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Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in under-

sampled tomographic systems, such as digital breast tomosynthesis �DBT�.
Methods: The algorithm controls image regularity by minimizing the image total p variation

�TpV�, a function that reduces to the total variation when p=1.0 or the image roughness when

p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance,

are enforced by projection onto convex sets. The fact that the tomographic system is undersampled

translates to the mathematical property that many widely varied resultant volumes may correspond

to a given data tolerance. Thus the application of image regularity serves two purposes: �1� Reduc-

tion in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the

minimum image TpV for fixed data tolerance, and �2� traditional regularization, sacrificing data

fidelity for higher image regularity. The present algorithm allows for this dual role of image

regularity in undersampled tomography.

Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets.

The DBT cases include one with microcalcifications and two with masses.

Conclusions: Results indicate that there may be a substantial advantage in using the present image-

reconstruction algorithm for microcalcification imaging. © 2009 American Association of Physi-

cists in Medicine. �DOI: 10.1118/1.3232211�

Key words: digital breast tomosynthesis, iterative image-reconstruction, total-variation, non-

convex optimization

I. INTRODUCTION

Digital breast tomosynthesis �DBT� is an emerging x-ray im-

aging modality that aims at improving the effectiveness of

mammographic screening without an increase in radiation

dose. DBT provides partial tomographic information that

aids in reducing the impact of overlapping tissue structures

on tumor detection.
1,2

A key component of the system is the

image-reconstruction �or synthesis� algorithm. Data acquired

in DBT are far from sufficient for “exact” tomographic im-

age reconstruction, which limit the effectiveness of single-

pass algorithms. Such algorithms are generally derived from

algorithms that assume complete tomographic data, and they

generally introduce artifacts in the DBT images. Nonethe-

less, one-pass algorithms such as filtered backprojection

�FBP�, modified FBP, and matrix-inversion methods are em-

ployed to produce images. A thorough investigation on DBT

image reconstruction algorithms,
3–5

showed that iterative al-

gorithms present many advantages over one-pass algorithms.

Reasons for this include �1� iterative algorithms generally

put milder assumptions on the “missing” data; most FBP

algorithms set missing views to zero, which is an impossi-

bility for projection imaging, and �2� iterative algorithms al-

low for physical constraints to be easily incorporated such as

physical borders of the object, and valid range for x-ray at-

tenuation values. Here, we investigate iterative image-

reconstruction in DBT based on image total p-variation

�TpV� minimization.
6,7

Investigation of existing iterative algorithms applied to

DBT has been performed in Refs. 3–5. These references

cover the principal iterative algorithms used in tomographic

image reconstruction, demonstrating their performance on

various imaging features pertaining to DBT. Maximum like-

lihood methods and variations in the algebraic reconstruction

technique �ART� are studied. These iterative algorithms,

however, may not be ideally suited to image reconstruction

in DBT. Generally speaking, iterative algorithms have been

designed to work efficiently for scanning systems where the

projection data are complete, or nearly complete, but of low

quality. For example, in most nuclear medicine imaging sys-

tems, the collected projection data are usually fully sampled

allowing for “exact” inversion, at least theoretically, but the

data are often corrupted by high levels of noise. As a result,

an iterative algorithm is often employed. DBT scanning is

challenging for image-reconstruction algorithms in a differ-

ent way. The data are of high quality �low noise�, but they

are radically incomplete. This incompleteness means that

there may be many, very different, candidate attenuation dis-

tributions that agree with the available data. In fact, the re-

cent interest in compressive sensing
8,9

poses the extreme

limit of the latter situation: Namely, one can obtain exact
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image-reconstruction from “perfect” quality data that is un-

dersampled. In this article, we adapt an algorithm,
10

which

we have developed for investigating compressive sensing in

tomographic image reconstruction, to the DBT scanning sys-

tem.

Iterative image-reconstruction algorithms aim to mini-

mize an objective function that combines a data fidelity term

and a regularization term. The overall picture is that there is

a trade-off between the two terms. When the weight on the

regularization term is small, the resulting image yields data

that are “close” to the available data, but it may contain

conspicuous artifacts due to noise or other inconsistencies in

the data. When the weight on the regularization term is large,

the resulting image will be regularized at the expense of

faithfulness to the data. This picture applies to the scanning

situation where the data are complete but of low quality. For

incomplete data scans, however, this trade-off picture is too

simple. One of the basic properties of a tomographic system

that collects incomplete projection data is that there is not a

unique image that corresponds to the available projection

data. As a result, regularization of the image takes on two

roles: �1� Selection of a unique image among those that agree

with the projection data and �2� the traditional role where the

image is regularized while relaxing consistency with the

available data. In the first role, the image regularization is

lowered while the image is constrained to a given data agree-

ment. In the second role the data constraint on the image is

relaxed, allowing for further minimization of the image regu-

larization.

In our previous work, the image reconstruction algorithm

employed projection onto convex sets �POCS� to enforce a

data consistency constraint as well as other physical con-

straints such as positivity, and steepest descent was used to

minimize the regularization term. There was an adaptive el-

ement introduced to control the relative step sizes of the

POCS and steepest descent components of the algorithm,

hence the algorithm is called adaptive steepest descent-

POCS �ASD-POCS�.10
The ASD-POCS algorithm allows for

the separation of the two roles for the regularizer in tomog-

raphic image reconstruction from incomplete projection data.

Our previous work was focused on compressive sensing in

tomography and was restricted to �1-based regularizers, and

algorithm efficiency was a secondary concern.

In this article, we break up the pieces of the ASD-POCS

algorithm and reassemble them into a simplified, practical

image-reconstruction algorithm that we apply to DBT.

The practical aspect refers to the fact that we aim to ob-

tain useful images within 10–20 iterations, and the simplifi-

cation of the algorithm refers to a reduction in the number of

algorithm parameters to only those that have a significant

impact on the image within the first few iteration steps. Al-

though we provide a specific algorithm here, we do not claim

that it is optimal; there are likely many ways to reassemble

the ASD-POCS algorithm pieces that yield useful tomogra-

phic images. As a result, we refer to ASD-POCS as a frame-

work instead of a single algorithm. Few quantitative com-

parisons are made as such detailed comparisons make sense

only when a particular scan geometry, set of reconstruction

parameters, and image regularizer is selected. Instead, im-

ages are shown for ranges of algorithm parameters to reveal

their impact on the visual properties of the reconstructed im-

ages.

Having said this, we have applied the ASD-POCS algo-

rithm as reported in Ref. 10 to projection data from a nu-

merical simulation of DBT.
11

The computer phantom em-

ployed, reported in Ref. 12, was specifically designed for

image-reconstruction algorithm comparison in DBT. The use

of numerical phantom data, where the truth is known, facili-

tates the quantitative comparison of algorithms. The ASD-

POCS algorithm which performed image reconstruction by

solving a constrained, total-variation �TV� minimization

problem appears to have some significant advantage over

currently used algorithms. However, it should be pointed out

that the test phantom, as with most numerical phantoms, is

piecewise constant, which tends to favor TV minimization.

The remainder of this paper is organized as follows. Sec-

tion II describes the general data model for iterative image-

reconstruction in x-ray based tomography, Sec. III motivates

the need for a new type of iterative algorithm for incomplete

scanning configurations such as DBT, Sec. IV presents an

image-reconstruction algorithm for DBT derived within the

ASD-POCS framework, and Sec. V demonstrates the image-

reconstruction algorithm with actual DBT case data that con-

tain both microcalcifications and masses.

II. SYSTEM MODEL AND IMAGE
RECONSTRUCTION

We describe the system model for x-ray tomography for

which we develop the image-reconstruction algorithm from

the ASD-POCS framework. On the one hand, the presenta-

tion is quite general in that the image-reconstruction algo-

rithm can be applied to a wide class of linear system models.

On the other hand, many aspects of the algorithm implemen-

tation are quite specific. For example, the representation of

the imaging volume, i.e., voxel shape, is designed with the

DBT scan in mind. In this introductory section, we aim the

discussion toward general x-ray tomography, but we specify

the particular geometry and implementations used here to

obtain the DBT results.

DBT has undergone much development recently, and

there are two main configurations being pursued. Most com-

panies working on DBT are developing variations in a

swinging x-ray source, while XCounter is proposing a linear

x-ray movement system. The common denominator for DBT

systems is that projection data are acquired over a limited

number of angles with respect to a full, circular tomographic

scan as acquired in CT. For the present study, we perform

volume reconstruction from data acquired by a DBT proto-

type developed at Massachusetts General Hospital in col-

laboration with General Electric Healthcare. The scanner

configuration and properties are specified in Ref. 3, but we

reiterate the geometric configuration here. As shown in Fig.

1, the breast is compressed to a thickness of 3–8 cm on a

carbon-fiber tray protecting the fixed, flat-panel detector. The

x-ray source is moved on an arc, centered on point h
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=21.7 cm above the detector, and with radius of R

=44.3 cm. The detector is composed of an array of 1800 �

2304 detector bins with width 100 µm, and its physical di-

mensions are W=180.0 mm�L=230.4 mm. The number of

projections is 11, and they are approximately equally spaced

along the 50° arc. In the article we use the term “in-plane” to

refer to xy planes, parallel to the detector, and the term

“depth” to refer to the z direction, perpendicular to the de-

tector.

The data at each detector bin can be approximately related

to the line integral of the breast x-ray attenuation map,

g�s,u,v� =� d�f�r�0�s� + ��̂�s,u,v�� , �1�

where the source position follows

r�0�s� = �0,R sin s,R cos s� , �2�

and the detector bin locations are described by

d��u,v� = �u,v − L/2,− h� . �3�

The unit vector �̂�s ,u ,v� points from x-ray source to detector

bin

�̂�s,u,v� =
d��u,v� − r�0�s�

�d��u,v� − r�0�s��
. �4�

The data model in Eq. �1� involves integration of the con-

tinuous object. However, for the majority of iterative image-

reconstruction algorithms further approximation is necessary

because these algorithms generally apply to only finite linear

systems and as a result the imaging volume must have a

finite representation.

For the discussion below this imaging equation is con-

verted to a discrete, linear system,

Mf� = g̃ . �5�

The image vector f� is a finite set of coefficients specifying

the particular combination of basis elements, which in this

case are voxels. The available set of projection data g̃ will, in

general, have a different size than the set of image basis

elements. The system matrix M approximates the continuous

line integration of Eq. �1�. The particular form of M depends

on how the integration approximation is formulated and on

the choice of image basis functions. For the current work, we

employ the standard voxel representation of the imaging vol-

ume. The choice of voxel dimensions typical in DBT are

asymmetric. For specifying the voxel size, the in-plane res-

olution is taken to be the detector resolution—in this case

100 µm. The depth resolution, however, is about tenfold

lower. In previous work, the voxel size has been taken as

0.1�0.1�1.0 mm3,
3,13

and we do the same. With this

choice of voxel dimension, the imaging volume is composed

of 30–80 slices arranged parallel to the detector and within

each slice there are the same number of voxels as detector

bins. For the reconstructions presented in the results, the

slice number is fixed at 60.

Before going on to specify the exact form of M, we take

an aside here to discuss projection data incompleteness. The

important point about incomplete scanning data is that there

may be many attenuation distributions that agree with the

available projection data or, equivalently, that solve Eq. �5�.
There are two aspects to the data incompleteness: The num-

ber of measurements may be less than the number of un-

knowns and the system matrix M may be ill-conditioned.

DBT suffers from both types of incompleteness. For the

present imaging volume, the number of unknown voxel val-

ues is 110 880 000, while the number of measured rays for

the 11 projection DBT data set is 22 351 560. Thus, based on

vector dimensions alone, the DBT system is undersampled

by a factor of 5. A way to think about the stability issue is

that there may be many attenuation distributions that ap-

proximately solve Eq. �5�, or more precisely, given a “small”

positive number � many images may satisfy the following

inequality:

�Mf� − g̃� � � . �6�

For example, if the number of views is increased by a factor

of 10, then the DBT system may still suffer from the second

kind of data incompleteness because the geometrical ar-

rangement of the measured rays may not be optimal for to-

mographic image reconstruction. The incompleteness in the

DBT scan means small changes in the reconstruction algo-

rithm may have a large effect on the reconstructed images,

and the data incompleteness plays an integral role in the

algorithm design in Sec. IV.

The projection matrix M employed here is ray driven,

meaning that the individual rays of the projection are first

identified and the contribution of image voxels to the indi-

vidual rays is computed. For each ray in the projection data

set, the intersection of that ray with the mid-plane of each

slice is computed. The contribution of the ray integral for a

particular slice is obtained by linearly interpolating the

neighboring four voxel values within the slice and multiply-

ing the result by the ray path length through the slice. Each

of the slice contributions is subsequently summed to yield

the ray integral. In practice, the size of M is enormous. For

the present setup using 60 slices, M has on the order of 1015
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Breast

Compression Paddle

25

44.3
cm

21
.7
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Y
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Front view Side view
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X

x-ray source
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FIG. 1. Configuration of the digital breast tomosynthesis system. The coor-

dinate system, whose origin lies on the center of rotation for the x-ray

source, is also indicated. The front view shows a schematic including the

compression paddle. The walls of this paddle are visible in many of the

projections.
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elements. Typically, M is computed on-the-fly which is quite

efficient for projection because at most 240 voxels contribute

to each ray integration.

The above discussion specifies the form of the linear sys-

tem that we seek to solve. In Sec. III, the need for a new

algorithm is motivated.

III. ITERATIVE ALGORITHMS AND DBT IMAGE
RECONSTRUCTION

As we have discussed above, the DBT scanning system

yields incomplete data for tomographic image reconstruc-

tion. Most of the commonly used iterative algorithms are

based on an optimization problem containing two terms: �1�
Data error �, the difference between the available data and

the estimated projection data based on the current image es-

timate, and �2� an image regularity penalty, some function,

R� · �, of the image that increases with “roughness” or some

other undesirable properties of the image. The function R� · �
can take many forms, such as image total variation or

squared voxel differences, the roughness. The data error can

also take different functional forms. The usual optimization

problem minimizes an objective function that is the sum of

these two terms combined with a parameter to control the

strength of the regularization.

The sketch in Fig. 2 illustrates the difference between the

present DBT scanning system and the tomographic systems

with complete but low-quality data. Each point on the R, �
plane represents an image estimate, or possibly multiple im-

age estimates corresponding to the same data error and

image-regularity measure. The dark-shaded region is indica-

tive of completely sampled, high-noise system. Lower values

of the data error generally leads to worse image regularity.

Minimizing the data error leads to a very small set �possibly

only one� of image estimates that are generally very noisy.

Hence, the image corresponding to minimum � is rarely

sought. Instead, a regularity penalty is introduced in the ob-

jective function, and an image along the left edge of the dark

region is obtained, yielding a smoother image with greater

data error. The light-shaded region represents possible image

estimates for an undersampled, low-noise scanning system,

such as DBT. The achievable data errors are much lower

because the data are of higher quality and there is generally

less inconsistency when the projection data are under-

sampled. As the system is undersampled, there is not a

unique image that minimizes the data error. In the schematic,

there may be many images with different values of the regu-

larity measure that have the minimum data error. As a result,

for an effective image reconstruction algorithm for under-

sampled tomographic systems, it is desirable to be able to

independently control the data error and regularity of the

image estimates.

The curves shown in Fig. 2 sketch possible trajectories of

standard iterative methods applied to the undersampled sys-

tem. The solid curve represents iterations from a generic al-

gorithm that minimizes data error. If the algorithm is initial-

ized with a uniform image, as is often done, then the image

regularity measure starts at low values and the data error is

high. As the iterations progress, the image estimate migrates

down and to the right. The reduced data error is obtained,

generally, at the expense of worse image regularity. If a pen-

alty term is introduced, one might obtain the dashed curve.

The image estimates will have lower values of R� · �, but the

data error will decrease more slowly. As a result, iterative

algorithms that include a penalty term of fixed strength may

not be the most efficient for undersampled tomographic im-

age reconstruction.

The ASD-POCS algorithm, we developed in Ref. 10, was

designed for compressive-sensing tomographic image recon-

struction. Specifically, it was designed to solve the following

constrained minimization:

f�* = arg min R�f�� , �7�

subject to the constraints

�Mf� − g̃�2 � �2,

f� � 0. �8�

For the compressive sensing application, the ASD-POCS al-

gorithm uses the image TV as the regularity measure R� · �.
The minimum TV image is sought for a fixed data error � ��
� ��. Minimum TV images have the sparsest gradient mag-

nitude images, which is an assumption that applies well to

underlying images that are piecewise constant. In particular,

one of the goals of ASD-POCS is to closely approximate the

image with minimum data error and minimum TV, indicated

by the circle in Fig. 2. More generally, the ASD-POCS algo-

rithm can be used to search the lightly shaded region of the

figure, and the function R� · � may take other forms.

D
at

a
er
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r

Image regularity metric

FIG. 2. Diagram of in the R ,� plane comparing possible images for an

undersampled versus a completely sampled tomographic system. The dark

region represents images of the latter case. For completely sampled systems,

a unique image minimizes the data error �, hence only one value of R is

possible. For undersampled systems, the lightly shaded region, many pos-

sible candidate volumes correspond to the situation of minimum �. The

circled point has significance for compressive sensing if R is the �1 norm or

image total variation. The two curves represent generic behavior of standard

iterative algorithms for the case of no regularization �solid curve� and with

regularization �dashed curve�.
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IV. A PRACTICAL IMAGE-RECONSTRUCTION

ALGORITHM USING THE ASD-POCS FRAMEWORK

Although the ASD-POCS algorithm is effective at finding

a close approximation to the solution of the constrained

minimization equations �7� and �8�, it may take hundreds to

thousands of iterations to obtain a satisfactory solution.

Keeping practicality in mind, we assemble an algorithm

within the ASD-POCS framework that is more efficient and

employs fewer algorithm parameters.

The ASD-POCS algorithm solves the constrained minimi-

zation problem by employing POCS to enforce the convex

constraints on the image combined with steepest descent to

reduce the R� · � objective function. One modification is that

we include a line search on the steepest descent portion of

the algorithm. The line search ensures that the steepest de-

scent steps actually reduce the objective R� · � from the first

iteration on. This change reduces artifacts in the early itera-

tions �this is not done in the original ASD-POCS algorithm

because it may sacrifice the ability of the algorithm to yield

a good approximation to the constrained minimization prob-

lem�. Another important modification is reducing the number

of control parameters for the adaptation of the step sizes. The

previous version of ASD-POCS had six control parameters,

which served its purpose of obtaining a good approximate

solution to the constrained minimization problem. Because

the optimization problem �Eqs. �7� and �8��, was being

solved, the six control parameters affect only the “path” of

the image estimate but the final image could be regarded as

depending only on the single parameter � in the constraint.

For the present case, where we intend to truncate the itera-

tion well short of convergence, the reconstructed image has

to be viewed as a function of the algorithm parameters and �.

Having to explore the impact of seven parameters negates

the advantage of truncating the iteration early.

We present the new version of the ASD-POCS algorithm

in the form of a pseudocode and abbreviate the notation

where possible. The symbol ª means assignment, meaning

that the result on the right-hand side gets assigned to the

variable on the left-hand side; image-space variables have a

vector sign, e.g., f�, and a hat is used if the vector has unit

length; data-space variables are denoted by a tilde, e.g., g̃.

The number of measured rays, length of g̃, is Nd. The vector

M� i is the row of the system matrix that yields the ith data

element. The function P enforces lower and upper bounds on

an image estimate: P�f� ,a ,b� yields the image f�� with com-

ponents

f i� = �
a , f i � a

f i, a � f i � b

b , f i � b .
	

The function R� · � is the image regularity measure.

The pseudocode is

1: 	 ª 1.0, Niterª10

2: ngª5

3: rmaxª1.0

4: 
redª0.8

5: f�ª0

6: for iª1, Niter do main loop (POCS/descent

loop)

7: f�0ª f�

8:
for jª1, Nd do: f�ª f�+	M� j

g j −M� j · f�

M� j ·M� j

ART

9: f�ª P�f� ,0 , fmax� enforce bounding constraints

10: f�resª f�

11: dpª �f�− f�0�
12: f�0ª f�

13: for jª1,ng do steepest descent loop

14: R0ªR�f��
15: d� f ª� f�R�f��
16: d̂ f ªd� f / �d� f �
17: f��ª f�−dp� d̂ f

18: f��ª P�f�� ,0 , fmax�
19: 
 ª 1.0

20: while R�f����R0 do projected line search

21: 
ª
�
red

22: f��ª f�−
dp� d̂ f

23: f��ª P�f�� ,0 , fmax�
24: end while

25: f�ª f��

26: end for

27: dgª �f��− f�0�
28:

if dg�rmax�dp then f�ªrmax

dp

dg
�f��− f�0�+ f�0

29: end for

30: return f�res

The primary controls of the ASD-POCS algorithm are the

parameters 	 and Niter on line 1. As 	 is lowered from a value

of 1.0, the image-estimate regularity is decreased, and as the

Niter increases the image-estimate data error is reduced. In

terms of the R, � diagram of Fig. 2, 	 is a horizontal control

and Niter is a vertical control.

For readers interested in the reasoning behind this version

of the ASD-POCS algorithm, the remainder of this section

provides a detailed explanation of the algorithm roughly in

the order of the pseudocode, starting with line 8. Reduction

in the data error is accomplished through ART at line 8, and

positivity is enforced by the projection at line 9. For the

results below, we do not enforce an image upper bound,

fmax=�, because there is little impact. In general, the size of

the image change due to POCS, dp in the pseudocode, is

large relative to the progress made by steepest descent on

R� · �, especially when we require that the objective function

be reduced with each steepest descent step. Thus, the algo-

rithm is designed to make as much progress as possible, in

terms of maximizing dg, on steepest descent of R� · �. First,

multiple gradient descent steps are taken with the loop start-

ing at line 13. We found that ng=5 loops make decent

progress. Many more loops than that yield diminishing re-

turns. This parameter is not critical, and we leave it fixed at

5. Second, the projected line search at lines 19–24 is slightly
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unusual in that it is designed to maximize the steepest de-

scent step size, dg, while not increasing the objective func-

tion R� · �. Thus, the line search algorithm will, in general, not

find the minimum of R� · � along the image-change direction

d̂ f as is normally done with line searches. A relatively large

line-search-reduction parameter, 
redª0.8, is chosen so that,

again, dg will be maximal. Furthermore, the initial guess for

the line-search step size of dp, at line 17, is very aggressive.

Choosing 
redª0.8 is not critical for the results and we leave

it fixed, but it does impact algorithm efficiency. The image

estimate resulting from the steepest descent section will re-

spect positivity because of the projections at lines 18 and 23.

The adaptive element of this algorithm occurs at line 28.

The reasoning goes that as long as the change in the image

due to POCS dp is not less than dg, each iteration of the

outer loop will make net progress in reducing the data error.

In the early iterations, when dp is large, the steepest descent

on R� · � is allowed to take large steps, thereby quickly reduc-

ing the image regularity measure. At later steps, dg is con-

strained to lower values so that data error is not increased.

We include the ratio parameter rmax=1.0 even though it is not

used here. For applications with very high quality data and

when it is feasible to take many more iterations such as a

hundred or more, it may be desirable to set rmax�1.0 in

order to make more progress in reducing data error. If algo-

rithm efficiency is of no concern, then the reader is referred

to our previous ASD-POCS algorithm
10

where precise con-

trol over the data-error tolerance � is afforded. For the

present algorithm, the tolerance parameter � is traded for

iteration number, which ends up being the parameter that

controls data error. In order to control image regularity, nor-

mally the steepest descent step would be reduced or in-

creased. However, as it is important to maximize dg for ef-

ficiency, we instead control the POCS step size. This is

effectively controlled by the relaxation parameter 	. It is set

to 1.0 in the pseudocode, but we vary this control parameter

in a range of 0.1–1.0, below. To summarize, the controls of

the algorithm are iteration number, more iterations reduce

data error, and 	, lower 	 reduces R� · �.
The final image f�res is considered to be the one after the

POCS steps, at line 10, and this is the one shown in the

present results. However, we point out that there is a non-

negligible difference between this image and the image esti-

mate following the steepest descent.
14

We point out also that

we do not claim this algorithm is optimal in any sense. We

regard ASD-POCS as a framework for generating specific

image-reconstruction algorithms. The adaptive control step,

line 28, can be done differently. For example, in our previous

algorithm in Ref. 10 the data error of the current image es-

timate is compared against a preset data tolerance �. Also,

different convex constraints on the image function can be

included in P, i.e., different bounds or support constraints.

Before going on to the results, we mention a few points

about algorithm efficiency. As written above, the pseudocode

is quite inefficient for the early iterations of the steepest de-

scent line search. At line 20, it is likely that R�f����R0, so it

may be desirable to include extra logic that allows much

smaller values of 
red when this is the case, switching back to

the larger value when R�f��� is near R0. The pseudocode

above is presented above with simplicity in mind so there is

no doubt that other such tricks could substantially improve

run time. Computation of the gradient of R�f�� in line 15 is

easily implemented on commodity graphics hardware.
15

To

give an idea of the computation time, the ASD-POCS algo-

rithm outlined above, executed 20 iterations in approxi-

mately 4 h on a single core of an AMD opteron dual-core

CPU running at 2.2 GHz, for image reconstruction on the

present DBT system. Although the timing run was performed

on a work station, the bulk of the results, below, were gen-

erated with a heterogeneous computation cluster.

V. APPLICATION TO DBT PROJECTION DATA

In this section, we employ the practical ASD-POCS

image-reconstruction algorithm to clinical DBT projection

data obtained on the GE-MGH instrument. In the following,

the results of the image reconstruction are displayed for

cases containing microcalcifications and masses. It will be

evident that the ASD-POCS algorithm can have a significant

impact on microcalcification imaging.

V.A. DBT projection data

As stated earlier, the scan consists of 11 projection views

acquired over a 50° arc. The geometry of the system is

shown in Fig. 1. An example projection from this system is

shown in Fig. 3 for a view offset at 25°. Note that, for this

view, a fin from the compression paddle appears in the pro-

jection. For such views, we truncate the projections to elimi-

nate rays passing through this fin because the fin is not in the

reconstruction volume. Doing so reduces artifacts at the edge

D B T p r o j e c t i o n c r o p p e d p r o j e c t i o n

FIG. 3. �Left� A single projection for the case containing a uniform mass.

�Right� Cropped view used for reconstruction.
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of the reconstruction volume, and it allows us to demonstrate

convergence properties of the ASD-POCS algorithm.

V.B. Form of the ASD-POCS objective function and
algorithm parameters

The ASD-POCS algorithm, presented in Sec. IV, was

shown with a generic objective function. For DBT image-

reconstruction, here, we employ TpV norm of the image as

the objective. The TpV norm of the image, written in terms

of image voxel values f i,j,k, is

�f��TpV = 

i,j,k


i,j,k
p , �9�

where


i,j,k = ��f i,j,k − f i−1,j,k�
2 + �f i,j,k − f i,j−1,k�

2 + �f i,j,k − f i,j,k−1�2 + � . �10�

The parameter � is set to 10−6, here, and it is needed to

ensure that the TpV norm is differentiable with respect to

voxel value when p�1.0. Because 
i,j,k involves a backward

difference, the summations in Eq. �9� start at the second

voxel number. For the images reconstructed below, we take

the values of p to be 0.8, 1.0, and 2.0. The case of p=0.8,

results in a nonconvex norm, and it may have some advan-

tage for image reconstruction from incomplete projection

data.
6,7

When p=1.0, the TpV norm reduces to the standard

TV norm which is convex, and when p=2.0 TpV becomes a

quadratic, roughness measure, which is commonly used as a

penalty term for iterative image reconstruction. It is demon-

strated in the results that the value of p has a significant

impact on the image quality for DBT.

The image array used in the reconstruction consists of 60

slices, 1 mm thick, stacked parallel to the detector. The in-

plane voxel width is 0.1 mm, matching the detector reso-

lution. The in-plane extent of the slices vary with each case

because of breast-size variation �the volume dimensions are

given with each case, below�. The imaging volume is un-

usual in that the voxels are ten times longer in depth than

their transverse width. The limited angular range of the DBT

scan does not readily yield much information on depth varia-

tions, hence the thick slices. Two interesting algorithm as-

pects that we do not explore here are �1� increasing depth

resolution in the imaging volume and �2� employing spatial

differencing for the TpV norm. Thinner slices may yield im-

proved depth resolution when used in combination with the

TpV norm for values p�1.0. There are also preliminary in-

dications that using spatial differencing in Eq. �10�, where

the voxel differences in each dimension are divided by the

corresponding voxel length, may improve depth resolution.

We have found that these factors make little difference for

the ASD-POCS algorithm when run in the 10–20 iteration

range. However, increasing depth resolution or employing

spatial differencing may yield significantly different images

that solve the optimization problem �Eqs. �7� and �8��.
For completeness, we provide the expression for the voxel

gradient of the objective function �Eq. �9��, which is needed

for the ASD-POCS algorithm at line 15 of the pseudocode.

The i , j ,kth component of the gradient is given by

��f��TpV/�f i,j,k = p
i,j,k
p−2�3f i,j,k − f i−1,j,k − f i,j−1,k − f i,j,k−1�

+ p
i+1,j,k
p−2 �f i,j,k − f i+1,j,k� + p
i,j+1,k

p−2 �f i,j,k

− f i,j+1,k� + p
i,j,k+1
p−2 �f i,j,k − f i,j,k+1� . �11�

Note that this expression applies only to interior voxels. At

the edges of the imaging volume, the terms that involve vox-

els outside the imaging volume should be eliminated.

V.C. Reconstructed images

We demonstrate the ASD-POCS algorithm by investigat-

ing image reconstruction on three sets of DBT clinical data:

One that contains microcalcifications and two cases that have

masses. For each case, images from a basic EM implemen-

tation are also shown. The EM implementation used is given

by the following updated equation:

f��k+1� = f��k� ·
MT · �g̃/�M · f��k���

MT · Ĩ
, �12�

where Ĩ is a data vector with every element set to 1, k is the

iteration number, and the image estimate at k=0 is initialized

to 1’s in each voxel. We stress that the EM images are shown

only to give a rough idea on the performance of current

algorithms. Furthermore, the goal of this article is not to

claim that ASD-POCS yields “better” images because that is

a task dependent issue. Although the results do seem to in-

dicate a potential advantage for microcalcification imaging.

The aim here, however, is mainly to demonstrate the image-

regularization controls of the ASD-POCS algorithm.

Each of the three cases below are reconstructed in the

same way, meaning the same sets of algorithm parameters

are used. The exception to this is that the projection data

cropping is slightly different for each case. For the EM re-

sults, images are shown at 5, 10, and 20 iterations. For EM,

iteration number is really the only control parameter: Low

iteration numbers yield regularized images with large data

error and increasing the iteration number reduces image

regularity along with the data error. The ASD-POCS algo-

rithm, on the other hand, has relatively independent controls.

The objection function parameter p controls edge sharpness;

here, values of p are set to 0.8, 1.0, and 2.0, where lower
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values of p tend to sharpen edges. The relaxation factor 	
controls the strength of image regularization; in the follow-

ing studies 	 takes on values of 1.0, 0.5, and 0.1, where

smaller 	 allows for ASD-POCS to achieve lower values of

the TpV objective. Finally, iteration number controls the data

error corresponding to the reconstructed images; images for

ASD-POCS are also shown for 5, 10, and 20 iterations,

where data error decreases with iteration number.

In each of the image sets, a 2D ROI is displayed that

shows either microcalcifications or a mass, depending on the

case. As will be seen, the most visually appealing images for

each of the three cases occur for different algorithm param-

eters, particularly for different values of 	. The variation in

the visually optimal algorithm parameters likely depends on

the quality of the data, which is affected by case variation of

many factors such as breast density, noise, and patient mo-

tion. The goal of this work is to illustrate the ASD-POCS

algorithm on clinical DBT data for the abovementioned pa-

rameter ranges. Future work will seek automatic means of

selecting nearly optimal algorithm parameters; the discussion

on the evolution of algorithm metrics in Sec. V G is poten-

tially one avenue which may lead to such automatic param-

eter selection. True optimization of algorithm parameters,

however, depends on the particular imaging task being per-

formed: For example, parameters optimal for microcalcifica-

tion detection may be different those for, say, mass classifi-

cation.

V.D. Case 1: Microcalcifications

A set of EM images for the first case is shown in Fig. 4,

and the corresponding ASD-POCS images are shown in Figs.

5–7. A striking feature of the ASD-POCS reconstructions is

the prominence of the microcalcifications. Lower values of p

accentuate these small features better than large p values.

Even for p=2.0, the visibility of the microcalcifications is

comparable to that of the EM results. The differences in mi-

crocalcification contrast can be seen quantitatively in the

profiles shown in Fig. 8. These profiles are plotted, for ten

iterations of ASD-POCS, along depth and transverse lines

that intersect with a single microcalcification. We point out

that while lower 	 increases regularization strength in ASD-

POCS and lower iteration number increases regularization

strength for EM, there is no direct correspondence between

the two parameters; the chosen iteration numbers for the EM

profiles are selected only for reference.

From the profiles and slice images, it is clear that lower p

in ASD-POCS enhances microcalcification contrast substan-

tially, leaving one to wonder if there is any advantage to

larger p values. While lower p values appear to be advanta-

geous, there is also an impact of p value on the image back-

ground. The ROIs displayed in Figs. 5–7 are shown in a large

enough region to obtain some sense of the difference in

background. Here, we intend only to give some intuition on

the parameter-space �p ,	� dependence of the ASD-POCS

5 i t e r a t i o n s 1 0 i t e r a t i o n s 2 0 i t e r a t i o n s

FIG. 4. ROIs from image reconstructions of the data set containing micro-

calcifications by the EM algorithm at �left� 5, �middle� 10, and �right� 20

iterations. The gray scale window is �0.30,0.65�.

5
it
e
ra

ti
o
n
s

p = 0 . 8 p = 1 . 0 p = 2 . 0

1
0
it
e
ra

ti
o
n
s

2
0
it
e
ra

ti
o
n
s

FIG. 5. ROIs from image reconstructions of the data set containing a micro-

calcifications by the ASD-POCS framework with 	 � 1.0. The grayscale

window is held fixed, and is the same as that of the EM results, �0.30,0.65�.
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FIG. 6. Same as Fig. 5 except 	 � 0.5.
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algorithm. Optimal values of p and 	 for particular tasks,

such as microcalcification detection by human observers,

need to be investigated in separate studies. Another impor-

tant factor that affects the selection of p and 	 is data quality.

Lower values of p, for example, may be robust against de-

tector noise but may be also more sensitive to inconsistency

due to patient motion.

If, upon further study, it turns out that low p image recon-

struction with ASD-POCS consistently yields improved con-

trast on microcalcification imaging, the implication for DBT

imaging is enormous. It is known that microcalcification im-

aging is noise limited, while mass imaging is structured-

background limited. Image reconstruction algorithms that in-

crease microcalcification detectability may lower the

required intensity of the probing x-ray beam, thus lowering

the radiation dose of the DBT scan.

V.E. Case 2: Uniform mass

For the next case, there is a uniform mass, as can be seen

in the EM image reconstructions in Fig. 9. As was done in

the previous case, we present a spread of images in Figs.

10–12 from the ASD-POCS algorithm for the same sets of

algorithm parameters, covering a range of p and 	 values.

The iteration number dependence appears to be weak for

ASD-POCS. The conspicuity of the mass for this case does

not vary with algorithm parameters nearly as much as the

microcalcification conspicuity of the previous case. There are

many reasons for this. First, the x-ray attenuation coefficient

of the mass is less than that of calcium so the contrast that

can be potentially regained is not as great. Second, the lower

p reconstructions tend to yield sharper edges, but this does

not have as large an effect on the mass which is substantially
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FIG. 7. Same as Fig. 5 except 	 � 0.1.

FIG. 8. Profiles centered on a microcalcification through reconstructed images for different values of p and 	. Also shown are results by the EM algorithm.

The comparison of EM at different iteration numbers does not necessarily have any relation to the ASD-POCS results at different 	. �Top� Transverse profiles

along the x direction. �Bottom� Depth profiles in the z direction. The fact that microcalcification have a greater width in the depth profiles is likely to inherent

blurring in the DBT system.

5 i t e r a t i o n s 1 0 i t e r a t i o n s 2 0 i t e r a t i o n s

FIG. 9. ROIs from image reconstructions of the data set containing a uni-

form mass by the EM algorithm at �left� 5, �middle� 10, and �right� 20

iterations. The gray scale window is �0.35,0.55�.
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bigger than microcalcifications. Finally, as pointed out ear-

lier, mass conspicuity tends to depend on background struc-

ture noise. As this type of background is physically there,

low p image reconstruction sharpens the edges of the back-

ground features just as much as the mass’ edges. Thus, the

conspicuity of the mass may not improve dramatically as p is

lowered. In any case, there are subtle differences between the

images, and these differences may have an impact on human

or machine observers.

Comparing the visual quality of the images of the present

case with the previous one, it is interesting that similar 	
values do not yield similar apparent image quality. For ex-

ample, 	 � 1.0 for the present case appears to be quite noisy,

even taking into account differing gray level windows, rela-

tive to 	 � 1.0 for the previous case. For the three sets of 	
values, 	 � 0.1 appears to yield, visually, the best images for

this mass case, while 	 � 0.5 seems to be the best for the

previous microcalcification case. These differences are likely

due to varying quality of the acquired projection data. A

quantitative discussion of the algorithm performance across

different DBT cases will be further elaborated on in Sec.

V G.

V.F. Case 3: Spiculated mass in a dense breast

Finally, we present a case with a spiculated mass in dense

breast tissue. It is precisely this type of case which DBT was

developed for; by removing some of the interference of the

overlapping structures such masses may be more conspicu-

ous in DBT images than in standard mammographic projec-

tion imaging. The EM images are shown in Fig. 13, and the

ASD-POCS images are shown in Figs. 14–16. As with the
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FIG. 10. ROIs from image reconstructions of the data set containing the

uniform mass by the ASD-POCS framework with 	 � 1.0. The grayscale

window is held fixed and is the same as that of the EM results, �0.35,0.55�.
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FIG. 11. Same as Fig. 10 except 	 � 0.5.
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FIG. 12. Same as Fig. 10 except 	 � 0.1.

5 i t e r a t i o n s 1 0 i t e r a t i o n s 2 0 i t e r a t i o n s

FIG. 13. ROIs from image reconstructions of the data set containing a spicu-

lated mass in a dense breast by the EM algorithm at �left� 5, �middle� 10,

and �right� 20 iterations. The grayscale window is �0.42,0.57�.
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previous mass case, there may be some advantage to image

reconstruction with ASD-POCS at low p due to the fact that

edges are enhanced. However, the advantage is not as clear

cut as it is with microcalcification imaging. Any advantage in

mass imaging needs to be demonstrated by task-based image

quality evaluation.

With this case, under-regularization, at large 	, tends to

yield linear artifacts in the image. Actually, similar lines ap-

pear for the other cases in the first two iterations of ASD-

POCS, but quickly disappear and are gone by the fifth itera-

tion. These lines, for the present case, are likely due to a

slight system misalignment or patient motion. This case re-

veals the control afforded by the 	 parameter in the ASD-

POCS algorithm. It is easy to select a value of 	 small

enough to wash out the linear artifacts without severely blur-

ring the underlying features of the image.

V.G. Evolution of algorithm metrics

It is instructive to return to the discussion on the ASD-

POCS algorithm and examine the trajectories of the image

estimates in the R ,� plane. Figure 17 shows this evolution

for each of the three DBT cases for p=1.0. The plotted data

error is given by

� = ��Mf� − g̃� · �Mf� − g̃� , �13�

and the objective function R� · � is Eq. �9� with p=1.0. It is

primarily for the purpose of generating these graphs that the

projection rays intersecting the compression paddle were ex-

cluded from the DBT projection data sets. Retaining these

inconsistent rays would skew the values of the data error.

Aside from differences in cropping the projection data, the

algorithm parameters are the same for each of the three DBT

data sets.

Recall that the goal in designing the current ASD-POCS

algorithm is to be able to obtain images, within a few itera-

tions �of the order of 10�, corresponding to any point in as

much as possible of allowed region of the data error-TV

plane. Starting with the microcalcification case, at the top of

Fig. 17, the difference between the ASD-POCS and the stan-

dard EM algorithm is clear. Reducing the value of 	 seems

to directly reduce image TV, and the adaptive component of
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FIG. 14. ROIs from image reconstructions of the data set containing the

spiculated mass in a dense breast by the ASD-POCS framework with

	 � 1.0. The grayscale window is held fixed and is the same as that of the

EM results, �0.42,0.57�.
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FIG. 15. Same as Fig. 14 except 	 � 0.5.
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FIG. 16. Same as Fig. 14 except 	 � 0.1.
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the ASD-POCS allows the data error to be reduced with little

change in image TV. The last iteration shown, number 20, at

the bottom of each of the three 	curves, is the minimum

data-error image in the sequence. Interestingly, this mini-

mum data-error value seems to have little dependence on 	
even though the image TV is dramatically reduced by low-

ering 	. This is not surprising due to the fact that the DBT

system is very much undersampled in the angular direction;

many images with very different TV values may correspond

to the same data error. The track of the EM algorithm shows

the traditional trade-off for most iterative algorithms. As it-

eration number is increased, data error is reduced at the ex-

pense of image regularity. For this particular EM run, no TV

regularization was used. However, incorporating such regu-

larization in EM, for example, by the method discussed in

Refs. 16 and 17, results in an iteration track of similar shape.

It is still difficult to obtain images for the low-data-error,

low-TV corner with a nonadaptive iterative algorithm. We

point out that the ASD-POCS algorithm likely cannot ex-

plore the complete allowed region of the data error-TV

plane, especially within a few iterations. Moreover, there is

room for further algorithm development in pushing toward

low-data-error and low-image TV.

Turning to the DBT case with the uniform mass, shown in

the middle graph in Fig. 17, the algorithm trajectories are

similar to the previous case aside from one aspect. There is a

significant drop in data error obtained by reducing 	 from

1.0 to 0.1. This trend is counterintuitive because greater im-

age regularity is generally obtained at the expense of data

fidelity. In this case, imposing greater image regularity al-

lows for greater progress in reducing data error. We have

observed this type of behavior, before in image reconstruc-

tion from simulated data; it generally occurs when the pri-

mary component of the data error is noise in the detector bin

measurements. The data for this case are noisier than those

of the previous microcalcification case. This is seen in the

reconstructed images, and the raw projection data show

higher x-ray attenuation. Yet, the minimum data error

reached, at 	 � 0.1, is comparable to minimum values

reached for the microcalcification case.

Examining the curves for the spiculated-mass case, the

shape of the curves is similar to that of the microcalcification

case. The difference between this case and the previous two

is the value of the minimum data error achieved. It is roughly

a factor of 2 higher than the previous cases. Again, as this is

a dense breast, the data noise is relatively high. However, as

	 is decreased the data error remains high. We speculate that

the reason for this is that there may be additional error due to

incorrect geometry, such as patient motion during the scan.

Studying the algorithm trajectories in the data error,

image-regularity plane helps understand the image-

reconstruction algorithm. Such curves may also prove useful

in determining data quality. Clearly, for ideal data, a data

error of zero can be reached. Data-error values, however,

will, in general, be finite, but it may be also important to

know the source of the data inconsistency. If these curves

can be used to reveal data error due to patient motion, they

have additional practical value. For example, imaging micro-

calcifications is highly dependent on the absence of motion.

If a particular scan reveals no microcalcifications and the

algorithm trajectories suggest patient motion is likely

present, then it may be advisable to do a rescan.

VI. DISCUSSION

We have introduced a practical, iterative image-

reconstruction algorithm, within the ASD-POCS framework,

that can achieve useful images within a few iterations. This

algorithm allows for fine control over the regularity of the

reconstructed images, which is essential for underdetermined

imaging problems such as DBT. For the studies presented

here, the image regularity metric is taken to be the total p

variation, which reduces to the total variation and the image

roughness for p=1.0 and p=2.0, respectively. The other

main algorithm parameter, 	, controls the level of the regu-

larity objective function. As with all other iterative algo-

rithms, the iteration number is implicitly another parameter.

(a)

(b)

(c)

FIG. 17. ASD-POCS versus EM parameter trajectories for the data sets con-

taining �top� microcalcifications, �middle� a uniform mass, and �bottom� a

spiculated mass. ASD-POCS with only p=1.0 is shown. In each case, the

actual iteration numbers are indicated by the symbols starting at iteration 2,

at the top of each curve, and increasing by 2 until 20 iterations at the bottom

of the curves.
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The main advantage of the present algorithm is that each of

these few parameters have a real effect on the image quality,

and these effects are relatively independent of each other.

For DBT imaging, microcalcification imaging is the task

that appears to be most greatly impacted by the present al-

gorithm. Images reconstructed with low values of p show

markedly greater contrast of the microcalcifications than

those reconstructed by existing algorithms. The practical sig-

nificance of this increased contrast is that it may be possible

to reduce the x-ray intensity, thereby lowering patient dose

for the DBT scan. The effects for mass imaging are more

subtle, but the finer controls allowed by the present algo-

rithm may allow better optimization of the DBT system for

mass imaging by either human or computer observers.

Extensions of this work can follow many different paths.

Within the ASD-POCS framework, various methods of per-

forming the adaptive control may lead to more efficient

image-reconstruction algorithms. Also different objective

functions, which can simply be dropped into the present

framework, may be advantageous for different imaging

tasks. One practical question that we intend to investigate is

to use the ASD-POCS framework together with algorithm

trajectories to provide an assessment of projection data qual-

ity, particularly, to find a way to automatically detect patient

motion.

We point out that the algorithm presented here, though

applied to DBT imaging, can easily be adapted to other x-ray

based tomographic systems. In fact, other tomographic im-

aging modalities with a linear data model may also be ame-

nable to image reconstruction within the ASD-POCS frame-

work.

ACKNOWLEDGMENTS

Two of the authors �E.Y.S. and X.P.� were supported in

part by NIH R01 Grant Nos. CA120540 and EB000225 and

by an Illinois Department of Public Health Ticket for the

Cure Grant. E.Y.S. was also supported in part by a Career

Development Award from NIH SPORE grant CA125183-03.

Other two authors �I.S.R. and R.M.N.� were supported in

part by NIH Grant Nos. R33 CA109963 and R21 EB8801.

The original MGH-GE instrument was funded by the US

ARMY via Clinical translational research �CTR�DAMD17-

98-8309, GE provided the current clinical prototype system

designated DBT Senographe DS. NIH-NCI funded the use of

this instrument to acquire 3000 screening studies as

5R33CA107863-01. Computations for this work were per-

formed on a cluster, partially funded by NIH Grant Nos. S10

RR021039 and P30 CA14599. The contents of this article are

solely the responsibility of the authors and do not necessarily

represent the official views of the National Institutes of

Health.

a�
Electronic mail: sidky@uchicago.edu

b�
Electronic mail: xpan@uchicago.edu

1
L. T. Niklason et al., “Digital tomosynthesis in breast imaging,” Radiol-

ogy 205, 399–406 �1997�.
2
J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: Current

state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106

�2003�.
3
T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of

reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31,

2636–2647 �2004�.
4
T. Wu, R. H. Moore, A. B. Elizabeth, A. Rafferty, and D. B. Kopans,

“Breast tomosynthesis: Methods and applications,” in Categorical

Courses in Diagnostic Radiology Physics: Advances in Breast Imaging:

Physics, Technology, and Clinical Applications, edited by A. Karellas and

M. L. Giger �RSNA Publication, Oak Brook, IL, 2004�, pp. 149–165.
5
Y. H. Zhang, H. P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M.

Hadjiiski, J. Ge, and C. A. Zhou, “A comparative study of limited-angle

cone-beam reconstruction methods for breast tomosynthesis,” Med. Phys.

33, 3781–3795 �2006�.
6
R. Chartrand, “Exact reconstruction of sparse signals via nonconvex

minimization,” IEEE Signal Process. Lett. 14, 707–710 �2007�.
7
E. Y. Sidky, R. Chartrand, and X. Pan, IEEE Nuc. Sci. Conf. Rec. 2007

�IEEE, Honolulu, HI, 2007�, Vol. 5, pp. 3526–3530.
8
E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency informa-

tion,” IEEE Trans. Inf. Theory 52, 489–509 �2006�.
9
E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from

incomplete and inaccurate measurements,” Commun. Pure Appl. Math.

59, 1207–1223 �2006�.
10

E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam

computed tomography by constrained, total-variation minimization,”

Phys. Med. Biol. 53, 4777–4807 �2008�.
11

I. Reiser, J. Bian, R. M. Nishikawa, E. Y. Sidky, and X. Pan, in Proceed-

ings of the Ninth International Meeting on Fully Three-Dimensional Im-

age Reconstruction in Radiology and Nuclear Medicine, edited by M.

Kachelreiss, F. Beekman, and K. Müller �Lindau, Germany, 2007�, pp.

155–158, URL �http://arxiv.org/abs/0908.2610�.
12

I. Reiser, E. Y. Sidky, R. M. Nishikawa, and X. Pan, “Development of an

analytic breast phantom for quantitative comparison of reconstruction al-

gorithms for digital breast tomosynthesis,” Lect. Notes Comput. Sci.

4046, 190–196 �2006�.
13

T. Wu et al., “Tomographic mammography using a limited number of

low-dose cone-beam projection images,” Med. Phys. 30, 365–380 �2003�.
14

E. Y. Sidky, C.-M. Kao, and X. Pan, “Accurate image reconstruction from

few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci.

Technol. 14, 119–139 �2006�.
15

E. Y. Sidky and X. Pan, in Proceedings of the Ninth International Meeting

on Fully Three-Dimensional Image Reconstruction in Radiology and

Nuclear Medicine, edited by M. Kachelriess, F. Beekman, and K. Müller

�Lindau, Germany, 2007�, pp. 60–63.
16

K. Lange, “Convergence of EM image reconstruction algorithms with

Gibbs smoothing,” IEEE Trans. Med. Imaging 9, 439–446 �1990�.
17

M. Persson, D. Bone, and H. Elmqvist, “Total variation norm for three-

dimensional iterative reconstruction in limited view angle tomography,”

Phys. Med. Biol. 46, 853–866 �2001�.

4932 Sidky et al.: Enhanced imaging of microcalcifications in digital breast tomosynthesis 4932

Medical Physics, Vol. 36, No. 11, November 2009

http://dx.doi.org/10.1088/0031-9155/48/19/R01
http://dx.doi.org/10.1118/1.1786692
http://dx.doi.org/10.1118/1.2237543
http://dx.doi.org/10.1109/LSP.2007.898300
http://dx.doi.org/10.1002/cpa.20124
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1007/11783237_27
http://dx.doi.org/10.1118/1.1543934
http://dx.doi.org/10.1109/42.61759
http://dx.doi.org/10.1088/0031-9155/46/3/318

