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Challenges in Hypertext Categorization

• Hypertext documents’ authorship is highly diverse
• Some web pages are simply lists of hyperlinks and contain 

no direct information themselves
• Links contain semantic information which will be lost 

when they are treated as simple text
• Links are noisy, some links lead to related documents, but 

others don’t 



Data Set for Evaluation
• IBM Patent server database

– 3 first levels and 12 leaves. For each leaf, 630 
documents are used for training, 300 for testing

• YAHOO topics
– 13 top classes, 20,000 documents are used for the link 

locality analysis. 900 documents are used for the 
hyperlink only linkage enhanced analysis



TAPER: Taxonomy and Path Enhanced Retrieval
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Features of TAPER

• Training data are split into 2 parts. Some of them are used 
for feature selection, others are used for create the classifiers

• TAPER is a hierarchical categorizer, which maintains a 
topic tree and there is a classifier on each internal node

• Feature Selection: Terms are ordered by decreasing ability 
to separate the classes, then a prefix of the sorted list is 
picked which can give the best classification accuracy

• Class Models: Different ways a classifier uses to decide 
which child to choose. Bernoulli Model is generally better 
than the binary one



Feature Selection and Class Models



Results of TAPER

• The metric is error rate, which is the percentage of 
documents misclassified

• Reuters: Traditional text corpus
– Pretty good, 13% error

• IBM Patent Database
– Worse, 36% error

• Yahoo
– Horrible, 68% error



Linkage Analysis

• Hypertext documents are not self-contained
• When training a classifier, link graph should also be part of 

the input
• When evaluating a document, the neighborhood of the 

document should be part of the input 
• Let C be set of the classes, G be the link graph, T be the  

collection of text of the all the documents
The goal is to choose C such that Pr(C|G,T) is maximum



Absorbing Neighborhood Text

• Data set for evaluation: IBM Patent Database
• Options:

– Local: Features of TAPER are terms of this document
– Local+Nbr: Features of TAPER are terms from both the 

local document and its neighbors, including all the in-
neighbors and out-neighbors

– Local+TagNbr: Features are from the same documents 
as in Local+Nbr. But terms from neighbor text 
distinguished from local terms 



Result of Absorbing neighborhood text

• Error Rate
– Local: 36%
– Local+Nbr: 38.3%
– Local+TagNbr: 38.2%



Explanation of the Results

• Why does neighbor text do worse
– Frequent cross boundary linkage between topics

• Why did not tagging help
– Tagging split a term into many forms and make it rare
– The heuristic of feature selection and learning of class 

models do poorly with many noisy seldom appearing 
features



The Completely Supervised Case of 
Radius-one Linkage Enhanced Analysis

• Assumption: All neighbor classes are known
• Class information from neighbors rather than their original 

text are used as features of TAPER
• The basic idea is still applying Bayesian Law:

For document Di
– Choose class Ci to maximize Pr(Ci|Ni), where Ni represents the 

collection of of all neighbor documents with known classes
– Applying Bayesian law, the goal is turned into to maximize 

Pr(Ni|Ci)Pr(Ci)



Options of the above Approach

• Text: Only the text of the documents(IBM patent 
Database are used as features of TAPER

• Link: The class names of neighbor documents are the 
only features. Class names are paths in a topic hierarchy 
e.g. 29/X/Y/Z from [29] [Metal working] [X] …

• Prefix: All prefixes of paths are used as features
• Text + Prefix: Two copies of TAPER are run. One on 

local text, one on prefixes. The joint distribution is the 
product of their marginal distribution



Results of the above Approach

• Error Rate:
– Text: 36%
– Link: 34%
– Prefix: 22.1%
– Text+Prefix: 21%

• Conclusion
– Much better performance
– The major benefit is from extracting prefixes of links



The Partially Supervised Case of 
Radius-one Linkage Analysis

• In the real world, only some or none of the neighbor 
classes are known

• Neighbors whose classes are known: use the class labels as 
the sole feature 

• Neighbors whose classes are not known: Using the 
relaxation labeling technique 



Relaxation Labeling

• Given a document d, construct the neighborhood graph 
around it

• Classify the neighbor document using their local text
• Iterate until convergence

– Recompute the class for each document using both the local text 
and the class information of the neighbors

• The relaxation is guaranteed to converge to a consistent 
state provided it is initiated “close enough” to such a state



Options of the above approach

• Data Set for evaluation: IBM Patent Database
• Options:

– Text: Only the text of the documents are used as 
features of TAPER

– Link: Only the class information of neighbor 
documents are used as features

– Text+Link: Two TAPERs are run on local text 
information and link information

– Does Link here actually mean Prefix?



Results of the above Approach



Conclusion from the Results

• Adding link information improves accuracy
• Even when 0% neighbors have known classes, it is 

beneficial to add link information
• Text+Link always beats Link, but the margin is small 

when a large fraction of neighbors have known classes
• Text+Link is more stable than Link



Problems with the Yahoo topics

• Yahoo! documents are more diverse than the Patent’s
• The link graph of the Yahoo! documents are not complete

– Only 28% have some out-links to some Yahoo! 
document

– Only 19% have some in-links from some Yahoo! 
document

– A larger fraction of documents have links to totally 
unrelated document

– Co-Citation is popular in Yahoo! documents



Radius-two Linkage Analysis:Bridges

• Idea: Documents cited by many common documents are 
likely to be in the same topic

• A “Bridge” is a document that hint two or more other 
documents are in the same class

• There are II, IO, OO, OI bridges, IO bridges is more 
meaningful

• IO- Bridge: B is a IO-bridge for D1 and D2 iff there are 
links from B to both D1 and D2



Are IO-Bridges useful?



How to get the graph

• For each page D in Yahoo!, consider all the pages Di that 
point to it

• Each page Di is regarded as a sorted list of out-links
• For each links D’ in Di check whether the class of D and 

D’ are the same, if so, they are called coherent
• For each offset D, calculate the percentage of coherent 

pairs for which (Pos(D’)- Pos(D) )i = D for some Di,  
D/D appears at Pos(D)/Pos(D’) in the out-link list of Di 



Comments on this graph

• Interesting things in the graph
– The bridge is not pure, the non-coherent rate is always 

significant
– Peak does not appear at offset 0
– The curve is quite flat, yet the coherent rate around 

offset 0 is somewhat higher

• Questions about the graph
– What is it not symmetric?
– Why the coherence is not 100% at offset 0



Locality

• There are often several segments in bridges, the out-links 
in each segment point to documents in the same topic

• Closer links have larger tendency to point to documents in 
the same topic

• Trading coverage for accuracy
A class C is treated as a feature of document D if there 
is a IO-bridge B which has 3 out links point to D1 D D2
such that the classes of D1 and D2 are both C , and 
there are no out links between D1 and D2 point to a 
known class page



Options of the above Approach

• Data set for evaluation: A small subset of Yahoo! (about 
900 documents, each of them is IO-bridged to some other 
Yahoo! pages)

• Text: Again, only the text of local documents are features
• IO-Bridge: For a given document D, all prefixes of the 

class paths of all the documents which are IO-bridged to D 
are treated as features of the document. (In testing, only 
prefixes from the training set is considered)

• IO-Bridge+Locality: Refer the previous slide



Results of the above Approach

• Error Rate:
– Text: 68%
– IO-Bridge: 25%
– IO+locality: 21%

• Coverage:
– Text: 100%
– IO-Bridge: 75%
– IO+locality: 62%



Comments of this paper

• First paper to combine textual / linkage features for 
hypertext categorization

• Good ideas (treating links as features, path prefixes)
• Inconsistent data set for different approaches
• Some results are unclear
• Some terms and formulas are unclear


