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Abstract—In recent years, the detection of voluntary motor in-
tentions from electroencephalogram (EEG) has been used for trig-
gering external devices in closed-loop brain–computer interface
(BCI) research. Movement-related cortical potentials (MRCP), a
type of slow cortical potentials, have been recently used for detec-
tion. In order to enhance the efficacy of closed-loop BCI systems
based on MRCPs, a manifold method called Locality Preserving
Projection, followed by a linear discriminant analysis (LDA) clas-
sifier (LPP-LDA) is proposed in this paper to detect MRCPs from
scalp EEG in real time. In an online experiment on nine healthy
subjects, LPP-LDA statistically outperformed the classic matched
filter approach with greater true positive rate (79 ± 11% versus
68 ± 10%; p = 0.007) and less false positives (1.4 ± 0.8/min
versus 2.3 ± 1.1/min; p = 0.016). Moreover, the proposed sys-
tem performed detections with significantly shorter latency (315 ±

165 ms versus 460 ± 123 ms; p = 0.013), which is a fundamen-
tal characteristics to induce neuroplastic changes in closed-loop
BCIs, following the Hebbian principle. In conclusion, the proposed
system works as a generic brain switch, with high accuracy, low
latency, and easy online implementation. It can thus be used as
a fundamental element of BCI systems for neuromodulation and
motor function rehabilitation.

Index Terms—Brain–computer interface, electroencephalo-
gram (EEG), Locality Preserving Projection, motor intention,
movement-related cortical potentials (MRCP).
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I. INTRODUCTION

A
N electroencephalogram (EEG) signal based brain–

computer interface (BCI) provides an alternative commu-

nication channel for healthy or disabled users from their brain

to the external environment, bypassing the physiological neu-

ral pathways (i.e., peripheral nerves and muscles). In the past

decades, BCI has been successfully developed as an alternative

communication tool for locked-in patients [1]. More recently,

BCI has emerged as a novel tool for close-loop control for pa-

tients who suffered, e.g., a stroke or spinal-cord injury [2]. These

closed-loop applications are either for mobility assistance, such

as controlling a wheelchair [3], or for neurorehabilitation appli-

cations, such as controlling an electrical stimulator (ES) [4], [5].

For these purposes, the motor intentions of the user, either im-

agery, execution or attempt, need to be detected from brain

signals with very short delay (several hundred ms), so that the

resulting control can be perceived as a closed loop. For reha-

bilitation applications in particular, the afferents resulting from

the peripheral stimulation triggered by the BCI detections have

to reach the task specific cortical area within a very narrow

time window so that the underlying Hebbian principle can be

satisfied, and the rehabilitation can be effective [6].

Two noninvasive motor-related cortical signal modalities

have been investigated for closed-loop BCI in neurorehabil-

itation: sensory motor rhythms (SMR) [7] and movement-

related cortical potentials (MRCP) [8]. SMR-based systems

could achieve reasonable detection accuracy, but the latency

(i.e., the delay between the motor intention and the correspond-

ing detection) was in the order of seconds [9], [10], which is

hardly enough for the Hebbian principle to be effective [6]. This

might be one of the key reasons that SMR-based studies reported

long intervention protocol (weeks even months) were necessary

before any physiological and functional changes could be ob-

served in stroke patients [11], [12]. On the other hand, in a series

of recent studies on healthy subjects and stroke patients, it has

been established that motor intentions can be detected through

MRCP with a latency short enough to elicit fast evolving cortical

excitability by triggering peripheral ES [13]–[15]. For clarify-

ing the terminology, it is worth mentioning that the MRCP is

referred to contingent negative variation (CNV) when generated

in a synchronized (cue-based) paradigm [16], and Bereitschafts

potential (BP) or readiness potential when generated in an asyn-

chronized (self-paced) paradigm [17].

In previous studies on closed-loop BCIs based on MRCPs,

both CNV and BP were investigated [6], [18]–[22]. In a recent
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study by Niazi et al. [13], the MRCP was detected by a simple

matched filter (MF), with supervised extraction of the MRCP

template. This approach was a satisfactory balance between de-

tection accuracy and latency [13], [14], [23]. Furthermore, as

demonstrated by Niazi et al. [14], the induced plasticity is pos-

itively associated with the detection accuracy. Therefore, the

accuracy and delay of the user motor intention detection algo-

rithm have a direct impact on the efficacy of this approach, or any

other approaches, in inducing neural plasticity for rehabilitation

training.

The MF is optimal for maximizing the signal-to-noise ratio

when the noise is additive Gaussian. This condition is not neces-

sarily valid in the current application. Thus, the MF is very likely

to be suboptimal for this application. In the current study, a man-

ifold learning algorithm, called Locality Preserving Projections

(LPP) [24], followed by a linear discriminant analysis (LDA)

classifier is proposed for the detection problem in MRCP-based

BCIs. Furthermore, an online BCI experiment was designed to

compare the performance in detection accuracy and latency of

the proposed algorithm with that of the MF approach. The re-

sults showed that the proposed system works as a generic brain

switch, with high accuracy, low latency, and easy online imple-

mentation. Given its high performance as a brain switch, it is

a critical step in the development of a highly effective, closed-

loop BCI system for applications such as neuromodulation and

motor function rehabilitation.

II. METHODS

A. Experimental Setup

Nine channels of EEG were collected using an active

EEG electrode system (ActiveCAP, Brainproducts) and the

g.USBamp amplifier (gTec, GmbH) at the sampling rate of

1200 Hz. Nine signal electrodes were placed on Cz, Fz, FC1,

FC2, C3, C4, CP1, CP2, and Pz, while the ground electrode and

reference electrode were placed on AFz and the left earlobe,

respectively, according to the standard international 10–20 sys-

tem. The necessary electrode preparation was done so that the

impedances of all electrodes were below the recommended value

by the manufacturer of actiCAP system before data acquisition.

One channel of surface electromyography (EMG) was also

recorded with the g.USBamp amplifier. EMG was acquired in

monopolar montage from the tibialis anterior (TA) muscle with

disposable electrodes (Neuroline 720, Ambu). The electrode

was placed on the mid-belly of the right TA muscle, while the

reference and ground electrodes were placed on the bony surface

of the right knee and right ankle, respectively.

The nine EEG channels were connected to the first 9 inputs

of the g.USBamp amplifier, while the EMG to the last input.

The ground and reference setting was done through software

configuration, so that the EEG channels had common ground

and reference, while the EMG channel had separate ones.

The force of dorsiflexion was recorded using a custom-

made pedal with force transducer (Aalborg University, Aalborg,

Denmark). The force signal was recorded by National Instru-

ment data acquisition card (NI USB-6251), and was presented

to the subject, using a graphic user interface (GUI) in MATLAB.

Fig. 1. Experiment Flow. After preparation, the experiment started with a
training session and a testing session in which self-paced ME and MI with
LPP-LDA and MF were performed. In the last part the experiment, the order of
the LPP-LDA runs and MF runs was randomized.

B. Experimental Procedures

An online experiment was executed to test the validity of the

proposed method since online performance is more relevant and

closer to real-life applications than offline analysis. The online

experiment was executed on nine healthy subjects (age: 29.7 ±
4.3 yrs) and consisted of three sessions: preparation, training,

and testing (see Fig. 1). The experiments were approved by the

local ethical committee and the subjects signed an informed

consent form before participation.

1) Preparation: In the preparation session, EEG and EMG

electrodes were mounted according to the experimental setup

described previously. The subjects were asked to perform ballis-

tic dorsiflexions of their right ankle. The torque produced at the

ankle joint was acquired and displayed in a subject-view GUI. In

the beginning of each experiment, the subjects were instructed

to perform a maximum voluntary contraction (MVC) for 10 s.

Then, the target contraction level in the training session was set

between 40–60% of MVC. A vertical bar was displayed on the

subject-view GUI for feedback purpose in the training session.

The height of the bar was proportional to the torque value. The

bar was green when the torque was within the target range and

blue (red) when it was below (above) the target.

2) Training: Once the target torque was set, the training ses-

sion started. The subjects were asked to perform self-paced mo-

tor execution, i.e., real movements of dorsiflexions, with resting

intervals of 10–20 s. Upon the detection of each movement

from the EMG (see Section II-D.1), an interval starting 2.5 s

before and terminating 1.5 s after the movement onset of the

preprocessed virtual Cz channel (see detail in Section II-D.2)

was displayed to the experimenter. Corrupted trials were flagged

by the experimenter, and excluded from further processing (see

details in Section II-D).

There are two main reasons why real movements rather than

cue-based imagery were used for the training set. First, the

signal-to-noise ratio is higher for MRCP in real than in imag-

ined movements [25]. Second, the MRCPs obtained from real

movement can be aligned exactly by detecting the movement on-

set from the EMG, whereas there is an unpredictable alignment

error for motor imagery. The use of real movements for training

would be possible for patients who have residual muscle activity.

Recently, high detection performance of voluntary movement
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onset was reported using EMG contaminated by spasm from

stroke patients [26]. In our previous studies using MF on stroke

patients, surface EMG from TA muscles was successfully used

for the onset detection purpose [13], [27]. Cue-based imagery

would be needed for patients without any residual activity,

though.

In the training session, the subjects were instructed to perform

30 successful executions. This number was chosen based on

previous studies [13], [14], as such reasonable length of repeated

dorsiflexions would not make the TA muscle fatigue and thus

the subjects could keep full concentration. It would be very

difficult for stroke patient to stay alert and concentrate when

the intervention protocol is too long. Because some executions

were flagged as corrupted, the actual number of executions was

usually slightly greater than 30. There were short rests upon

the subjects’ requests. The data acquired in the training session

were stored, and used to train the LPP-LDA classifier and the

MF detector (see Section II-D).

3) Testing: Once the classifiers were trained, the testing ses-

sion started. Two runs (continuous recording) were performed

in this session: LPP run and MF run, for the two detectors. In

each run, the subjects performed first motor executions and then

imagery. The order of the two runs was randomized.

The execution tasks represents a test close to the real-life

applications on patient with residual muscle activity while the

imagery tasks represented the situation of patients who can-

not execute any movement. Therefore, both of these tasks were

carried out in the testing session and used to investigate the per-

formance of the proposed method in detecting motor intentions

from EEG.

Both LPP-LDA and MF were applied on execution and im-

agery (see Fig. 1). During execution, the subject was asked to

perform self-paced dorsiflexions, as was done in the training ses-

sion, for 15–20 times. During imagery, the subjects were asked

to perform self-paced dorsiflexion imagery and to lightly say

“YES” 1 s after each imagery task in order to have a reference

for the motor imagery events. In a preliminary investigation, it

was determined that light simple speech did not influence the

proper functioning of the two detectors. A red bar appeared in

the subject-view GUI every time a detection occurred (either

true or false detection). Both executions and imagery in the

testing session were referred to as active phases. There was a

passive phase before each active phase, in which the subjects

were requested to totally relax for 1 min without any movement

or motor imagery of the TA muscle. Normal eye movements,

mouth movements, or slight trunk movement was allowed. This

was to test the ability of the algorithms in rejecting potential

artifacts produced by these factors under a realistic condition.

In this phase, the number of passive false positive (pFP) was

counted for 1 min.

During the testing session, the true positive rate (TPR), active

false positive (aFP) and pFP were calculated online. The TPR

was the ratio of true detections and total attempts, which were

identified from the EMG channel for execution tasks and from

subject’s verbal indication for imagination tasks. The aFP was

the number of false detection per minute in the active phases

and pFP was the number of false detections per minute in the

passive phases. Additionally, the detection latency (DL) was

calculated offline. DL was the latency between the time of the

detection and the EMG onset of corresponding movement for

the executed tasks. For imagery, however, there was no EMG

reference and thus the reference instant for latency calculation

was the negative peak of the MRCP, which corresponds to the

beginning of motor execution for executed tasks [28].

C. Locality Preserving Projection

The algorithm of LDA is well known in the literature, and have

been successfully applied in EEG signal classification [29], [30].

Therefore, for the sake of conciseness, the detail of LDA is

not repeated here. On the other hand, although LPP has been

successfully used in applications such as image processing [31],

it has not been applied to EEG signal processing in the context of

MRCP detection. Thus, the method is presented in the following.

LPP, as a manifold learning dimensional reduction algo-

rithm, has the property that it preserves the local intrinsic

structure of the data in the original high dimension. Given

a graph G with N vertices (each vertex represents a train-

ing sample), let W be a N × N symmetric matrix with each

Wij representing the distance between vertices i and j, i.e.,

Wij = exp(−‖xi − xj‖
2 /t. Here, t is a constant. Then, G and

W can be defined to characterize certain statistical or geometric

property of the training samples.

Consider the problem of mapping samples on the graph G to

a line so that the connected points are as close as possible. Let

y = [y1 , y2 , . . . , yN ]T be such a map. The optimal y is given

by

min
∑

i.j

(yi − yj )
2Wij . (1)

Minimizing (1) corresponds to ensuring that if the vertices i
and j are “close,” then the projections yi and yj are close as

well [31], which explains the term “locality preserving.” With

algebraic formulations, we obtain

∑

i.j

(yi − yj )
2Wij = 2yT (D − W)y = 2yT Ly, (2)

where D is a diagonal matrix whose entries are Dii =
∑

j Wij ,

and L is the Laplacian Matrix [32]. Finally, the minimization

problem of (1) equals to

min yT Ly s.t. yT Dy = 1. (3)

The constraint yT Dy = 1 removes an arbitrary scaling factor

in the embedding process. Note that L = D − W, so that (3)

equals to

max yT Wy s.t. yT Dy = 1. (4)

The optimal y can be obtained by solving the following max-

imum eigenproblem:

Wy = λDy. (5)

For classification purposes, a mapping for all samples, in-

cluding new testing samples, is required. Suppose that α is a
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Fig. 2. Algorithm Flow. The LPP-LDA classifier was trained offline using the
data obtained from the training session, and then applied in the online testing
session.

Fig. 3. Three steps for LPP (adapted from [33], with permission to reproduce).
Step 1: select neighbors for each sample, i.e. Xi in original high-dimensional
space; step 2: reconstruct Xi with linear weights W ij , which represent the
distance between Xi and its neighbors, such as Xj ; step 3: project Xi to the
embedded coordinates, i.e. Y i in the reduced-dimensional space.

transformation vector, that is yT = αT X , then the above eigen-

problem can be transformed into

XWXT α = λXDXT α. (6)

As illustrated in Fig. 3, there are three steps for LPP [33], [34]:

first, the neighbors are selected to each sample of X in the

original high-dimensional space, after which the linear weights

matrix W, i.e., the distance between each sample of X and its

neighbors, is calculated. Finally X is projected to y, which is

in the reduced-dimensional space.

D. LPP-LDA Processing Steps

There were five processing steps in the training stage of the

signal processing (see Fig. 2):

1) Movement Onset Detection: The Teager–Kaiser energy

operator was used here to detect movement (self-paced dorsi-

Fig. 4. Single trial MRCP of self-paced dorsiflexion in training run (n = 1).
Time zero is when the dorsiflexion was executed, as indicated by the dashed
vertical line. For LPP training set, the signal from −1.5 to 0.5 s was taken as
“signal portion,” while others was taken as “noise portion.”

flexion) onsets from EMG online, which was shown to be more

accurate than using the amplitude of the surface EMG [35].

2) EEG Preprocessing: A band-pass filter from 0.05 to 3 Hz

and the large Laplacian spatial filter centered at Cz were used to

enhance the signal-noise ratio of Cz. This virtual Cz was used

in subsequent processing steps.

3) Removal of Corrupted Trials: After the first two steps,

2.5 s before and 1.5 s after each movement onset of the pre-

processed EEG, i.e., the virtual channel at Cz, were presented

to the experimenter immediately after each movement execu-

tion. Due to the subject’s involuntary movement, such as eye

blinking or jaw clutching during the training procedure, some

trials were clearly corrupted, e.g., inconsistent morphology, or

abnormal peak-to-peak amplitude (<5 uV or >30 uV). These

trials were flagged by the experimenter, so that they could be

excluded from subsequent processing.

4) Training Samples Extraction: The data between 1.5 s be-

fore and 0.5 s after the movement onset of virtual Cz were

extracted as the “signal portion,” while EEG data between 1.5 s

before this onset and 5 s after the previous onset were extracted

as the “noise portion” (see Fig. 4). Thus, the two-class training

set XM ×N was compiled for the LPP-LDA classifier.N was the

number of training samples, while M was the length of them.

5) LPP-LDA Classification: The LPP-LDA classifier was

trained offline using the training set XM ×N . The training set

XM ×N was projected to a lower dimensional feature space

yT
K×N (LPP space) using LPP transform vector αT

K×M . K

was the reduced dimension by LPP. And LDA was used to

classify the two classes in the LPP space yT
K×N . As for any

dimension reduction algorithms, the optimal dimension for the

LPP space yT
K×N needs to be determined to achieve optimal

performance. In the current study, the optimal dimension for

LPP was determined through a pilot investigation, in which four

healthy subjects (age: 30.5 ± 5.1 yrs) participated only in one

session identical to the training session of the main protocol. The

threefold cross validation was applied on training data offline,

with the dimension of the LPP varying from 1 to the dimension

of the data. The optimal dimension was chosen based on the

results of the pilot investigation (see Section III-A), and applied

to the online experiment. Alternatively, it would have been also

possible to obtain a subject-specific optimal dimension based on



292 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 2, FEBRUARY 2014

the individual training dataset. We preferred to find a common

value for all subjects to reduce the number of parameters, thus

making the algorithm more general across subjects.

The trained classifier was then applied online in the testing

session. The incoming data xi
M ×9 (2-s windows with 0.1 s in-

crements) was preprocessed in the same way as the training

data [see Section II-D.2)]. Then, each preprocessed data seg-

ment xi′

M ×1 was projected to the LPP space in real time, and the

trained LDA classified each segment into one of the two classes.

When two consecutive decisions were classified as “signal,” an

MRCP detection would be generated and a red bar in the subject-

view GUI would be presented immediately.

E. MF Processing

The details of the MF approach were presented in [13]. A

template of MRCP, namely h, is first obtained from the training

data as the epoch average of all training trials. In the testing

session, denoting the incoming sequence as x, the output of MF

is defined as

f [n] = (h ∗ x)[n] =

∞∑

−∞

h[n − k]x[k] (7)

where f is the likelihood ratio between h and x. The incoming

sequence would be detected as “signal” when f is above the

preset threshold, and otherwise as “noise.”

The MF training procedure was identical to LPP-LDA train-

ing from step 1 to step 4 (see Section II-D). The MF only utilized

the signal portion, from which an MRCP template hM ×1 was

extracted. A threefold cross validation was applied to the train-

ing data, and the threshold of MF was chosen at the midpoint of

the turning phase of the receiver operating characteristic (ROC)

curve [13].

In the online testing session of MF, the incoming data xi
M ×9

was preprocessed, as done for the LPP-LDA. Then, the likeli-

hood ratio between the preprocessed incoming data xi ′

M ×1 and

the template hM ×1 was computed [13]. When two consecutive

windows were above the MF threshold, a red bar in the subject-

view GUI would be presented immediately, indicating an MRCP

detection.

F. Statistical Analysis

Due to the limited number of subjects, a nonparametric test

(Mann–Whiteney U Test) was used to analyze significant dif-

ferences among the performance of the BCI when varying the

method for detection and the type of task. The response variable

of the Mann–Whiteney U Test included TPR, aFP, pFP, and DL.

The two factors of the test were: tasks (two levels: execution

and imagery) and algorithms (two levels: LPP-LDA and MF).

For all tests, the significance level was set to 0.05.

III. RESULTS

A. Offline Analysis

Offline analysis was performed on the data of the pilot in-

vestigation on four subjects, which were used to determine the

optimal dimension for the LPP space.

Fig. 5. Representative detection output by MF and LPP-LDA on the same
training data in three-fold cross validation. Filled cycles stand for the movement
onsets detected from EMG; empty cycles are the MF detections, while squares
are detections by LPP-LDA.

Fig. 6. Relationship between the LPP dimension and detection accuracy. Lines
with different colors represent results from four subjects. Solid lines stand for
TPR, while dash lines are TP. The LPP dimension was normalized to 0–1 with
respect to the total dimension of the respective training data.

1) Optimal Dimension of the LPP Space: The optimal LPP

dimension was chosen on the basis of the analysis of the data

from the four subjects participating in the pilot experiment. As

shown in Fig. 6, there were typical conditions in which the de-

tection accuracy (i.e., TPR and FP) changed with respect to the

dimension of the LPP space. For the four subjects of the pilot

study, the TPR increased gradually while FP decreased rapidly

when the dimension increased from 0 to approximately 60% of

the original dimension, whereas these two indexes were approx-

imately constant for greater dimensions. Based on these obser-

vations in the pilot study, the dimension of the LPP space in all

subsequently analysis was set to 60% of the original dimension.

2) Representative Detection Output on the Training Data:

Fig. 5 illustrates a representative example of the output of the

two algorithms on the same training data in threefold cross-

validation. LPP-LDA was capable of identifying true MRCPs

yet rejecting non-MRCP signal segments with very similar mor-

phology. In contrast, the MF was shown to be easily influenced

by small fluctuations, and missed true signals when the mor-

phology changed.

B. Online Performance

The results in this section, as shown in Tables I and II, are

based on the online testing session.

The Mann–Whiteney U Test showed that there was no statis-

tical significance between execution and imagery with MF for

TPR, aFP, pFP and DL (p = 0.18, 0.59, 0.75, and 0.064, respec-

tively). Same results were obtained with LPP-LDA (p = 0.15,
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TABLE I

DETECTION ACCURACY WITH LPP-LDA AND MF

TABLE II

DETECTION LATENCY (ms) WITH LPP-LDA AND MF

0.20, 0.16, and 0.59, respectively). Following these results, the

data from the two tasks were pooled together.

Subsequently, the Mann–Whiteney U Test was applied on the

pooled data to analyze the significance between two algorithms.

TPR with LPP-LDA was found to be significantly (p = 0.007)

higher than that with MF (79 ± 12% versus 68 ± 10%).

LPP-LDA was found to produce significantly (p = 0.016) lower

aFP than those with MF (1.4 ± 0.8/min versus 2.3 ± 1.1/min).

LPP-LDA also produced significantly shorter DL (p = 0.013)

than MF (315 ± 165 ms versus 460 ± 123 ms). However, there

was no significance (p = 0.064) for pFP between the two algo-

rithms, although it trended to be less with LPP-LDA than MF

(2.1 ± 1.9 versus 3.5 ± 2.3).

IV. DISCUSSION

In this study, a manifold based nonlinear dimension reduction

method (LPP) was applied, along with LDA, to perform online

detection of MRCPs from EEG signals in execution and imagery

of dorsiflexions. Across all subjects, the proposed algorithm had

similar FP for execution and imagination. The respective TPR

for execution and imagery was >80% and >70%.. These results

were significantly better than those with the MF approach pre-

viously reported in the literature [13], [14], [23]. Furthermore,

the DL (315 ± 165 ms) was also significantly shorter than that

with MF.

A. Motor Intention Detection and Closed-Loop BCI Control

The robust detection of motor intention is an essential and

critical issue for the development of self-paced close-loop BCI

control systems. For BCI control applications, the acceptable

delay in control has not been investigated in detail but, in other

fields, e.g., multifunction prostheses control by myoelectric sig-

nals, a 200-ms delay is considered as acceptable [36]–[38].

For the applications of BCI-based neurorehabilitation to induce

plasticity, it was demonstrated that the necessary delay was in

the same range as for control, i.e., in the order of a few hun-

dred millisecond [6]. Therefore, a reliable detection with high

accuracy and minimal latency would play an important role in

an effective BCI rehabilitation tool. In the current study, the la-

tency was in 200–400 ms, making it ideal for a close-loop BCI

control system.

In the past decades, SMR has been used to detect motor in-

tention in studies, in which BCIs were used to control visual

feedback [12] or trigger external devices [39]. However, it is

difficult for naı̈ve subjects to use an SMR-based BCI system,

since a rather long (in the order of weeks) training session is

necessary before a reasonably detection accuracy can be at-

tained [40]. In addition, the latency was not investigated in

these studies. This may explain why weeks of intervention were

required for inducing plasticity [11], as the association of the

Hebbian rule was not established when the afferents arrived at

the cortex with too large delay with respect to the movement

intentions or attempts [41].

In recent years, slow cortical potentials attracted the attention

in the rehabilitation field. Garipelli et al. investigated the effect

of different band-pass filter in the detection accuracy of CNV,

yielding 0.88 ± 0.05 of area under curve in ROC with the op-

timal filter in an offline study [19]. Also in an offline study,

Ahmadian et al. used constrained blind source extraction

and showed that there was a tradeoff between TPR and FP

[42]. These studies investigated upper limb movements, which
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arguably have more distinctive spatial pattern than dorsiflexion.

As such, it is difficult to compare the results of these two recent

offline studies with the results from the current online study

with lower limb movement. More importantly, the latency was

not investigated in these previous studies, although it is a crucial

determinant of the efficacy of a rehabilitation training based on

this type of BCI switches [6].

In a series of studies by our group, we demonstrated that mo-

tor intention could be detected from MRCP using the MF, with

satisfactory accuracy and small latency [13], [14], [23]. When

such a detection was used to trigger electrical stimulation, plas-

ticity was induced with a short intervention (∼30 min), and

outlasted the intervention [14]. In the current study, LPP-LDA

showed higher accuracy and shorter latency than MF, and thus

would play an important role in further enhancing the efficacy

of this BCI-driven rehabilitation approach that is uniquely de-

signed to induce plasticity specific to the target muscle. Prelim-

inary verification of this hypothesis has been recently reported

in abstract form in a study in which we used the LPP-LDA

detection approach proposed in this study to trigger an ankle

foot orthosis [43]. In that study, plasticity was induced with an

even shorter intervention time and more effectively with the al-

gorithm proposed in this study than in previous investigations

with MF detector.

B. Advantages of LPP

1) Robust Performance: The LPP-LDA yielded a signifi-

cantly higher accuracy, compared with MF (see Table I). In

addition, passive FP was tested in this study, and LPP-LDA also

showed its superior ability in reducing FP when the subjects

were in idle condition.

More importantly, for LPP-LDA, there was no significant

difference between the FP (both aFP and pFP) in both tasks.

This insensitivity to task types demonstrated the robustness of

LPP-LDA.

There are two reasons why LPP-LDA outperformed MF. One

lies in the data organization. For MF, the MRCP template was

extracted from the epoch average of all trials of “signal portion”

in the training session. This process practically dropped the spe-

cific characters of MRCP in different trials, and also discarded

the direct information from “noise portion,” even though it was

implicitly used during the manual adjustment of the threshold.

On the contrary, both signal portion (MRCP) and noise portion

were used to train the LPP-LDA classifier, which thus made full

use of the available information. Another reason is the powerful

ability of LPP in preserving the intrinsic structure of the data

in its original high dimensional space. That is why it could de-

tect MRCPs when its morphology was changed, and reject false

detections induced by signal fluctuation, while MF cannot (see

Fig. 5).

Moreover, LPP-LDA showed shorter latency than MF. The

DL with LPP-LDA was ∼300 ms, which was significantly

shorter than that with MF (∼500 ms).

It should be noted that we used the signal of 0.5 s after the

movement onset as part of the templates for both detectors, be-

cause the rebound phase (movement monitoring potential) is

highly distinctive in many subjects. The DL could be further de-

creased by choosing a shorter portion of the MRCP as template,

at the expense of detection accuracy.

2) Subject Independent Parameters: The threshold of MF

output needs to be optimized. When the threshold is too low, a

small variation would result in an MRCP detection, leading to

high FP. On the contrary, the TPR would be low if the threshold

was set too high. That is why there is a tradeoff between the

TPR and FP. The optimization step is usually realized by a cross

validation of the training data on individual basis [13]. However,

two issues should be treated carefully during this process. One

is how to define the optimal parameters. There is a balance

between the TPR and FP, but it is still not clear which one

should have priority. Another issue is that the optimal parameter

could be changed as the morphology of MRCP changes during

different types of task (i.e., execution or imagery), and likely

need to be calibrated from session to session. In the current

study, even though the optimal parameter was chosen for the

execution tasks, it may not be optimal for imagination tasks.

For LPP-LDA, the parameter that needs to be optimized is

the dimension of the LPP space. As we demonstrated in Fig. 6,

when the dimension was reduced to close to 60% of the total

dimension of the training data, the performance of LPP-LDA

kept consistent across subjects.

It is also possible for BCI applications to set subject spe-

cific and session specific parameters. However, the calibration

process for optimizing the parameters implies a longer inter-

vention protocol, which could be problematic for users, such

as stroke patients. Therefore, the subject-independent property

of LPP-LDA is especially desirable for BCI system tailored to

neurorehabilitation applications.

C. Potential Applications

As demonstrated in this study, LPP led to very good perfor-

mance for a brain switch with high TPR, low FP, short DL, good

robustness with respect to the MRCP morphology, and subject-

independent parameters. It could be a promising tool in BCI

applications. One of these foreseeable applications lies in the

BCI driven external device for neurorehabilitation [14], [15]. It

can play an important role in the development of an effective

and versatile BCI system in inducing plasticity.

D. Limitations

In the current study, we collected EEG data of 30 trials of

real movement of dorsiflexion as the training data for both the

MF and LPP-LDA, and it showed desirable performance. LPP’s

performance in general increases with the size of the training

data, as repeatedly demonstrated in the literature on image pro-

cessing [44], [45]. Our preliminary analyses showed that the

classifier would not work when the training trials were less than

15. However, the influence of the number of trials on perfor-

mance for MRCP detection is not systematically investigated.

Moreover, for patients who lost complete motor function of the

target limb and thus cannot produce detectable EMG, as is many

cases in neurorehabilitation applications, it would not be possi-

ble to use real movements for training. In this case, cue-based

(synchronous) imagery training would be necessary and this

would increase the number of training trials since MRCPs from
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motor imagery have lower signal to noise ratio than those from

real motor tasks [25].

Currently, the corrupted trials were identified and manually

removed from the training session. However, this step should be

executed automatically in the future.

In addition, the target users of the envisioned closed-loop

BCI rehabilitation system, i.e., patients with motor disorders,

such as stroke, were not involved in the current study. Previous

studies using MF reported similar results in both healthy sub-

jects and patients with MF [13], [27], indicating the potential

of using MRCP in the patient population. However, the exact

performance of the proposed LPP-LDA in patient population

needs further investigation.

V. CONCLUSION

We proposed an LPP-LDA classifier for detecting MRCPs

in real time, and compared its performance with the standard

MF in an online experiment. We demonstrated that LPP-LDA

performed significantly better than MF, with higher accuracy

and lower latency. In addition, it showed the desirable property

of subject-independent parameters. Based on these results, the

proposed brain switch is an extremely promising tool for the

development of user-intention-driven closed-loop BCI neurore-

habilitation systems.
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