (Barouch et al., 2013), with only occasional 

viral escape (Shingai et al., 2013). This disparity 

could be due in part to the host immune sys-

tem, which is present in the macaques but de-

fective in humanized mice. However, how the 

host immune system might enhance passive an-

tibody therapy is not known. Here, we investigate 

the role of the autologous antibody response in 

suppressing the emergence of viral bNAb escape 

variants in vivo.

RESULTS AND DISCUSSION
Simultaneous administration of three bNAbs 

(tri-mix) targeting the CD4-binding site (CD4bs; 
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Antibody-mediated immunotherapy is effective in humanized mice when combinations of 

broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the 

human immunode�ciency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can 

control simian–human immunode�ciency virus (SHIV) infection in immune-competent 

macaques, suggesting that the host immune response might also contribute to the control 

of viremia. Here, we investigate how the autologous antibody response in intact hosts can 

contribute to the success of immunotherapy. We �nd that frequently arising antibodies 

that normally fail to control HIV-1 infection can synergize with passively administered 

bNAbs by preventing the emergence of bNAb viral escape variants.

© 2014 Klein et al. This article is distributed under the terms of an Attribution– 
Noncommercial–Share Alike–No Mirror Sites license for the �rst six months 
after the publication date (see http://www.rupress.org/terms). After six months 
it is available under a Creative Commons License (Attribution–Noncommercial– 
Share Alike 3.0 Unported license, as described at http://creativecommons.org/ 
licenses/by-nc-sa/3.0/).
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To determine whether HIV-1 can escape from all three 

antibodies when they are administered sequentially, we treated 

HIV-1YU2–infected mice with bNAbs starting with PG16 

alone, and added 3BNC117 after 14 d, and 10–1074 after 28 d 

(Fig. 1 A). We found a transient reduction (0.18 log10 to 0.78 

log10) of the viral load shortly after each antibody was admin-

istered, followed by rapid rebound to baseline viremia (day  

42; +0.14 log10 compared with day 0; Fig. 1 A). Thus, sequen-

tial antibody administration di�ers from co-administration of 

the same tri-mix in that sequential therapy fails to control 

viral replication.

3BNC117; Scheid et al., 2011), the V1/V2-loop (PG16; 

Walker et al., 2009), and the V3-stem (10–1074; Mouquet, 

2012) e�ectively suppresses viremia in HIV-1YU2–infected 

humanized mice without the emergence of viral escape vari-

ants (Horwitz et al., 2013). The humanized mice used in the 

experiments are NOD Rag1/ IL2RNULL mice that are 

reconstituted with human hematopoietic stem cells. These 

mice support the development of human T lymphocytes that 

can be infected with HIV-1 but they do not produce signi�-

cant antibody responses to the pathogen (Baenziger et al., 

2006; Klein et al., 2012).

Figure 1. Sequential treatment of HIV-1YU2–
infected humanized mice with bNAbs selects for 
triple-escape mutants. (A) HIV-1YU2–infected mice were 

sequentially treated with PG16 (orange), PG16, and 

3BNC117 (green) and �nally with the tri-mix consisting 

of PG16, 3BNC117, and 10–1074 (blue) as indicated. 

Graph shows the log10 change in viral RNA copies in 

plasma plotted on the y-axis and time in days after start-

ing treatment on the x-axis. The red line shows the mean 

of changes in viral load. Individual mice IDs are listed at 

the right. (B) gp120 envelope sequence analysis before 

and after 14, 28, and 42–49 d of treatment revealed the 

emergence of HIV-1YU2 escape variants at the respective 

target sites of the bNAbs (i.e., PNGS at position N160 for 

PG16; 280–282 and 458 for 3BNC117; PNGS at position 

N332 for 10–1074). Each dotted line represents an inde-

pendent sequence and changes to gp120YU2 are shown  

in bold. Red letters and gray highlights indicate regions 

corresponding to known escape sites as identi�ed in 

previous monotherapy experiments (Klein et al., 2012; 

Horwitz et al., 2013). Residues in HIV-1YU2 (top) were 

numbered according to HXBc2 (bottom). Presented  

data were obtained from �ve treated mice in a single 

experiment, and sequence information was retrieved  

and analyzed from at least three mice at each indicated 

time point.
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antibody-resistant HIV-1YU2 escape variants (Fig. 1 B). For 

example, 14 d after starting PG16 therapy, all gp120 sequences 

analyzed carried mutations at position N160 or T162 that re-

move the epitope targeted by PG16 (Fig. 1 B). Sequential ad-

dition of 3BNC117 and 10–1074 selected for viral escape 

Failure to suppress viremia with sequential tri-mix admin-

istration suggested that this form of therapy selects for viral 

variants that are resistant to all three antibodies (Fig. 1 A). Con-

sistent with this idea, viral envelope sequence analysis at day 

0, 14, 28, and 42–49 revealed sequential development of speci�c 

Figure 2. Infection of humanized mice with  
HIV-1YU2 triple mutant (HIV-1YU2

TM2). (A) Viral loads  

in humanized mice infected with WT HIV-1YU2 (blue) and 

HIV-1YU2
TM2 (green) at day 34 after infection. P-value was 

determined using a two-sided Mann-Whitney U test. 

**, P < 0.001. Plot shows data of 30 infected mice of 1 

representative experiment of 2 performed. (B) Graph 

shows viral RNA copies/ml (y-axis) versus days after in-

fection (x-axis) for HIV-1YU2
TM2–infected humanized mice. 

Each black line represents a single mouse, and the red 

line represents the geometric mean. (C) env sequence 

analysis of individual mice that are shown in (B). Time of 

sequence analysis is indicated in days after infection. 

(D) Tri-mix (PG16, 3BNC117, 10–1074) therapy in mice 

infected with HIV-1YU2 (left) and HIV-1YU2
TM2 (right). 

Changes in viral load in log10 (y-axis) plotted against 

days after infection (x-axis) compared with baseline (day 0). 

Each black line represents a single mouse and the red 

line illustrates the mean. Treatment response in mice 

infected with HIV-1YU2 or HIV-1YU2
TM2 was analyzed in 

parallel in a single experiment and each group consisted 

of at least �ve individual mice (D).
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(Zolla-Pazner, 2005; Scheid et al., 2009). To determine whether 

these antibodies with limited activity (tier-1 strains only; here 

termed tier-1 neutralizing antibodies) are active against viruses 

that carry bNAb escape mutations, we assayed a panel of 34 tier-1 

neutralizing mAbs directed against the V2 or the V3 loop, the 

CD4bs, the CD4-induced site (CD4i), and gp41 (Scheid et al., 

2009; Pietzsch et al., 2010; Mouquet et al., 2011). Each of these 

antibodies was tested against WT HIV-1YU2 and bNAb-resistant 

variants of HIV-1YU2 with mutations that naturally arose in  

in vivo experiments (single mutations: N160K, N332K, and 

N280Y; HIV-1YU2 triple mutations: TM1-3; Fig. 4 B; Klein  

et al., 2012; Horwitz et al., 2013). Only one of the tier-1 neu-

tralizing antibodies showed activity against the WT HIV-1YU2 at 

a very high concentration (IC50 = 93 µg/ml; Fig. 4 B). In con-

trast, three V2 loop-, four V3 loop-, two CD4bs-, and one CD4i-

directed antibodies showed activity against the HIV-1YU2 mutant 

viruses with IC50s as low as 0.5 µg/ml (Fig. 4 B). The three V2 

variants that carry mutations in all three antibody target sites 

(Fig. 1 B; Klein et al., 2012; Horwitz et al., 2013). Thus, se-

quential triple bNAb therapy selects for HIV-1YU2 variants 

that are resistant to all three bNAbs.

To determine whether tri-mix resistant HIV-1YU2 retains 

infectivity we compared infection with WT HIV-1YU2 and a 

variant harboring the N160K, N332K, and G458D muta-

tion (HIV-1YU2
TM2). 34 d after infection, HIV-1YU2– and 

HIV-1YU2
TM2–infected mice showed geometric mean viral 

loads of 4.2 log10 and 5.42 log10, respectively (P = 0.0003;  

Fig. 2 A). Viremia was long lasting in HIV-1YU2
TM2–infected mice 

(Fig. 2 B) and in most cases the N160K, N332K, and G458D 

mutations were maintained even in the absence of antibody 

selection pressure (Fig. 2 C). Finally, HIV-1YU2
TM2–infected 

mice were resistant to tri-mix therapy (Fig. 2 D). We con-

cluded that HIV-1YU2 can escape from sequential tri-mix ther-

apy in vivo without measurable loss of infectivity or impaired 

viral �tness in humanized mice.

To determine whether chronically SHIVAD8-infected NHPs 

or HIV-1–infected humans harbor antibodies that might 

neutralize bNAb-resistant variants, we assayed plasma/serum 

samples for neutralizing activity against escape variants in vitro. 

Plasma samples from chronically SHIVAD8-infected macaques 

(Shingai et al., 2012, 2013) were tested against WT SHIVAD8 

and SHIVAD8 variants. The SHIVAD8 variants carried either  

an N332K mutation (SHIVAD8
N332K) that rendered the virus 

resistant to the bNAb 10–1074 or the G458D mutation 

(SHIVAD8
G458D) that strongly reduced (200-fold) sensitivity to 

the bNAb 3BNC117. In addition, we included an SHIVAD8 

variant that harbored both mutations (N332K-G458D; 

SHIVAD8
DM). Although plasma from 16 SHIVAD8-infected 

macaques showed varying levels of neutralizing activity against 

the WT virus SHIVAD8 (Fig. 3 A; ID50), a signi�cant increase 

in neutralizing activity was detected for bNAb-resistant vari-

ants that carried the G458D and the double N332K-G458D 

mutation (Fig. 3 B). Moreover, this e�ect was not speci�c for 

SHIVAD8 since even more striking di�erences were observed 

for WT HIV-1YU2 and HIV-1YU2 triple bNAb escape mutants 

TM1 (N160K, N332K, and N280Y) and TM2 (N160K, N332K, 

and G458D; Fig. 3, A and B). Thus, macaques chronically in-

fected with SHIVAD8 frequently carry antibodies that neutral-

ize the bNAb escape mutants studied.

To determine whether chronically infected humans also 

have similar antibodies, we tested a collection of 17 serum 

samples from HIV-1–infected individuals. Similar to macaques, 

puri�ed IgGs from infected humans showed little or no neu-

tralization against WT HIV-1YU2, but increased activity against 

HIV-1YU2
TM1 (Fig. 4 A; mean percentage of neutralization at 

100 µg/ml total IgG: 2.5 vs. 23.9; P = 0.0004, two-sided Mann-

Whitney U test). Thus, most humans infected with HIV-1 carry 

antibodies that have demonstrable in vitro neutralizing activity 

against the studied bNAb-resistant variants of HIV-1YU2.

Individuals infected with HIV-1 develop up to 60 di�erent 

clones of B cells, producing antibodies that have neutralizing 

activity against easy to neutralize (tier-1) HIV-1 strains but have 

weak or no activity against more resistant tier-2 primary isolates 

Figure 3. Increased neutralizing NHP serum activity against bNAb 
escape variants. (A) Table shows serum neutralization (ID50) of NHPs 

after established infection with SHIVAD8 (days post infection [PI] as indi-

cated in NHP ID). Neutralizing activity was measured against SHIVAD8 WT 

(gray), N332K, and G458D single mutants (blue), as well as an SHIVAD8 

double mutant (double; N332K and G458D, blue). NHP plasma was also 

tested against WT HIV-1YU2 (gray) and HIV-1YU2
TM1 (N160K, N332K, N280Y, 

blue) and HIV-1YU2
TM2 (TM2; N160K, N332K, G458D, blue). (B) Bars repre-

sent the mean and SEM of the respective data shown in A. Statistical 

analysis was performed using a Friedman test followed by Dunn multiple 

comparison test. Signi�cant differences compared with WT are indicated 

by asterisks (*, P < 0.05; **, P < 0.001; ***, P < 0.0001). All neutralizing 

activities were measured in duplicate.
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To determine whether antibodies that neutralize bNAb 

escape variants can also be elicited by vaccination, we analyzed 

plasma from NHPs immunized with YU2 gp140-F trimers 

(Sundling et al., 2010). Although plasma samples from the 

vaccinated animals showed little or no neutralizing activity 

against HIV-1YU2 (WT; Fig. 4 C), there was a signi�cant increase 

loop-directed antibodies were active against HIV-1YU2
N332K, 

HIV-1YU2
TM1, and HIV-1YU2

TM2. The four V3 loop-directed an-

tibodies showed activity against HIV-1YU2
N280Y, HIV-1YU2

N160K, 

HIV-1YU2
N332K, as well as all three HIV-1YU2

TMs. Finally, at least 

one of each of the antibodies targeting CD4bs and CD4i was 

active against the HIV-1YU2
TMs in vitro (Fig. 4 B).

Figure 4. Increased neutralizing activity against 
bNAb escape variants. (A) Graph shows percentage of 

neutralizing activity (y-axis) of purified IgG (µg/ml; 

x-axis) from 17 serum samples of HIV-1–infected indi-

viduals measured against WT HIV-1YU2 (left) or HIV-1YU2
TM1 

(right; N160K, N332K, N280Y). Individual samples and 

the mean are shown in black and red, respectively.  

(B) Table shows the IC50 antibody concentrations (µg/ml) 

for the indicated antibodies against HIV-1YU2 (WT),  

HIV-1YU2
TM1 (TM1; N160K, N332K, N280Y), HIV-1YU2

TM2 

(TM2; N160K, N332K, G458D), HIV-1YU2
TM3 (TM3; N162I, 

N332K, N279K), HIV-1YU2
N160K (N160K), HIV-1YU2

N332K 

(N332K), and HIV-1YU2
N280Y (N280Y). The epitopes targeted 

by the antibodies are indicated on the left and in pa-

rentheses. (C) Values re�ect ID50 neutralization titers 

against HIV-1YU2 (WT), HIV-1YU2
TM1 (TM1), and HIV-1YU2

TM2 

(TM2) for plasma samples from two macaques (F124, 

F128) before and after immunization with gp140-F (YU2). 

(D) IC50 concentrations (µg/ml) against HIV-1YU2 and  

HIV-1YU2 mutants for six randomly selected V3 loop-

directed mAbs obtained from gp140-F immunized  

macaques as described in B. Neutralization activity is 

color-coded and IC50-values of mAbs (B are D) are high-

lighted in red (<2 µg/ml), orange (2–20 µg/ml), yellow 

(>20 µg/ml), and white (IC50 is not reached at concentra-

tion tested). ID50-titers of plasma are highlighted in red 

(>400), orange (200–400), yellow (50–200), and white 

(<50). Neutralizing activities of plasma samples, anti-

bodies, or puri�ed IgGs were measured in duplicate.



2366 Common anti–HIV-1 antibodies target viral escape variants | Klein et al.

mice (2 animals) carried mutations in the same region (Fig. 6 B, 

bottom). In the case of HIV-1YU2–infected mice treated with 

1–79, we also detected mutations in the V3 crown in some 

but not all of the sequences in the 3 animals we analyzed, in-

dicating incomplete selection (Fig. 6 C). In contrast, all se-

quences obtained from HIV-1YU2
TM2–infected mice treated 

with 1–79 harbored the same K305R mutation (Fig. 6 C).

HIV-1YU2
TM2 is an engineered virus that carries bNAb  

escape mutations that naturally occurred in mice treated with 

single antibodies (Klein et al., 2012; Horwitz et al., 2013). How-

ever, it is not a naturally arising strain that might also contain 

compensatory mutations as part of a heterogeneous swarm.  

To determine whether combination immunotherapy with a 

bNAb and a tier-1 neutralizing antibody can delay or suppress 

emergence of resistant HIV-1 variants during an established 

infection with a naturally arising strain, we infected human-

ized mice with HIV-1YU2 (WT) and treated them with the 

bNAb 10–1074 alone (Fig. 7 A) or in combination with one 

of the tier-1 neutralizing antibodies 10–188 (Fig. 7 B) or 1–79 

(Fig. 7 C). Notably, the humanized mice used in our experi-

ments are unable to make a signi�cant humoral immune  

response to the HIV-1 envelope, and therefore lack any autol-

ogous neutralizing antibodies (Baenziger et al., 2006; Klein  

in neutralizing activity against the HIV-1YU2 triple mutants 

(HIV-1YU2
TM1, HIV-1YU2

TM2; Fig. 4 C). To determine whether 

macaque antibodies recognizing the V3 loop might account 

for this activity, we tested 6 di�erent anti-V3 mAbs isolated 

from these immunized macaques against WT HIV-1YU2, 

HIV-1YU2
N280Y, HIV-1YU2

N160K, HIV-1YU2
N332K, and two 

HIV-1YU2
TMs (Fig. 4 D). 2 of the 6 antibodies had low levels of 

activity against HIV-1YU2 (WT; IC50s of 33.8 and 49.6 µg/ml), 

whereas the other four did not reach an IC50 when measured 

up to a concentration of 50 µg/ml. In contrast, 5 out of these 6 

V3 loop-directed antibodies showed activity against the  

HIV-1YU2 single mutants. Moreover, neutralization activity 

was strongly increased against both HIV-1YU2
TMs as re�ected 

by IC50s in the range of 1 µg/ml (Fig. 4 D). Thus, although 

tier-1 neutralizing human and macaque anti–HIV-1 antibod-

ies do not neutralize WT HIV-1YU2, they are active against 

bNAb escape variants in TZM-bl assays in vitro.

Of the tested human tier-1 neutralizing antibodies, 10–188 

and 1–79 demonstrated the best neutralizing activity against 

the triple mutated HIV-1YU2 (Fig. 4 B). Both antibodies 

recognize the crown of the V3 loop. Notably, 10–188 and 

1–79 bind to di�erent regions of the V3 loop: 1–79 targets 

the hydrophobic V3 core at aa 307, 309, and 317 (CRA-

DLE-type; Burke et al., 2009; Almond et al., 2010; Jiang  

et al., 2010; and unpublished data) and 10–188 targets the V3 

-turn at aa 312–314 (LADLE-type; Burke et al., 2009). To 

determine, whether similar antibodies are present in NHPs 

chronically infected with SHIVAD8, we measured reactivity of 

plasma samples against selected peptides by ELISA (Fig. 5; 

Totrov et al., 2010). All tested NHP sera showed activity 

against both peptides, demonstrating the presence of CRA-

DLE- and LADLE-type antibodies in SHIVAD8-infected 

NHPs (Fig. 5).

To examine the possibility that HIV-1–directed tier-1 

neutralizing antibodies can actively suppress viremia in vivo, 

we infected humanized mice with HIV-1YU2 (WT) or with 

HIV-1YU2
TM2. Infected mice were treated with either of the 

tier-1 neutralizing human V3 loop-directed antibodies 10–188 

or 1–79. Although only a small e�ect on the viral load was 

detected in HIV-1YU2–infected mice (Fig. 6 A, left), a reduc-

tion in viremia was observed in mice infected with the mutant 

virus HIV-1YU2
TM2 (Fig. 6 A, middle and right). We conclude 

that the tier-1 neutralizing anti-V3 loop antibodies 10–188 

and 1–79 do not alter the viral load in HIV-1YU2–infected 

mice, but can suppress HIV-1YU2
TM2 infection in vivo.

To determine whether 10–188 and 1–79 exerted selec-

tive pressure on HIV-1YU2 and/or HIV-1YU2
TM2, we cloned 

and sequenced cDNA encoding gp120 from HIV-1YU2– and 

HIV-1YU2
TM2–infected mice treated with these antibodies. 

Although 10–188 showed little activity against HIV-1YU2  

in vitro (IC50 93 µg/ml) and had no measurable e�ect on the 

viral load in HIV-1YU2–infected mice, 2 out of the 4 mice 

showed mutations in the -turn in the crown of the V3 loop, 

which is the epitope targeted by 10–188 (Zolla-Pazner and 

Cardozo, 2010; Mouquet et al., 2011; Fig. 6 B, top). In addition, 

all gp120 sequences analyzed from HIV-1YU2
TM2–infected 

Figure 5. Presence of V3-speci�c antibodies in plasma of SHIVAD8-
infected NHPs. Values re�ect OD405 measurements (values >0.3 were 

considered positive). PI, post infection (days). mAbs were measured at  

10 µg/ml. Plasma samples were measured at a titer of 1:100. ID50 titers of 

plasma are highlighted in red (>2.5), orange (1–2.5), and yellow (0.3–1).
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Figure 6. Suppression of HIV-1YU2
TM2 but not HIV-1YU2 viremia by V3-loop antibodies 10–188 and 1–79. (A, left and middle) Graphs show changes in viral 

load in response to 10–188 or 1–79 treatment in log10 (y-axis) plotted against days after infection (x-axis) compared with baseline (day 0) for mice infected with HIV-1YU2 

or HIV-1YU2
TM2. Each black line represents a single mouse, and the red line illustrates the mean. Blue colored symbols indicate a viral load measurement below 200 copies/ml.  

(A, right) Statistical analysis to determine group differences between HIV-1 YU2 (green) and HIV-1YU2
TM2 (orange) using repeated measures ANOVA; 10–188, P = 0.003; 

1–79, P = 0.032. (B and, C) gp120 sequences obtained from HIV-1YU2– or HIV-1YU2
TM2–infected mice treated with 10–188 (B) or 1–79 (C) between days 14 and 28. Residues 

in HIV-1YU2 (top) were numbered according to HXBc2 (bottom). Treatment response of 10–188 and 1–79 in mice infected with HIV-1YU2 or HIV-1YU2
TM2 was analyzed in a 

single experiment in which each group consisted of at least four individual mice and sequence data were obtained from at least two mice per group.
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make signi�cant contributions to control HIV-1 infection 

when combined with potent bNAbs in vivo.

Most individuals infected with HIV-1 develop antibodies 

that neutralize autologous but not primary heterologous viral 

strains (Doria-Rose et al., 2009; Simek et al., 2009). As a result 

of the rapid rate of viral evolution in the host, the e�ect of 

these antibodies on e�ectively controlling viremia is limited 

(Schmitz et al., 2003; Miller et al., 2007; Gau�n et al., 2009a,b; 

Huang et al., 2010). Nevertheless, these antibodies put selective 

pressure on HIV-1 as indicated by the emergence of antibody-

resistant escape variants (Wei et al., 2003). Escape from tier-1 

neutralizing antibodies frequently involves changes that indirectly 

conceal the epitope (Ly and Stamatatos, 2000; Wei et al., 2003; 

Pinter et al., 2004; Blish et al., 2008; Bunnik et al., 2008; 

et al., 2012). In contrast to monotherapy with any of the three 

antibodies alone (Figs. 6 A and 7 A), both combinations pro-

duced a prolonged and sustained drop in viremia (Fig. 7, 

B–D). Moreover, the combination of 10–1074 and 1–79 con-

tinued to suppress viremia below the limit of detection, with 

no viral escape during 6 wk of therapy (Fig. 7 C). Escape from 

10–1074 monotherapy was associated with N332K/S in 6 

out of 6 mice analyzed (Fig. 7 E). When rebound occurred 

with the combination of 10–1074 and 10–188, it was associ-

ated with selection of mutations in both the 10–1074 and 

10–188 target sites at position 332 and the -turn of the V3 

crown (position 312–315), respectively (Fig. 7 F).

We conclude that tier-1 neutralizing antibodies with little 

demonstrable activity against primary isolates in vitro can 

Figure 7. Synergy between tier-1 neu-
tralizing V3 antibodies (10–188 or 1–79) 
and a bNAb (10–1074) in controlling 
viremia in vivo. (A–D) Graphs show changes 

in viral load (in log10; y-axis) in HIV-1YU2–

infected mice plotted against days after start-

ing antibody treatment (x-axis) with 10–1074 

alone (A), the combination of 10–1074 and 

10–188 (B), and the combination of 10–1074 

and 1–79 (C). Individual mice are plotted as 

black lines, and the mean is shown in red. 

Blue symbols indicate a viral load measure-

ment below 200 copies/ml. (D) Changes of 

log10 viral loads (mean and SEM) of mice 

treated with 10–1074 (gray), 10–1074 +  

10–188 (blue), and 10–1074 + 1–79 (green). 

Signi�cant differences between treatment 

groups were determined by using repeated 

measures ANOVA with a Bonferroni post-hoc 

test. *, P < 0.05; **, P < 0.001; ***, P < 0.0001). 

Animals that died before day 42 after treat-

ment start were excluded from statistical 

analysis. (E) gp120 sequences 14–28 d after 

the start of 10–1074 treatment. (F) gp120 

sequences 35–49 d after the start of treat-

ment with 10–1074 and 10–188. Residues in 

HIV-1YU2 (top) were numbered according to 

HXBc2 (bottom). Treatment combinations 

were analyzed on 6–10 animals per group in a 

single round experiment. Sequence data were 

obtained from at least �ve individual mice of 

each analyzed group.
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Allergy and Infectious Disease (NIAID) facility and cared for in accordance 

with standards of the American Association for Accreditation of Laboratory 

Animal Care (AAALAC) in AAALAC-accredited facilities. All animal proce-

dures were performed according to NIAID animal protocol LMM32, ap-

proved by the Institutional Animal Care and Use Committees of NIAID/NIH. 

The animals used for immunizations were housed at the AAALAC-accredited 

Astrid Fagraeus Laboratory animal facility in Stockholm in compliance with 

the guidelines of the Swedish Board of Agriculture. Isolation of mAbs from 

NHPs was performed essentially as previously described (Sundling et al., 

2012a) but by sorting for total Env-speci�c memory B cells and using opti-

mized primers for ampli�cation of NHP VDJ sequences (Sundling et al., 

2012b). For antibody expression, equal amounts of heavy- and light-chain 

plasmid DNAs were transfected into FreeStyle 293F cells and the secreted 

IgGs were puri�ed by protein A–Sepharose columns (GE Healthcare). The 

speci�cities of these V3 loop-directed antibodies were determined by ELISA 

binding analyses using a set of di�erent YU2 Env probes.

Humanized mice. NOD Rag1/ IL2RNULL mice were humanized with 

hematopoietic stem cells (HSCs), as previously described (Klein et al., 2012). 

In brief, human fetal livers were procured from Advanced Bioscience Re-

sources, Inc. and HSCs were isolated using a CD34+ isolation kit (Stem Cell 

Technologies, Inc.). Mice (NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ) were ob-

tained from The Jackson Laboratory and bred and maintained at the Com-

parative Bioscience Center of The Rockefeller University. Between 1–5-d-old 

mice were irradiated with 100 cGy and injected with 2 × 105 human HSCs. 

HSCs used to reconstitute the mice were obtained from human fetal liver 

tissues of 12 di�erent donors. In the experiments shown, up to 12 humanized 

mice shared the same donor. Engraftment was evaluated by FACS analysis of 

the peripheral blood as previously described (Klein et al., 2012) and mice 

with successful reconstitution of human lymphocytes were challenged with 

HIV-1YU2 or HIV-1YU2
TM2. All experiments were performed under approval 

of the Institutional Review Board and the Institutional Animal Care and Use 

Committee of The Rockefeller University.

HIV-1 infection. HIV-1YU2 and HIV-1YU2
TM2 were produced by transiently 

transfecting HEK 293T/17 cells using a construct consisting of HIV-1NL4/3 

backbone carrying the HIV-1YU2 envelope (Zhang et al., 2002). HIV-1YU2
TM2 

harbors the mutations N160K, N332K, and G458D that were introduced by 

site-directed mutagenesis using the QuikChange Site-Directed Mutagenesis 

kit (Agilent Technologies). The concentration of the virus was determined by 

measuring p24 using the Alliance HIV-1 p24 Antigen ELISA kit (Perkin-

Elmer). Humanized mice were infected by intraperitoneal injection of  

HIV-1YU2 or HIV-1YU2
TM2 viral supernatant containing 110 ng of p24.

Production and administration of mAbs. For mouse treatment experi-

ments we used the following mAbs: PG16 (V1/V2; Walker et al., 2009),  

10–1074 (V3-stem; Mouquet et al., 2012), 3BNC117 (CD4bs; Scheid et al., 

2011), 10–188 (V3-crown; Mouquet et al., 2011), and 1–79 (V3-crown; 

Scheid et al., 2009). With the exception of 3BNC117, all antibodies were 

produced by transiently transfected HEK 293-6E cells with equal amounts of 

immunoglobulin heavy and light chain expression vectors. After 7 d, the su-

pernatant was harvested and antibodies were concentrated by ammonium 

sulfate precipitation. IgG was puri�ed with Protein G–Sepharose 4 Fast Flow. 

3BNC117 was produced in CHO cells by Celldex Therapeutics, Inc. All an-

tibodies were �ltered (Ultrafree-CL Centrifugal Filters, 0.22 µm; Millipore) 

and administered s.c. to humanized mice. For treatment of HIV-1–infected 

mice, 1 mg (each) of 3BNC117, PG16, and 10–1074 was injected as loading 

dose followed by 0.5 mg of each antibody/mouse twice a week. 10–188 and 

1–79 were injected at 4 mg/mouse for the loading dose followed by 2 mg/

mouse twice a week.

HIV-1 plasma viral load. Plasma viral load in HIV-1–infected humanized 

mice was determined as previously described (Klein et al., 2012).

HIV-1 envelope glycoprotein sequence analysis. Total RNA from 100 µl 

EDTA-plasma was extracted using the MinElute Virus Spin kit (QIAGEN) 

Bosch et al., 2010; O’Rourke et al., 2010). For example, the 

glycan at position N332 can shield the V3 loop from tier-1 

neutralizing anti-V3 loop antibodies, but does not alter the 

antibody target sequence directly (Wei et al., 2003; McCa�rey 

et al., 2004). Similarly, glycans at position N276 or N301 can 

shield the CD4bs from tier-1 neutralizing anti-CD4bs anti-

bodies (Koch et al., 2003; McGuire et al., 2013). These changes 

are often favored over direct changes in the target site that 

might interfere with viral �tness. For example, a glycan can be 

added to shield the V3 loop without reducing infectivity. This 

shielding mechanism appears to be preferred over escape mu-

tations in the highly conserved crown of the V3-loop that 

could interfere with co-receptor binding and alter viral �tness 

(Zolla-Pazner and Cardozo, 2010). However, the same gly-

cans that shield V3 also make important contributions to the 

epitopes of some of the most potent bNAbs, such as 10–1074 

or PGT121 (Walker et al., 2011; Mouquet et al., 2012). These 

antibodies have profound e�ects on viremia in NHPs but less 

so in immune compromised humanized mice when used as a 

single reagent (Klein et al., 2012; Barouch et al., 2013; Shingai 

et al., 2013; Fig. 7 A). Our data suggest that one of the reasons 

that escape from 10–1074 or PGT121 immunotherapy in 

macaques is di�cult might be because the autologous anti-

bodies, which are present in macaques but not in humanized 

mice, prevent escape by the N332 mutation. Interestingly, several 

of the 10–1074-escape variants in SHIVAD8-infected NHPs 

carried a mutation that removes the potential N-linked gly-

cosylation site (PNGS) at position 332 but also generated a 

new PNGS at position 334 (Shingai et al., 2013). Therefore, 

the glycan was shifted from N332 to N334, allowing escape 

from 10–1074 as well as retaining a glycan at the V3-stem that 

is likely to protect the V3-loop from autologous antibodies.

Our experiments indicate that HIV-1 infection is in part 

more readily controlled during immunotherapy in immuno-

competent hosts because escape from bNAbs can create holes 

in the glycan shield that render the virus susceptible to other-

wise ine�ective autologous antibodies that are present in nearly 

all infected individuals. Thus, although antibodies with tier-1 

neutralizing activity, such as V3 loop-directed monoclonals 

(Hioe et al., 2010), generally display weak and sporadic neu-

tralizing activity against most tier-2 viruses, they can e�ectively 

synergize with bNAbs in anti–HIV-1 immunotherapy.

MATERIALS AND METHODS

Human samples. Serum samples from HIV-1–infected individuals were 

collected under informed consent and in accordance with the Institutional 

Review Board (IRB; protocol number 09–281, University of Cologne, Co-

logne, Germany). All samples were heat-inactivated for 1 h at 56°C and the 

IgG fraction was puri�ed with Protein G–Sepharose 4 Fast Flow (GE Health-

care). Sterile �ltration and bu�er exchange to PBS was performed for all 

IgGs before testing for neutralizing activity.

Nonhuman primate samples. Plasma samples were obtained from non-

human primates (NHPs; Macaca mulatta) 90–198 wk after infection with 

SHIVAD8 (Shingai et al., 2012, 2013) or from uninfected NHPs (Macaca  

mulatta) before and after immunization with soluble YU2 gp140-F trimers 

(Yang et al., 2002), as previously described (Sundling et al., 2010). SHIVAD8–

infected macaques were housed in a biosafety level 2 National Institute of 
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