Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography

Enhanced Lattice-Based Signatures on Reconfigurable Hardware

Thomas Pöppelmann¹ Léo Ducas² Tim Güneysu¹

¹Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

> ²University of California, San-Diego, USA

September 2014, CHES Workshop

1/23

Intro.AlgorithmsImplem. & ResultsConclusionBibliographyOccordOccordOccordOccordOccordBibliographyEnhancedLattice-Based Signatures on ReconfigurableHardware

- 2 Algorithmic contributions
- 3 Implementation and Performances

・ロ ・ < 回 ・ < 臣 ・ < 臣 ・ 臣 の へ で 2/23

		Deced Curved		00	
ADDITION DIDIEUL & DESILIS COLUNION DIDIOVIZION	● ○ ○○○	000000	0000	00	Dibliography

Many theoretical advantages over ECC/RSA:

- Strong theoretical guarentee of hardness
- Resist known quantum algorithms
- Very versatile: PKE, Signatures, IBE, FHE
- Asymptotically efficient $O(n^2)$ or even $O(n \log n)$.

In practice ?

Simple and very fast PKE (NTRU-Encrypt, LWE Encryption). Efficient signatures have been more problematic.

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
0●000	000000	0000	00	
BLISS: Ar	n optimized S	Signature Scheme		

Signature without Trapdoors (Fiat-Shamir transform).

- [Lyu09] Fiat-Shamir with aborts ($\approx 50Kbits$)
- [Lyu12] Abort Rate improved using Gaussians ($\approx 12Kbits$)

[DDLL13] Abort Rate improved using Bimodal Gaussians ($\approx 5Kbits$)

BLISS vs. ECDSA vs. RSA on Software								
	Scheme. Security Sign Size Sign./s Ver./s							
	BLISS-I	128 bits	5.5kbits	8k	33k			
	RSA 2048	112 bits	2kbits	0.8k	27k			
	$ RSA 4096 \ge 128 \text{ bits } 4kbits 0.1k 7.5k $							
ECDSA 256 128 bits 512 bits 9.5k 2.5k								
BLISS [DDLL13] compared to OpenSSL implem. of RSA and ECDSA on x86-64.								

sk :
$$\mathbf{S} \in \mathbb{Z}_{2q}^{m imes k}$$
, short

pk : $\mathbf{A} \in \mathbb{Z}_{2q}^{n imes m}$, random $\mathbf{T} = \mathbf{AS} = q \, \mathbf{Id}$

sk :
$$\mathbf{S} \in \mathbb{Z}_{2q}^{m imes k}$$
, short

pk :
$$\mathbf{A} \in \mathbb{Z}_{2q}^{n imes m}$$
, random $\mathbf{T} = \mathbf{AS} = q \, \mathbf{Id}$

$$\begin{array}{ll} \mathsf{Sample} \ \mathbf{y} \leftarrow D^m_{\mathbb{Z},\sigma}, \ \mathsf{short} & \mathbf{w} = \mathbf{A}\mathbf{y} \in \mathbb{Z}^n \\ & \overbrace{} \end{array}$$

sk :
$$\mathbf{S} \in \mathbb{Z}_{2q}^{m \times k}$$
, short pk : $\mathbf{A} \in \mathbb{Z}_{2q}^{n \times m}$, random $\mathbf{T} = \mathbf{AS} = q \operatorname{Id}$

$$\begin{array}{ccc} \text{Sample } \mathbf{y} \leftarrow D^m_{\mathbb{Z},\sigma}, \text{ short} & \mathbf{w} = \mathbf{A}\mathbf{y} \in \mathbb{Z}^n \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$$

Rejection probability is such that $\mathbf{z} \sim D_{\mathbb{Z},\sigma}^m$ is independent from **S**.

Rejection probability is such that $\mathbf{z} \sim D_{\mathbb{Z},\sigma}^m$ is independent from **S**.

00000	000000	0000	00	Dibliography
Hardware	Implementati	on of BLISS		

Hardwar	e Implemen	tation of RLISS		
00000	000000	0000	00	
Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography

• Polynomial multiplications Ay in $\mathbb{Z}_q[X]/(\Phi_{2n}(X))$ Already addressed in [PG13] and [RVM⁺14] (next talk)

Hardware	Implementati	on of BLISS		
Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
○○○●○	000000	0000	00	

• Polynomial multiplications Ay in $\mathbb{Z}_q[X]/(\Phi_{2n}(X))$ Already addressed in [PG13] and [RVM⁺14] (next talk)

イロト 不得下 イヨト イヨト 二日

6/23

- Discrete Gaussian Sampling y ← D^m_{ℤ,σ} for large σ
 Needs high precision sampling (learning attacks)
 - Long Floating Points Arith. [GPV08]
 - Slow algorithms [DDLL13]
 - Large tables/trees [DG14]

Hardware	Implementati	on of BLISS		
Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
○○○●○	000000	0000	00	

- Polynomial multiplications Ay in $\mathbb{Z}_q[X]/(\Phi_{2n}(X))$ Already addressed in [PG13] and [RVM⁺14] (next talk)
- Discrete Gaussian Sampling y ← D^m_{ℤ,σ} for large σ
 Needs high precision sampling (learning attacks)
 - Long Floating Points Arith. [GPV08]
 - Slow algorithms [DDLL13]
 - Large tables/trees [DG14]

Most of our contributions deal with hardware implementation of **Discrete Gaussian Sampling**.

We focus on the fastest method to sample Discrete Gaussian using **Cumulative Distribution Tables (CDT)**.

Operation: Binary search accelerated by guide tables

Problem: Naïve implementation would require 42KB

We focus on the fastest method to sample Discrete Gaussian using **Cumulative Distribution Tables (CDT)**.

Operation: Binary search accelerated by guide tables

Problem: Naïve implementation would require 42KB

We introduce two new techniques:

- Gaussian sampling by **convolution**
- Kullback-Leibler-divergence based security argument

Our algorithm requires a table of 2.1KB, and is almost as fast

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography

Implementation and Performances

A convolution of gaussians is a gaussian.

9/23

And what about discrete Gaussians ?

・ロト ・回ト ・ヨト ・ヨト

3

9/23

Well, depending on the parameter...

It may seem quite Gaussian.

 Intro.
 Algorithms
 Implem. & Results
 Conclusion
 Bibliography

 00000
 0000
 000
 00

Peikert's Convolution Theorem

Lemma (Adapted from [Pei10])

Let
$$x_1 \leftarrow D_{\mathbb{Z},\sigma_1}$$
, $x_2 \leftarrow D_{\mathbb{Z},\sigma_2}$ and set $\sigma_3^{-2} = \sigma_1^{-2} + \sigma_2^{-2}$, and $\sigma^2 = \sigma_1^2 + \sigma_2^2$. If $\sigma_1 \ge \omega(\sqrt{\log n})$ and $\sigma_3 \ge k \cdot \omega(\sqrt{\log n})$, then:
 $x_1 + kx_2 \simeq D_{\mathbb{Z},\sigma}$.

Application to BLISS-I: We can sample two variables x_1, x_2 of deviation $\sigma' = 19.5$ to obtain $x = x_1 + 11x_2$, of deviation $\sigma = 215$.

Impact: Size of table is reduced from 42KB to 4.5KB. Running time is less than doubled (binary search is faster for σ').

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
	000000			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Kullback-Leibler divergence

Definition (Kullback-Leibler Divergence)

Let ${\mathcal P}$ and ${\mathcal Q}$ be distribution over ${\it S}.$ The KL divergence, of ${\mathcal Q}$ from ${\mathcal P}$ is defined as:

$$D_{\mathsf{KL}}(\mathcal{P}||\mathcal{Q}) = \sum_{i \in S} \ln\left(\frac{\mathcal{P}(i)}{\mathcal{Q}(i)}\right) \mathcal{P}(i).$$

KL-divergence allows the same arguments as Statistical Distance:

Fact (Addivity and Datta Processing inequality)

•
$$D_{\mathsf{KL}}(\mathcal{P}_0 \times \mathcal{P}_1 \| \mathcal{Q}_0 \times \mathcal{Q}_1) = D_{\mathsf{KL}}(\mathcal{P}_0 \| \mathcal{Q}_0) + D_{\mathsf{KL}}(\mathcal{P}_1 \| \mathcal{Q}_1)$$

• for any function $f: D_{\mathsf{KL}}(f(\mathfrak{P}) || f(\mathfrak{Q})) \leq D_{\mathsf{KL}}(\mathfrak{P} || \mathfrak{Q})$

Statistical distance argument

$$egin{aligned} &\Delta(\mathcal{B}_{rac{1}{2}},\mathcal{B}_{rac{1}{2}+\epsilon}) = \Theta(\epsilon), &\Delta(\mathcal{B}_0,\mathcal{B}_{rac{1}{3}}) = \Theta(1) \ &n \geqslant \Theta(1/\epsilon) \end{aligned}$$

<ロト <回ト < 三ト < 三ト

KL-Divergence argument

$$\begin{split} D_{\mathsf{KL}}(\mathcal{B}_{\frac{1}{2}} \| \mathcal{B}_{\frac{1}{2}+\epsilon}) &= \Theta(\epsilon^2), \qquad D_{\mathsf{KL}}(\mathcal{B}_0 \| \mathcal{B}_{\frac{1}{3}}) = \Theta(1) \\ n &\geq \Theta(1/\epsilon^2) \end{split}$$

<ロ> <四> <四> <日> <日> <日</p>

 Δ Averaged absolute error

$$\Delta(\mathcal{P}, \mathcal{Q}) = \frac{1}{2} \sum_{i} |\mathcal{P}(i) - \mathcal{Q}(i)|$$

D_{KL} Averaged squared relative error

$$D_{\mathsf{KL}}(\mathcal{P}||\mathcal{Q}) \leq 2\sum_{i} \left| \frac{\mathcal{P}(i) - \mathcal{Q}(i)}{\mathcal{P}(i)} \right|^2 \mathcal{P}(i)$$

Limits of KL-divergence

- D_{KL} is not symmetric
- Can be worse than Δ (e.g. Tailcutting)
- Improvements only for reduction to Search Problems

Intro. Algorithms Implem. & Results Conclusion Bibliography 00000 0000● 0000 00 00000 0000 00

Truncating Cumulative Distribution Table

Full CDT

14 / 23

3

イロト イポト イラト イラト

Intro. 00000	Algorithms ○○○○●		Implem. & Results 0000	Conclusion 00	Bibliography
	 6	1.1.1	B 1 - 11 - 11	T 1 1	

Truncating Cumulative Distribution Table

Truncating left-most zeros

> ≣ ৩৭ে 14/23

イロト イポト イラト イラト

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
00000	○○○○○●	0000	00	
Truncating	g Cumulative	Distribution T	able	

Truncating right-most bits using KL-divergence

化口水 化固水 化压水 化压水

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography

- Ring-buffer to store random numbers generated by Trivium instantiation
- Binary-search component operates on block RAM B
- Biggest challenge: Critical path of binary search

FPGA Implementation of BLISS-I : Signing

- Number theoretic transform (NTT) multiplier (**ay**₁)
- Keccak-1600 hash function
- Fast sparse multiplier $(z_1 = s_1c + y_1, z_2 = s_2c + y_2)$

00000	Algorithms 000000	oo●o	00	вібіюgrapny
FPGA Im	plementation	of BLISS-I : Resi	ults	

Algorithm	LUT	FF	BRAM	DSP	OPs/s
BLISS-1[Sign]	7,491	7,033	7.5	6	7.9k signs/s
BLISS-1[Ver]	5,275	4,488	4.5	3	14,4k verifs/s
CDT-Sampler	928	1,121	1	0	17,4 M samp./s
Bernoulli Sampler	1,178	1,183	0	1	7,4 M samp./s

- Results are given for a 1024-bit message on Spartan6-LX25-3
- High-speed signing and verification
- DT sampler is twice as fast as Bernoulli sampler for similar resource consumption

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
00000	000000	○○○●	00	
FPGA Imp	blementation	of BLISS-I : Com	parision	

Algorithm	LUT	FF	BRAM	DSP	OPs/s
BLISS-1[Sign]	7,491	7,033	7.5	6	7,958 signs/sec
BLISS-1[Ver]	5,275	4,488	4.5	3	14,438 signs/sec
GLP-1[Sign/Ver]	6,088	6,804	19.5	4	1,627/7,438
RSA-2048 [Sign]	4190 slices		7	17	79
Curve25519	2783	3592	2	20	2518
ECDSA-256	32,299		0	0	139/110
[Sign/Ver]	LUT/FF pairs				

- Implementation faster that RSA and prime curve ECC/ECDSA
- Faster, shorter and more secure than GLP lattice-signature
- Reasonable area consumption

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
00000	000000	0000	●0	
Conclusio	<u>ו</u>			

Lattice-based Crypto is ready.

- BLISS compares to standardized signature schemes, in both Software and Hardware
- New geometric analysis will make it even faster
 [D14, To appear, see Rump Session]

Time has come for standardization of lattice-based cryptography.

- Provide alternative/fallbacks to ECC/RSA
- Mostly unpatended
- Motivate more work: Comprehensive Cryptanalysis, Improved Algorithms, Lightweight Implementation, Side Channel Attacks, ...

Intro.	Algorithms	Implem. & Results	Conclusion	Bibliography
00000	000000	0000	⊙●	
Open Acc	cess, Open-	Sources		

Full and updated paper: http://eprint.iacr.org/2014/254 Software implementation: http://bliss.di.ens.fr/ Hardware implementation: http://www.sha.rub.de/research/projects/lattice/

Thanks !

3

イロト 不同下 イヨト イヨト

Algorithms	Implem. & Results	Conclusion	Bibliography

Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians.

In Ran Canetti and Juan A. Garay, editors, <u>CRYPTO 2013</u>, Part I, volume 8042 of <u>LNCS</u>, pages 40–56, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany.

Nagarjun C. Dwarakanath and Steven D. Galbraith.

Sampling from discrete Gaussians for lattice-based cryptography on a constrained device.

Applicable Algebra in Engineering, Communication and Computing, pages 1–22, 2014.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, <u>40th ACM STOC</u>, pages 197–206, Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

Vadim Lyubashevsky.

Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In Mitsuru Matsui, editor, <u>ASIACRYPT 2009</u>, volume 5912 of <u>LNCS</u>, pages 598–616, Tokyo, Japan, December 6–10, 2009. Springer, Berlin, Germany.

Algorithms	Implem. & Results	Conclusion	Bibliography

Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In David Pointcheval and Thomas Johansson, editors, <u>EUROCRYPT 2012</u>, volume 7237 of <u>LNCS</u>, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

Chris Peikert.

An efficient and parallel gaussian sampler for lattices.

In Tal Rabin, editor, <u>CRYPTO 2010</u>, volume 6223 of <u>LNCS</u>, pages 80–97, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany.

Thomas Pöppelmann and Tim Güneysu.

Towards practical lattice-based public-key encryption on reconfigurable hardware.

In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, <u>SAC 2013</u>, volume 8282 of <u>LNCS</u>, pages 68–85, Burnaby, BC, Canada, August 14–16, 2013. Springer, Berlin, Germany.

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede. Compact Ring-LWE based cryptoprocessor. In <u>CHES'14</u>, 2014.